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ABSTRACT The cyber realm is overwhelmed with dynamic malware that promptly penetrates all defense
mechanisms, operates unapprehended to the user, and covertly causes damage to sensitive data. The current
generation of cyber users is being victimized by the interpolation of malware each day due to the pervasive
progression of Internet connectivity. Malware is dispersed to infiltrate the security, privacy, and integrity
of the system. Conventional malware detection systems do not have the potential to detect novel malware
without the accessibility of their signatures, which gives rise to a high False Negative Rate (FNR). Previously,
there were numerous attempts to address the issue of malware detection, but none of them effectively
combined the capabilities of signature-based and machine learning-based detection engines. To address this
issue, we have developed an integrated Anti-Malware System (AMS) architecture that incorporates both
conventional signature-based detection andAI-based detectionmodules. Our approach employs a Generative
Adversarial Network (GAN) based Malware Classifier Optimizer (MCOGAN) framework, which can
optimize a malware classifier. This framework utilizes GANs to generate fabricated benign files that can
be used to train external discriminators for optimization purposes. We describe our proposed framework
and anti-malware system in detail to provide a better understanding of how a malware detection system
works. We evaluate our approach using the Figshare dataset and state-of-the-art models as discriminators.
Our results showcase enhanced malware detection performance, yielding a 10% performance boost, thus
affirming the efficacy of our approach compared to existing models.

INDEX TERMS Anti-malware system, generative adversarial networks, malware sandboxes, malware,
unpacker, performance.
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I. INTRODUCTION
With the latest advancements in computing technology, one
of the biggest assets of today’s era is data. The data is
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so important that it has effectively changed the world and
how we do various tasks. This gives rise to the need to
secure the data and its transmission over communication
channels [1]. Cybersecurity seems to be a great concern for
the functioning of institutions like banks, government and
private organizations, and businesses, where a considerable
amount of sensitive information in the form of data is
continuously generated. Owing to the rising volume of
malware [2], multiple challenges are being faced, but the
foremost challenge is to protect the data from the damage
of malware. Malware developers have become so smart that
they find ways to hide their malware before introducing it
to the world [3]. Thus, an efficient and error-free system is
much needed to stopmalware-assisted attacks even before the
availability of malware signatures. It is observed that even
after 30 years, the same techniques are also being used for
inducing malware, which is mainly due to the outdated anti-
malware solutions. Injecting malware is easier than detecting
that malware. The conventional Malware Analysis System
(MAS) mostly works on signature-based detection. Most
of the previous work done for the design of anti-malware
solutions focuses on carrying out signature matching [4], i.e.,
it generally acts on the principle of signature-based detection,
which works on the availability of malware signatures.
Therefore, it cannot be an efficient detection system for
zero-day attacks [5]. Modern malware analysis and detection
systems must not only be based on static features, heuristics
matching, and emulation techniques, but with the onset
of machine learning, it can also be enriched to detect
novel attacks [6]. Anti-malware products perform malware
detection based on signatures of malware, so the signature
repository needs to be checked for updates periodically to
keep the anti-malware product useful. However, the same
detection methodology does not apply to detect zero-day
attacks or even existing malware variants. Therefore, it has
become vital to put in efforts to detect malware to stop the
attacks and chaos created by the malware, especially when
it appears for the very first time. A complete Anti-Malware
System (AMS) should be equipped with static and dynamic
analysis modules. The static analysis focuses on detecting the
nature of the file without execution, whereas for dynamic
analysis, firstly the file is executed and then inspected
against its run-time behavior [7]. A hybrid strategy is a
combination of both static and dynamic analysis. Moreover,
the capability of an AMS can be enhanced by adding
components furnished by various Artificial Intelligence (AI)
techniques [8], [9], [10].

Since we focus on an optimum solution, we utilize
generative modeling for domain-specific data generation and
augmentation for continuous training and learning of the
AI model employed by the AMS. For this purpose, we use
the algorithmic architectures of Generative Adversarial Net-
works (GANs) [11] that use two neural networks, opposing
each other for the generation of new, fabricated instances
of data that can pass for actual data. These two neural
networks are: the generator, which is used for the generation

of new data, and the discriminator, which is used for the
evaluation of genuineness. The job of the discriminator is to
differentiate between the real and fake instances, whereas the
generator generates synthetic images in the hope that these
fake instances too will be deemed authentic, even though they
are fake.

Keeping in view the perspective of GANs, a signature-
based malware detector is integrated with a GAN-based
framework with the capability of generating samples for
enhancing the existing architecture of the malware discrim-
inator. Most techniques of malware code detection suffer due
to the smartness of the attacker. As we go through previous
research conducted in the area of malware investigation and
detection, a big gap is sighted between the knowledge of a
malware developer and the malware analyst or anti-malware
software developer. There is a dire need to bring about an
optimum architecture for enhancing the robustness of the
existing malware detectors.

TABLE 1. Comparison with existing work.

To do research in the field of malware detection, the sole
inspiration has always been to bring forward the best possible
capabilities of discovering the malware in an economical
and real-time manner so that malware risks can be alleviated
before a successful attack is launched. For this purpose,
in this paper, we propose the architecture of an efficient
AMS that is equipped with a Generative Adversarial Network
(GAN) based Malware Classifier Optimizer (MCOGAN)
framework. We present a two-fold solution with the per-
spective of not only elaborating on the whole concept of
the structure of an AMS but also presenting a framework
for enhancing the sturdiness and robustness of the Machine
Learning (ML) based models. Different levels of an AMS
architecture have been unfolded so that even a novice may
understand the workings of an AMS. In the existing literature,
we have not seen such a detailed architecture of an AMS.
The whole process is described meticulously, i.e., starting
from getting a suspicious file, passing through detection of
malware using a signature database, and then ending up
with anomaly-based detection with an assurance to enhance
the strength of the utilized ML models. In the proposed
MCOGAN framework, we investigate the use of GAN-based
data augmentation to artificially enlarge training instances for
model tuning. We worked on the idea that a GAN is not only
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helpful for data-deficient scenarios but also works wonders
for the training of any existing AI model by continuously
generating fake examples and enhancing the robustness of
the model. MCOGAN is comprised of two sub-modules, i.e.,
data generator and classifier optimizer. These two modules
complement each other in bringing up the optimal malware
classifier. Our proposed work will serve to achieve the same
purpose. Table 1 provides a comparison of our proposed
work with the work done previously on malware detection.
The details will be discussed in Section IV. Table 2 shows
the nomenclature explaining the acronyms and abbreviations
used in the paper.

The primary contributions of this research are as follows:
1) A detailed description of the problems encountered by

the AMS is presented. Moreover, year-wise malware
statistics are presented graphically.

2) A comprehensive signature-based malware detection
architecture is presented and its components are
described in detail.

3) A GAN-based anti-malware framework is proposed
and evaluated for optimizing machine learning-based
malware classifiers.

4) Potential study directions in this area are discussed.
The remainder of the paper is organized as follows:

Section II presents the previous work done for mal-
ware detection and anti-malware architectures. Section III

TABLE 2. List of acronyms.

describes the details of the problems encountered by an
anti-malware system. Section IV presents the related theory
and background. In Section V, the proposed architecture
is presented with details of every component. Section VI
discusses the proposed GAN-based framework for our AMS
architecture. In Section VII, the experiments are conducted
for the proposed architecture, and the results are analyzed.
Finally, Section VIII concludes the paper with upcoming
research directions.

II. RELATED WORK
In this paper, we propose the complete architecture of an
AMS encompassing every aspect of analysis necessary for
the eradication and detection of malware. This is somewhat
different from earlier works, which tend to focus on one
method to detect malware, such as identifying malicious
software using the static or dynamic method. Since we
present a signature-based malware detection method along
with a framework to improve the efficacy of the malware
classifier, in this section, we will go through the previous
work in both dimensions.

A. CONVENTIONAL MALWARE DETECTION APPROACHES
Previous researchers have worked on different ways of
presenting the architecture for an AMS. In [31], the authors
discussed the setup designed for malware research along
with network traffic dissection and execution of samples
in a virtualized environment. However, their approach was
dependent on the malware run timeouts. The authors in [12]
proposed a heuristic-based malware detection approach
aimed at Windows binary files that have been encoded and
loaded into memory. Berger-Sabbatel et al. [13] described
an architecture of a platform for reviewing botnets, finding
sufficient analysis methods, and monitoring the activities of
botnets only. The authors found efficient countermeasures
or confinement methods. Santos et al. [14] proposed a way
for the detection of variants of known malware families
by using the occurrence frequency of opcode sequences.
In [32], a framework is used by combining static, dynamic,
signature-based, and behavior-based malware analysis. The
approach is implemented using the API call graph system.
The authors in [33] proposed detection methods only for
metamorphic malware. They used API call sequences for
extracting malware semantics. Firdausi et al. [16] performed
malware detection by applying machine learning techniques,
e.g., Naive Bayes, decision trees, support vector machine
(SVM), and K-nearest neighbors (KNN) onAPI/system calls,
file system, and Windows registry.

Previous researchers also explored machine learning and
deep learning techniques for malware detection [34] but
some improvements can be made in their work to devise an
efficient anti-malware solution. In [35], the authors presented
a malware detection approach using a rule-based classifier
andNaïveBayes bymaking use of strings and byte sequences.
The authors in [15] and [17] used decision trees, Naïve
Bayes, and SVM using byte sequences. In [36], the belief
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propagation method is used. Similarly, other researchers
also used SVM and KNN [16], [37] for malware detection.
In [25], a semi-supervised learning approach is used to detect
unknown malware.

In [38], the authors proposed ResNets-based architecture
to detect the malware using behavior parameters, e.g., CPU,
memory, and disk utilization. But as they did not address
the issue of malware variants, FNR was high. In [39], the
authors emphasized using API call sequence patterns of the
malware. They described their results only on a specific
dataset ignoring the fact that how well the model will be
reusable for emerging malware. In [40], authors focused
to work on behavior-based malware detection using API
call sequencing. They used different algorithms to reach up
to 97-98% accuracy. Although the work done by existing
researchers provide a good addition to the malware detection
field, we still lack a complete architecture for an AMS with
all the integrated set of components.

B. GAN-BASED APPROACHES
GANs were first introduced by Ian Goodfellow and his team
in 2014 [41]. GAN has been used for the synthesis of data
based on training over some actual data. This feature is
beneficial in a security environment where there is a lack
of data for unseen attacks or malware. Consequently, many
potential attacks, including formerly undetected attacks, are
discovered using this augmented data, which usually remains
unseen to the user in training [22]. GAN has also been used
by researchers for malware detection. Anderson et al. [42]
showed that by training data augmentation with adversarial
examples generation, the classifier can detect additional
malware families as compared to other methods. Chen
and Jiang [43] illustrated the usability of GAN for the
implementation of the Intrusion Detection System (IDS).
They used GAN for understanding the normal data features.
They proposed a GAN-based model with a better cost
function. Burks et al. [44] performed a correlative study
between Variational Autoencoder (VAE) and GANs. They
presented improvement in malware detection using GANs.
Zhao et al. [45] proposed a GAN-based framework to
produce instinctive adversarial examples based on the data by
searching the latent semantic space of thick and steady data
representation. The authors in [46] and [47] also proposed
a defense mechanism using generative adversarial examples
generation. The authors in [44] proposed a defense mech-
anism using GANs and improved the existing performance
of the attack defense mechanism. Yang et al. [48] proposed
a method that utilizes adversarial example and attention
models to generate facial images for de-identification
purposes.

In [49], authors used GANs to amplify the malware using
the Operational Code (Opcode). They amplified the Opcode
part of a PE file and used it for malware detection. PE file was
dissected for segregation of different parts, i.e., PE header,
data, text, etc. They obtained 75% accuracy as they faced data

loss due to dropping off the other parts of the suspected file.
In [50], the researchers proposed the concept of only using
the suspected file’s header. They generated the new data by
using header information but they succeeded to enhance the
accuracy by only 1%.

III. ISSUES ENCOUNTERED BY AN ANTI-MALWARE
SYSTEM
As malware developers are getting smarter day by day, more
and more complications are encountered by malware analysts
and detectors. Previous researchers have done a lot of work to
address these issues and created awareness to understand the
areas in which a system can be attacked (Table 3). Following
is a brief description of these issues and challenges (Figure 1).

A. INCREASING THREAT VECTORS
A threat vector is a kind of pathway or methodology
an attacker adopts for penetrating the target system and
generating malicious outcomes, e.g., popup windows, decep-
tion, email attachments, etc. [51], [52]. Threat vectors
may include phishing attacks, PDF malware, and social
engineering attacks. Earlier researchers have emphasized the
importance of understanding threat vectors and proposed
attack taxonomies. The authors in [24] proposed a taxonomy
of threat vectors in terms of five classifiers to illustrate
the category of an attack using attack vector, defense,
operational influence, informational repercussion, and by
attack target. Ivaturi and Janczewski [53] also considered
increasing threat vectors as a threat to malware analysis
and proposed a taxonomy for social engineering attacks as
attackers are using social engineering methods by aiming
at the human elements and merging such techniques with
conventional technical methods. They divided these attacks
into two major categories of person-person and person-
person over media. Pitropakis et al. [18] also studied the
importance of threat vectors for approaching the solution
of the problem involving the detection of machine learning
attacks. The authors presented a taxonomy of attacks against
systems using machine learning. The taxonomy identified
the attack sharing key characteristics that can be addressed
by the same defense tactics. In [27], the authors emphasize
the attack types targeting data exfiltration, which can be
committed by the outsider or insider of an organization.
Since previous researchers put a lot of effort into under-
standing the reasons for increasing threat vectors, it can
be considered one of the main problems encountered by
an anti-malware system. Techniques like digital forensics
and IP attribution can only clean up data breaches, but
these techniques cannot prevent them. The increase in
threat vectors is mainly due to the increase in recreational
hackers with more time on their hands to work on their
targets.

B. FAST FLUX NETWORKS
Attackers deploy exceptionally refined strategies to compro-
mise consumers’ systems and sustain complete control over
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FIGURE 1. Problems encountered by anti-malware systems.

them for longer periods. Therefore, they use Domain Genera-
tion Algorithms (DGAs) considerably, not only for command
and control (C&C) operations, but also for drive-by download
and domain names generation for malware propagation. This
stops their servers from being blacklisted or captured. These
algorithms’ subroutines provide malware with new domains
on-demand or on-the-fly, e.g., 500,000 domains in a few
lines of code. The domain names help to communicate with
their C&C servers. This causes trouble for law enforcement
organizations to effectively switch off the botnets as contam-
inated machines will try to interact with a few of the domain
names daily to get updates or commands. The victim gets
caught by the fake domains and the task of detection becomes
critical.

Due to the perilous nature of DGAs, researchers focused
their work on the nature and taxonomy of DGA and presented
remedies for its abdication. Sood and Zeadally [26] proposed
a taxonomy of DGA and focused on its impact caused to
harm the C&C servers. The authors classified DGAs into
binary and script-based DGAs and presented a deep overview
of the characteristics of DGAs and their differences. Their
work helped to come up with automated solutions for DGA
detectionwith the help ofML techniques to offer more insight
into the malware activities in the network. In [19], to mitigate
the issue, the authors presented a machine learning-based
approach for recognizing DGA domains. They used real-time
threat data from live traffic collected for one year. Then,
they classified DGA domains using a deep learning model.
In [54], the authors suggested a framework for domain name

generation prediction based on Long Short-Term Memory
(LSTM) architecture.

C. ANTI-MALWARE SANDBOX EVASION
A sandbox is a tool or mechanism for malware detection
that runs a distrustful object in a virtual machine (VM) with
a fully-equipped operating system and senses the object’s
malicious activity by examining its actions. If the object
performs malicious activities in a VM, the sandbox perceives
it as malware. But sandboxes do not mean to always help with
the detection of malware, rather they can misguide during
this procedure of detection. Sandbox evading malware can
sense the existence of a sandbox and avoids executing the
malicious code until it gets out of this controlled environment.
In [28], the author discussed various techniques used to evade
the sandbox. Different anti-sandbox techniques look for the
process name that may run on sandboxes, specific registry
entries, module names used by sandboxes, virtualization
software, and different artifacts to find the presence of
sandbox and then go for evasion methods. The authors in [29]
also focused on the limitations of sandboxes and discussed the
Code Injection Method and RunPE method for the evasion
of dynamic analysis used by modern malware. In [30], the
author concentrated on a novel approach, called Just-In-
Time (JIT) malware assembly that is capable of evading
detection from network sandbox and conventional endpoint
security solutions. Some of the network sandboxes search
for executables in network traffic and then intend to copy,
remove and ‘‘explode’’ them within a sandbox to determine
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TABLE 3. Work done for addressing issues faced by malware analysis system.

their potential for harm. But the JIT assembly technique being
a big threat successfully evades security solutions.

D. ADVANCED PACKERS
With the progression in packers’ technologies, an overhead
is being delivered during the process of malware detection.
A malware packer is a mechanism or software developed
to disguise a malware-containing file. Packers have the
capability to encode, flatten, compact, or alter the layout
of a malicious file to hide its identity entirely. This action
of compaction or enciphering transforms the file from its
real code to a new form using tested obfuscation techniques.
Consequently, the malware remains to continue in a system
unidentified by anti-malware software and other security
solutions, hurting the integrity of the system. Packers can
be metamorphic [55], which means that the output of
the packer will never be precisely the same, even if the
packing is applied again on the same file. In such a case,
the detection of unknown packers is more needed without
having any known samples of a given packer. To detect
the packers in their system, it is recommended to have
acquainted with some of the most used packers for malware
obfuscation.

1) ULTIMATE PACKERS FOR EXECUTABLES (UPX)
UPX stands for ‘‘Ultimate Packer for Executables’’. It is
an open-source tool and does not use extra memory for

unwinding. It makes the content of a malware binary file
unreadable. This calls for some tools to unpack the data to
get its meaning. So unpacker is one of the most important
components of an AMS.

2) THE ENIGMA PROTECTOR
This is not only good for persons and businesses to protect
files from hacking, but it can also pack and hide malware.

3) MPRESS
It was initially developed to compact files and minimize
applications’ starting times. As this is free, it is also easily
available to hacking applications and other malware coders.

4) MEW
MEW is used for the compression of smaller-sized malware
files by making use of the LZMA algorithm. It can also be
used to obfuscate larger malware files.

5) EXE PACKER 2.300
It is a free software and a famous packer for malware file
obfuscation.

6) OBSIDIUM
Obsidium can be used for 32-bit and 64-bit Windows-
based applications and performs encryption, compression,
and obfuscation of malware.
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FIGURE 2. Malware statistics.

7) EXESTEALTH
ExeStealth is a free software to encode files to evade detection
and hacking.

8) MORPHINE
It contains its private PE loader to let the users encrypt the
output of compressed data. Its polymorphic engine is capable
of creating distinctive malware cracks.

9) THEMIDA
It was originally developed by Oreans for the protection of
Windows applications against hackers. But later on, it is being
used to encode the malicious files.

10) ANDROMEDA
It is a custom packer and is not easy to reverse-engineer.

11) VMPROTECT
It is capable of encoding a variety of files, including drivers,
executable files, and DLLs. As any application encoded by
VMProtect is opened, the packer does not decipher any bit;
instead, it runs on a virtual code.

E. ADVANCED PERSISTENCE METHODS
Persistence is the continuation of the malicious effects of
malware, even after its removal from the system. Once
malware gains access to the system, it tries to be there
for a longer period. One of the most frequently achieved
persistence methods is the modification of the system’s
registry. However, some other new methods are used by
malware developers, which are more threatening to malware
detectors.

1) FILE-LESS MALWARE
Over time, many different types of malware have progressed
to be overlooked by anti-malware software. Fileless malware
neither uses routine executables to perform its actions nor

does it make use of the file management set-up, consequently
eluding a signature-based discovery mechanism. The attack
caused by fileless malware is more disastrous because of
its persistence. Rather than writing artifacts to the disk,
fileless malware is deliberately designed to be memory-
resident only, leaving no traces after its execution. Windows
Management Instrumentation (WMI) or PowerShell executes
the provided payload or else completes the assigned tasks.
Fileless malware is different, as it does not seek ways
for malicious file installation like other malware programs;
instead, fileless malware is trickier in its tool activation.
Then it hides in the system. This malware remains ignored
because it is memory-based, not file-based. It leaves no
footprints for anti-malware products to detect. In [56], the
technical specifics of fileless malware and related incidents
were thoroughly addressed, and then detailed detection and
mitigation approaches were offered. In [21], the authors
surveyed an inclusive investigation of fileless malware and its
detectionmethodologies that exist in the literature. Then, they
presented a set of procedures to deal with the fileless malware
attacks in case of any incident occurrence and identified the
associated challenges.

2) STAGED MALWARE
As the name suggests, these malware types work in different
stages. A malware payload can be stageless or staged
depending on its action strategy. Staged malware payload
works in different phases. Its main task is to get a successful
entry into the system, maintain persistence, and then execute
effectively without being detected. The payloads of staged
malware break down the phases of an attack. Initially, a small
payload code is set in the system, which exploits the target’s
vulnerability when it finds one [57].

Some staged malware, like web-based malware, are very
dangerous as they perform in different stages, so they
can be considered as one of the threats for malware
detectors.
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Malware is an umbrella word nowadays. It encompasses

1) Trojan
2) Cryptolocker
3) Rootkit/Bootkit
4) Potentially Unwanted Program (PUP), etc.

IV. RELATED THEORY AND BACKGROUND
In this section, the basic concepts of an AMS with different
detection techniques are explained. GAN-based optimization
for existing trained machine learning models is also dis-
cussed. The working principles of different types of GAN are
also discussed to understand the concept of the optimization
framework proposed for the AMS architecture.

A. SIGNATURE-BASED MALWARE DETECTION
As its name suggests, this method of detection works on
the footprints or signatures of the existing malware [58].
Every program has a unique digital code that identifies
that particular program, software, or application. An AMS
scans the system to find out the malware signature, which
is usually a sequence of bytes that categorizes the program
as a malicious program [59]. For this type of detection,
AMS needs to have a repository of predefined signatures
for known malware. During the scanning of a system, AMS
computes the signature of every file and compares them with
the available signatures in its repository. Upon successful
matching of the signatures, the file is declared malicious [60].
Although the False Positive Rate (FPR) of this type of
detection is very less, the signature bypassing is possible with
a slight change in the malware payload. Moreover, signature
building is an ongoing process and the repository needs to be
updated all the time [3].

B. MACHINE LEARNING-BASED MALWARE DETECTION
Machine learning methods enable computers to learn without
being precisely programmed. Machine learning is a set
of steps that discover the underlying patterns in the data
provided and then predict the properties of unseen data [61].
Two types of approaches are used for machine learning [62].
In supervised learning, during training time, labels of the data
are provided, which are used during the learning phase while
reaching up to the optimal model that will yield the correct
label Y for new objects when provided with the feature set
X. For malware detection, X might indicate the features of
a suspicious file including static and dynamic features [63].
In this scenario, label Y will be either malware or benign.
For the training phase, a family of machine learning models
is selected that can be decision trees, SVM, neural networks,
etc [64]. Generally, parameters are the indicators to identify
the model of a family. During this phase, the model is
selected that produces most of the correct answers with a
specific group of parameters. During testing, this model is
applied to new instances with a fixed set of parameter values,
and predictions are produced. In unsupervised learning, data
without labels are provided and then the structure of data is

explored. Clustering is one of the methods by which manual
labeling of samples is optimized and it minimizes the efforts
to arrange labeled data and can be helpful for the detection of
new malware [65].

C. DEEP LEARNING-BASED MALWARE DETECTION
Deep learning is a type of machine learning approach
through which useful high-level features can be extracted
from low-level data. This is also termed as Deep Neural
Network (DNN). It works on the principle of trial and
error; therefore, it needs a large amount of data. DNN is
being used in various fields including image recognition,
computer vision, and natural language processing. Deep
learning helps to recognize malicious content from micro
details of the data. A deep learning model is capable
enough to learn intricate feature rankings and integrate varied
steps of malware detection into one compact model that
is trained end-to-end, and therefore, all of the components
of the DNN model are learned concurrently. Deep feature
spaces, when discovered, can also help to detect malware
variants [66].

D. GENERATIVE ADVERSARIAL LEARNING-BASED
FINE-TUNING
In this study, machine learning (ML)-based malware detec-
tion models are optimized using GAN-based optimization.
GAN is a methodology for generative modeling that gen-
erates a new set of data based on training data, which
mimics the original data [67]. GAN is useful in generating
realistic data that has never existed before. GAN has two
main components: Generator and Discriminator, as shown
in Figure 3. The generator generates fake samples that
mimic the original samples to deceive the discriminator into
identifying them as real samples. The discriminator identifies
abnormalities in these generated data samples to classify
them as fake [23]. The generator is a neural network that uses
unsupervised learning approaches, including hidden layers,
activations, and loss functions. The generator’s training is
based on feedback from the discriminator, and it stops when
the discriminator is deceived [46], [47]. The discriminator is
a classifier that identifies whether the data provided is real
or fake. In this study, an external discriminator is used and
optimized through rigorous training. The objective function
is a min-max optimization formulation that optimizes the
generator to minimize the objective/loss function while the
discriminator aims to maximize the probability of correct
label assignments to training instances and samples generated
from G.

V. ARCHITECTURE OF THE PROPOSED ANTI-MALWARE
SYSTEM
An AMS mostly describes malicious software detection and
removal solutions. The need for an AMS ascends as we look
at the year-wise malware growth (Figure 2).

We present the architecture of an AMS with a combina-
tion of conventional and GAN-based proposed frameworks.
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FIGURE 3. Architecture of GAN.

FIGURE 4. Conventional AMS Level-I.

This complete structural design is described on different
levels, i.e., starting from getting a suspicious file (Figure 4),
unwrapping multiple functionalities of AMS (Figure 5), and
then approaching an AI-based framework (Figure 6) for
enhancing the overall performance and robustness of the
architecture. An AMS is split into three layers concerning
the hierarchy of internal processing. These layers of filtering,
unpacking, and detection engine modules are thoroughly
explained below.

A. FILTRATION/UNPACKING MODULE
1) FILTERS
The working of the malware analysis system starts with the
arrival of a suspicious file that needs to be checked. This
file might have been downloaded or transferred from certain
media. At this stage, immersions of filters begin. Filter, as its
name suggests, screens the file for any malicious content.
Different methodologies related to filter implementation can
be stated as follows:

a: FILE SYSTEM FILTER (FS)
File system filters are commonly used for filtering everything
from anti-malware and malware scanning to software license
tracking and management, auditing, and change tracking
on files. They inspect every open/read/write/set information
calls from every application and filter Input/Output opera-
tions for file systems. These filters are very effective for
scanning static signatures. Some filters like Mini Filters can
be very useful for the implementation of filters in the AMS.
They capture requests targetting a file system or other file
system filters. By obstructing the request to reach its target,
the filter driver replaces the working of the real target of
the request. Similarly, Windows Filtering Platform (WFP)
provides a platform with APIs and system services to create
network filtering applications.

b: KERNEL MODE FILTERS
These filters can intercept anything. Many kernel-mode
components are used for intercepting network/file system
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FIGURE 5. Conventional AMS Level-II.

FIGURE 6. Conventional AMS Level-III.

activity even when the content is in its raw state. This is good
for scanning static signatures.

c: NETWORK FILTERS
These filters can scan malicious files even before they are
downloaded. As it can protect the entire network from
malware, it eradicates the need to install software on
individual devices as new threats are recognized.

2) UNPACKERS
As malware developers have started to use some protection
methodologies to skip Anti-Malware (AM) scans, our
proposed architecture of AMS is equipped with unpacking
engines, i.e., unpackers and unpackers’ databases. Program-

mers have looked at ways to safeguard their creations against
intellectual theft ever since the field of software development
first began. Many techniques have been employed, ranging
from obfuscating the code to intricate multi-layered defenses,
to reduce the files to amoremanageable size while simultane-
ously preventing users from viewing the code itself. However,
hackers have started employing countermeasures to conceal
their harmful code and stay hidden when anti-malware
solutions become popular. This packed malware needs to go
through a process called ‘‘unpacking’’ for being ready to be
analyzed. This process removes all protections and extracts
the original code. At present, most of themalware’s malicious
code is packed for the sake of making malware analysis a
tedious task. Packers use techniques to hide malware from
anti-malware software, obscure malware analysis and cause
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FIGURE 7. Working of unpacker.

shrinking of the malicious code. For devising the architecture
of an AMS, it is mandatory to furnish it with unpackers,
which can have the capacity to unpack code packed by any
kind of packer. But before that, it is mandatory to learn
about the structure and working of packers. Packers are not
malicious by themselves; however, they can make malware
more operative by being harder to be detected. For the
protection of a system from malware and to reverse-engineer
the malware-containing code, it is required to know about the
most in-use packers to have good knowledge in hand.

a: IDENTIFICATION OF MALWARE PACKERS
The majority of malware packers make it difficult to locate
and comprehend malicious code, hence using a script made
especially for packer detection is required. However, there are
several packer-detecting software available. Some of them are
listed below:

1) Windows Executable Packer Detection
2) PackerID
3) PEiD
4) RDG Packer Detector

Besides identifying the malware packers, it is mandatory
to establish a virtual environment and explore malware
behavior. To unpack a suspected file, an unpacker engine
database will be set up. When a match is found between the
packer’s signature and a database of signatures, these engines
will scan a suspected file, select the appropriate unpacking
technique, and proceed with the process (Figure 7).

3) SCANNERS
The core component of an anti-malware product is the
scanner that is used for detecting patterns of bytes in file
contents (Figure 9). It is very effective for static scanning.
Lots of techniques have been proposed for the detection
of maliciousness in the byte-level file content. The authors
in [68] used opcode n-gram patterns for reaching to hidden
malicious code. These patterns are used as a feature for
classification. In [69], authors computed an extensive range

of arithmetical and analytical features in a block-wise way
to calibrate the byte-level file content. In [70], authors
used structural and global entropy features from entropy of
the suspected file. As more and more formats of files are
evolving, it is becoming a challenge for this component to
support dozens of file formats. It can support PE, Document
Files, Script files, and even File-less malware.

4) MALWARE SANDBOXES
Malware sandboxes are specialized emulators designed to
execute and observe the behavior of potentially malicious
files. A Malware Sandbox is a piece of hardware or software
that permits one computer system, i.e., host, to act like
some other computer system, i.e., guest. A sandbox makes
the host machine run software or use secondary devices
intended for the guest system. It imitates only the execution
of the sample itself. It momentarily creates objects that
the sample interacts with, e.g., passwords, which malware
intends to steal. With the sophistication of polymorphic
malware like Stuxnet, it has become complex to detect
them. Polymorphic malware unpacks itself at run-time and
causes infection in the files with a new mutated malware
body. Malware sandboxes deliver a much better detection
rate against polymorphic samples. During the emulation, the
system recognizes whether the suspected code is expected
to exhibit malicious behavior. The sandboxes are highly
dependent on manual analysis. They run N number of
instructions and observe the state of memory (Figure 8). They
are ineffective against targeted attacks that are designed to
keep a low profile.

5) BEHAVIOR MONITORS
Behavior monitors used to be good before Microsoft disabled
them with PatchGuard. An AM hooks critical system
functions and monitors the actions of an application. They
were heavily used by rootkits as well and were limited to
user-mode malware. Recent versions of Windows provided
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FIGURE 8. Working of a malware sandbox.

FIGURE 9. Sequence of bytes.

alternatives but in a very limited manner. People started using
VT-x for monitoring the behavior.

B. SIGNATURE/RULE-BASED DETECTION
1) SIGNATURE DATABASE
An anti-malware signature database (DB) is one of the core
components of an AM system. It holds the information
needed for a signature-based scanner to identify and get
rid of harmful code. A variety of malware signatures, such
as definitions and distinct byte sequences associated with
every malicious code fragment, are stored in the databases.
Although nowadays, signature-based analysis is no more the
first point of protection used to seize malware, it is the
first place to start a malware analysis. It keeps a record of
what is good and what is bad. It gets bigger and bigger
every day. Some AM vendors even sanitize their DBs. It is
something that the AM downloads from its server right after
it is installed. There are two types of malware signatures.
One-to-one signatures are used for new malware and generic
signatures cover a malware family and mostly require manual
analysis.

2) YARA RULE DATABASE
Our proposed architecture also contains a repository of
YARA rules where different YARA signatures are classified
and stored after compilation. YARA stands for Yet Another
Recursive Acronym. These directives provide a way to
differentiate between malware and other files by generating

rules that look for specific features. YARA was initially
developed by Victor Alvarez of Virustotal and is mainly
used in malware study and detection. It was established with
the idea of defining patterns that classify particular strains
or complete families of malware. YARA helps generate
malware family descriptions using binary or textual patterns.
Each description, called a rule, is made up of a set of
strings and a Boolean expression, which governs its logic,
as shown in Figure 7. After a detailed study, it is obvious
that full reliance on signature-based protection is no longer
good enough. This method can easily be bypassed by
the attacker’s modern countermeasures. Different packers,
polymorphism, and the use of various encrypting services
can easily generate malware that is different enough so that
it no longer matches existing signatures. So to complement
the process of detection, YARA rules databases were made
available to encompass a wide range of malware.

3) REPUTATION DATABASE
For a flawless anti-malware system, reputation-based security
must be a part of an efficient AMS. This security mechanism
categorizes a file as malicious or benign based on its
intrinsically garnered reputation. So, based on reputation and
usage, it becomes easy to identify and predict file safety.

C. MACHINE LEARNING/DEEP LEARNING (ML/DL)
BASED DETECTION
The third level of our proposed AMS includes an ML/DL-
based detection. Apart from a signature-based detection
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FIGURE 10. Proposed GAN-based framework.

engine, a state-of-the-art AMS needs to detect novel malware.
For timely and accurate detection, machine learning and
deep-learning-based models are built by researchers but
they suffer due to the lack of data, which results in
poor model training. Therefore, ML techniques are used.
Detecting malware using ML techniques involves attaining
suitable features and then training ML/DL models on derived
features to identify malicious content. Initially, a set of
features is extracted from training and testing data. Feature
selection provides a set of limited and appropriate features.
Machine learning-based algorithms are applied to medium-
sized datasets. Parameter tuning based on cross-validation is
performed till the model provides a good performancemetric.
Lastly, tests are executed on another, unseen dataset to get the
final results.

VI. PROPOSED GAN-BASED FRAMEWORK
A. PRELIMINARIES
In this paper, a GAN-based framework is proposed to improve
the performance and robustness of ML-based detection
components. This well-trained model of the AMS will help
detect anomalies even for zero-day malware detection [71].
By zero-day we mean to have data that has dispersion
different from legitimate training samples. The generated
fraudulent samples are ensured to have sufficient varying
dispersion from the legitimate training samples. That makes
the discriminator train on unknown malware also. The
concept behind the proposed MCOGAN is derived from
utilizing the power of data augmentation. Data augmentation
is known as a procedure that aids in increasing the training
data for AI-based models. GANs are used to generate
imitation data founded on the training iterations over genuine
data. Consequently, a lot of options are uncovered for
training. This helps to improve the performance of a classifier,

especially for security scenarios, because of the occurrence
of unforeseen threats frequently [15]. So, GAN seems to
be the optimal approach to train a neural network on a
well-known attack to model alike attacks. GANs are deep
learning-based generativemodels. Theywork on the principle
of calculating the probability of every possible outcome
for each variable and then combining them to predict the
most likely outcome. When used in reverse, the probability
distributions for each variable are sampled to generate new
believable and independent feature values.

B. JUSTIFICATION
In our scenario, GANs have been used to create realistic
malware images that are indistinguishable from the real
malware. The images are then used to train a malware
classifier, which learns to discriminate between malicious
and benign software. For malware datasets, GANs are used
to enhance the features of malware images, making them
easier for a classifier to learn. This is done by increasing the
contrast, sharpening the images, and removing noise.

C. METHODOLOGY
Fundamentally, two sub-models constitute the GAN archi-
tecture: a generator model for creating new samples and
a discriminator model for identifying whether generated
examples are real or fake, i.e., they belong to some real
domain or are generated by the generator model. These two
models are trained together. The generator generates a batch
of samples. Then, these samples and real examples are sent to
the discriminator and then the discriminator classifies them
as real or fake. The discriminator is then updated based on
the criterion of better discriminating real and fake samples
in the next iteration and the generator is updated based
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FIGURE 11. Structure of MCOGAN for malware image synthesis.

on the correctness of the generated samples to befool the
discriminator (Figure 3).

Extending the principles that underlie GANs, this paper
harnesses a similar paradigm to enhance the efficacy of a
malware classifier. By adopting the GAN framework, the
aim is to elevate the precision of the malware classifier to
a heightened level. This strategic amalgamation is projected
to exert a considerable influence on the overarching perfor-
mance of the malware classifier, potentially ushering in a
notable advancement in the domain of malware detection and
analysis.

Our proposed MCOGAN framework constitutes two main
parts (Figure 10).

1) Candidate Sample Generator (CSG):
CSG is designed for generating malware samples. This
is comprised of a generator and a discriminator. From
the malware domain, a fixed-length vector is created
to be given to the generator as input. This vector
is then trained to reflect the compact rendition of
the actual data dissemination. This vector, precisely
sculpted via training, serves as a simplified illustration
of the complicated patterns inherent in malware data
transmission. It acts as a seed or a latent code that
guides the generator’s process of creating synthetic
data, which in our case are malware images. The vector
is made up of random 30 numbers derived from a steady
and unvarying spread. When the generator receives this
vector as input, it interprets the contained numbers as
instructions on how to create a corresponding malware
image. Each component of the vector influences
different aspects of the image, such as its texture,

structure, or content. The generator uses its learned
parameters to transform these input numbers into
visual features that resemble malware patterns. The
generator transforms the input vector into an image
format. It does so by employing various layers of
neural networks and transformations. The result is a
synthetic malware image of dimension 84×84×1 that
ideally captures the essence of the malware patterns
embedded in the input vector. During training, the
generator, G, refines its ability to translate the input
vectors into realistic malware images. This is achieved
through iterative optimization, where the generator’s
parameters are adjusted to minimize the discrepancy
between its generated images and real malware images.
Auto-encoders are utilized for the implementation of
CSG. For the generator part, the encoders EN and ÊN
learn to obtain the representations of original features
O and generated features Ô respectively. The decoder
DEC tries to reconstruct Ô at the same time.
The optimization procedure for CSG is presented
as a minimax game between the generator and the
discriminator. The Generator’s goal is to minimize
loss by producing synthetic data that the discriminator
classifies as real. The discriminator in the system is
implemented as a neural network, taking input samples
from both genuine and generated data. It produces a
probability, approaching one for authentic data and
close to zero for synthetic data. The cross-entropy
function assesses the error rate of the discriminator net-
work, and this error is subsequently back-propagated
to the generator and discriminator architectures to
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fine-tune their respective weights. The discriminator
keeps on minimizing loss by properly discriminating
between real and synthetic data. The comprehensive
configuration of both the generator and discriminator
is depicted in Figure 11. The optimization is shown in
the mathematical Eq. (1).

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[1− logD(G(z))]

(1)

where
V (D,G) is the Value Function to represent the GAN;
x ∼ pdata represents that x is drawn from distribution
pdata;
z ∼ pz represents that z is drawn from distribution pz;
pdata is the real distribution of training data;
pz(z) shows the distribution of data generated by
Generator (G).
In the architecture of the generator model, a series
of transpose convolutional layers are interleaved with
batch normalization layers, working collaboratively
to transform the input noise vector into a 1-channel
image with dimensions of 84 X 84. Similarly, the
discriminator structure incorporates traditional convo-
lutional layers to reduce the height and width of the
feature maps. Experiments with different learning rates
for both the generator and discriminator structures
are conducted. To address overfitting, adjustments
are made to dropout layers and additional data are
introduced. Multiple dropout values are experimented
with, and a value of 0.5 is determined as optimal during
training. The rectified linear unit (ReLU) activation
function is applied after each convolutional layer.
In our study, we opt for the Adam Optimizer, known
for its adaptive learning rate. The Adam optimizer
systematically calculates gradients, updates weights,
and iteratively progresses toward achieving optimal
weights.

2) Malware Classifier Optimizer (MCO):
MCO is designed to train a malware classifier in case
of misclassification. It constitutes a critical component
of the proposed model, specifically focused on refining
the performance of a malware classifier in scenar-
ios where misclassification occurs. This component
employs a systematic process of training to enhance the
classifier’s accuracy, particularly by learning from both
authentic and synthesized malicious files. When the
malware classifier incorrectly identifies a file, MCO
comes into play. Instead of rejecting misclassified
cases, these incorrect predictions are used to provide
significant learning opportunities. By recognizing and
correcting these misclassifications, the classifier can
develop to handle similar scenarios more effectively in
the future. These training iterations tune the classifier
and thus lead to an optimized version. As the MCO is

designed for universal application across various mal-
ware classifiers, the underlying process is elucidated
through the equations below. Let D be the malware
classifier and θD represent its parameters.
Loss Function for Misclassification:
Let D(x) be the output of the malware classifier for
input x, and y is the true label. The objective is to
minimize the misclassification loss Lmisclassify with
respect to the parameters θD:

min
θD

Lmisclassify(D(x), y)

Gradient Descent Update:
Utilizing Adam optimizer, the parameters θD are
updated iteratively:

θD← θD − η∇θDLmisclassify(D(x), y)

where η is the learning rate.
This formulation outlines the process of training the
malware classifier using the MCO module to address
misclassifications.

Our proposed MCOGAN model (Figure 10) takes real
malware samples as input from the malware repository and
sends them to the CSG module where existing discriminator
D classifies them into benign and malicious files. In the case
of correct classification, a latent space for fake benign files
is built up based upon the tested file to follow a similar
probability distribution as of the real files. The generative
model in GAN design absorbs to map points in the latent
space to newly generated images. The latent space structure
has to be focused to understand the ways for interpolation
between points and perform vector arithmetic between points,
which have eloquent and directed effects on the generated
images. Latent space will be based on reducing the distance
between the real file and the generated file.
A fake benign file is a file that is neither to be claimed as

malicious nor benign, yet it pretends to be benign. The latent
space is input to Generator G for the generation of fake benign
files. These fake benign files are again given to D along
with real malicious files, which ultimately leads to the better
performance of D. MCO plays its part when the given file
is misclassified. Rigorous training keeps on improving the
learning process with the help of malicious and fake benign
files. These two modules complement each other by training
over multiple files continuously generated by the CSG. This
approach will minimize the security system’s dependency on
ML-based methodologies for data generation.
To provide a comprehensive understanding of our method-

ology and facilitate reproducibility, we present the pseudo-
code (Algorithm 1) outlining the key components of our
proposed MCOGAN framework for malware sample gener-
ation and classifier optimization. This pseudo-code offers a
detailed breakdown of the operations performed within our
framework, enabling researchers to grasp the intricacies of
our approach and implement it in their work. The provided
pseudo-code covers critical aspects of our methodology,
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Algorithm 1 Proposed MCOGAN Framework
1: procedure CandidateSampleGenerator
2: Initialize weights and biases for CSG’s generator and discriminator
3: Training:
4: Initialize loss function for CSG’s generator
5: while not converged do
6: Input: Random vector z (malware domain)
7: Generate synthetic malware sample Gmalware(z)
8: Calculate discriminator’s response Dmalware(Gmalware(z))
9: Compute CSG generator loss based on Dmalware(Gmalware(z))

10: Update CSG generator weights to minimize loss
11: end while
12: end procedure
13: procedureMalwareClassifierOptimizer
14: Initialize weights and biases for malware classifier
15: Training:
16: Initialize loss function for malware classifier
17: while not converged do
18: Input: Real or generated malware sample
19: Perform classification using the malware classifier
20: Compute classifier loss based on misclassification
21: Update classifier weights to minimize loss
22: end while
23: end procedure
24: procedureMinGeneratorMaxDiscriminator(V (G,D))
25: Value Function:
26: V (G,D) = Expectation over real data[log(D(x))]+ Expectation over generated data[log(1− D(G(z)))]
27:

28: Optimization:
29: Initialize optimizer for generator and discriminator
30: while not converged do
31: Sample real data x from pdata (real data distribution)
32: Sample random vector z from noise distribution
33: Generate synthetic image G(z)
34: Compute discriminator loss based on real/fake classification
35: Update discriminator weights using the discriminator loss
36: Compute generator loss based on discriminator response
37: Update generator weights using the generator loss
38: end while
39: end procedure
40: procedure Training
41: Initialize CSG, MCO, and malware classifier
42: Set hyperparameters (learning rates, batch size, etc.)
43: for a fixed number of iterations do
44: Sample real data batch from pdata
45: Sample random noise vectors for generator and CSG
46: Optimize generator, discriminator, CSG, andmalware classifier using the minimax game and classifier optimization
47: end for
48: end procedure

including the training of the generator and discriminator,
the minimax game optimization, the Candidate Sample
Generator (CSG), and the Malware Classifier Optimizer
(MCO). Each section of the pseudo-code is accompanied

by explanatory comments to elucidate the purpose and
functionality of the code. Researchers interested in exploring
and building upon our work will find this pseudo-code
instrumental in achieving a deeper insight into our approach.
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TABLE 4. Description of dataset.

VII. EXPERIMENTATION AND ANALYSIS
A. DATASET DESCRIPTION
The proposed model was assessed using a publicly available
open-source dataset from Figshare [72]. We selected mali-
cious samples from the Figshare malware dataset, which is
a collection of malicious files that have been infected with
malware. The dataset includes over 9187 files that have been
initially collected from Malshare [73], Virusign [74] and
Dasmalware [75]. The collective dataset is downloaded from
Figshare [72]. A collection of 9187 malware files, belonging
to 11 malware families, was obtained. The files have been
infected with a wide range of malware, including viruses,
worms, trojans, and other types of malicious software. The
dataset includes samples of malware that target a wide
range of Windows operating systems, including Windows 7,
Windows 8, and Windows 10. It also includes malware
that has been designed to evade detection by antivirus
software, making it a valuable resource for researchers who
are interested in developing new techniques for malware
detection and analysis.

The benign files are collected from Figshare’s ‘‘Windows
Portable Executable File Dataset for Malware Detection’’
dataset. This dataset includes over 8,000 benign PE files,
which were collected from various sources, including
open-source software and Windows operating system files.
The files are organized into different categories based on their
purpose, such as system files, application files, and library
files.

We created a mixed dataset comprising 10,187 samples,
consisting of both benign and malicious files, to compare our
approach with state-of-the-art deep ML models. The dataset
contained 1000 benign files and 9187malicious Portable Exe-
cutable (PE) files, classified into various malware families
listed in Table 4. The dataset size was around 5.5 Gigabytes,
with 70% of the files used for training and the remaining 30%
for testing.

B. MALWARE VISUALIZATIONS
Malware authors often create new malware by building on
their previous code, only making small modifications or
removing parts of the old code. By representing the entire
binary file as an image, analysts can visually compare the

differences between malware from different classes and
identify unique patterns that distinguish them. The dataset on
Figshare comprises PE files. However, since the classifiers
that we have chosen work only with images, we need to
convert the PE files into images before proceeding.

To transform a malware binary file into an image,
we converted the file into a vector of 8-bit unsigned integers
(Figure 12), where each vector represents a pixel value of the
grayscale image within a range of 0 to 255. For this particular
study, we have created square images of dimensions 84×84.
To classify malware into specific families based on a few
known samples, we employed visual similarity using well-
studied few-shot models. Figure 13 showcases examples
of images of specific malware families, highlighting their
distinct visual characteristics. These visuals, sourced from
the Figshare dataset, demonstrate that one can distinguish
between the classes quite effortlessly through observation.

C. DATA AUGMENTATION
Our proposedMCOGANwas trained on the Figshare dataset,
and we demonstrated its ability to enhance the performance
of established classifiers by generating fresh images. During
each iteration, the generator (G) received a Gaussian noise
vector (zi) along with a batch of actual malware images.
To create new data, we generated 5 random noise vectors
for each input image to MCOGAN and obtained 5 new
images from the generator. These images were then fed to
the discriminator (D) to accurately classify them into their
respective categories.

D. IMPLEMENTATION DETAILS
For our implementation task, we reviewed two previous
studies that focused onmalware classification. The first study,
conducted by Choi et al. [76], proposed a deep Convolutional
Neural Network (CNN) model to detect malware using
image visualization. This model included two convolution
layers with pooling and two fully connected layers, achieving
an impressive accuracy of 96% in classifying benign and
malicious samples. The second study, by Aslan et al. [77],
designed a DNN hybrid model that classified malware
variants using an optimized integration of two pre-trained
network models. Their proposed model comprised five
convolutional blocks with different sizes of convolution
layers and combined the two pre-trained networks to create a
feature vector through equal weighting. The authors collected
data from Malimg and Malevis and visualized the malware
binaries to improve the accuracy of their model.

For our proposed framework, we have utilized the classifier
models during the training process to enhance the probability
of correctly labeling both the real and generated instances.
The initial step involves passing a collection of real malware
samples from the malware repository through the classifiers,
and the Discriminator Loss (DLoss) is then calculated based
on the output. This approach builds on the strengths of the
previous studies and provides an effective framework for
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FIGURE 12. Malware conversion into image.

FIGURE 13. Malware visualization samples obtained from different categories.

improving malware classification accuracy.

DLoss = (log(D(x))) (2)

where
DLoss represents the Discriminator Loss;
log(D(x)) represents log probability for real examples.
In a backward pass, the gradients are computed. Afterward,

a batch of fake benign files is forward passed from the
generator through D. Likewise, the Generator Loss (GLoss)

is calculated as follows:

GLoss = log(1− D(G(z))) (3)

where
log (1-D (G(z))) represents the log of the inverted

probabilities of fake examples.
The backward pass is used to collect the gradients, which

are then summed up for both the real and fake batches
to optimize the discriminator. The objective of training the
generator is to generate more accurate fake samples by
minimizing GLoss. Conversely, the goal of the training
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process is to maximize DLoss, which reduces the loss of
the generator. The results of the generator are evaluated
by passing them through the discriminator, and if the
classification is incorrect, the MCO section is activated to
retrain the classifier. The training process is performed not
only in CSG but also in MCO, which enhances the robustness
of the classifier by dual training.

E. PERFORMANCE INDICES
We use the same performance metrics as those used by
the previously proposed models. Specificity, Sensitivity, and
F1 score are measured to determine the correctness of the
existing and enhanced models. Accuracy is used to evaluate
the performance of both models.

FIGURE 14. Accuracy-based comparison of the different models.

F. RESULTS ANALYSIS
The performance metrics of a model provide valuable insight
into its quality. In this study, a CNN-based classifier achieved
a malware classification accuracy of 87.5%, while a hybrid
model reported an accuracy of 97%, claimed to be the best
among all existing malware detection systems. To improve
the accuracy further, we adopted the methodology proposed
inMCOGAN. By continuously generatingmalicious, benign,
and fake benign files and training the classifier, we enhanced
its accuracy. The generator learned a generation distribution
gd over data x and built a mapping function from a prior
noise distribution to data space. The discriminator classified
by calculating the probability that x came from training data
rather than gd , using class labels as auxiliary information for
both networks.

Initially, we trained both models on the Figshare dataset
and evaluated their precision, sensitivity, and F-1 score. Then,
we used each model as a discriminator with MCOGAN,
training it on both real and fake data generated by the gener-
ator. Although the models showed good TPR, we iteratively
trained them to reduce FPR by minimizing the loss through
backpropagation after every misclassification. We repeated
this process 500 times after the first misclassification,
recording the FPR, which steadily declined over time
(Figure 15). This iterative process improved the
discriminator’s performance and generated more benign

instances that can be used for other models’ evaluation,
ultimately enhancing the overall quality of the system.

Our proposed model demonstrated an improvement in
all performance metrics for both CNN-MCOGAN and
Hybrid-MCOGAN, as presented in Figure 16. Figure 17
displays an overall performance gain in the two models after
incorporating our proposed framework. Although the existing
values for the performance metrics were good, our proposed
model achieved even better results by extensively training the
same models. Particularly for the Hybrid classifier, the F1-
score improved and approached 1. Additionally, the proposed
model had a positive impact on the accuracies of both models,
as shown in Figure 14. CNN-MCOGAN accuracy increased
by 10%, and the Hybrid classifier’s accuracy improved
by almost 9%. This indicates that increasing the effort in
distinguishing generated images from real images during
training leads to more rigorous training of the models. The
impact of generated training images on accuracy for both
hybrid and CNN models is presented in Figure 18.

GANs improved the results of malware classifiers by
generating more training data. In the case of malware
classification, the amount of data available for training can
be limited, and in some cases, the data may not be diverse
enough to capture the variations in malware instances. This
limits the classifier’s ability to generalize and identify new
types of malware accurately. We used the ability to generate
new, realistic malware instances that can be used to train the
classifier. By generating synthetic instances, the classifiers
are trained on a more comprehensive dataset that captured the
full range of variations in malware instances. This improved
the classifiers’ ability to detect new types of malware, which
in turn increased its overall accuracy. The iterative training
process of the classifier also helped in reducing the false-
positive rate, which is a critical factor in the performance of
malware classifiers.

Overall, the use of GANs in malware classification helped
us to overcome the limitations of traditionalmachine-learning
techniques and enabled the performance enhancement of
more accurate and effective models.

G. ANALYSIS OF PERFORMANCE ENHANCEMENT
The results indicated that training the malware classifier
with GANs significantly improved its performance. Before
implementing GANs, the classifier achieved a certain accu-
racy level, but after training with GANs, it performed much
better. This suggests that the GANs played a crucial role in
enhancing the model’s ability to detect malware instances.
It is also worth noting that the improvements may not
have been possible without the use of GANs, highlighting
the importance of such advanced techniques in enhancing
machine learning models’ performance.

Our proposed approach centers around the idea of an
efficient AMS with the best combination of approaches to
boost the performance of any detection model. We optimized
various parameters such as loss function, training stopping
criteria, and similarity measures to achieve an efficient and
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FIGURE 15. Decline in FPR of classifiers.

FIGURE 16. Performance metrics with and without MCOGAN.

optimal solution. While the convergence of the loss function
is typically the stopping point for training DNN models,
GANs benefit from the equilibrium between the generator
and discriminator.

To assess the quality of our proposed model, we conducted
an impartial evaluation using the ‘‘nearest neighbors’’
approach. We compared selected real samples with generated
identical images and measured the Euclidean distance
between the pixel information of these images to determine
the degree of similarity. This similarity estimation helps
us choose the generated sample most related to the real
image, enabling us to evaluate how real the generated image
appears. Our focus is on detecting new variants or zero-
day attacks, and thus we set the threshold of the similarity
index of two images to increase the accuracy of the classifier
continually.We used the binary cross-entropy loss to optimize
the discriminator’s weights during training.

The relationship between GANs accuracy and the number
of instances generated is directly proportional. This means
that as the number of instances generated increases, the
accuracy of the GAN-generated samples in the malware
classification task also increases. During the later stages of
the experiment, the model accuracy is observed to increase as
the training approaches the advanced point. Once the GAN
loss function converged, the accuracy reaches its maximum
point, indicating the optimal efficacy of the trained classifier.
Thus, generating more instances using GANs led to better
accuracy in the malware classification task.

Considering both syntactic and semantic details of datasets
used in malware detection is significant because it can lead to
more accurate and robust malware detection systems. Syntac-
tic information refers to the structural and behavioral aspects
of the malware, such as the file size, byte sequence, or API
calls made by themalware. This type of information is usually
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FIGURE 17. Performance gain of classifiers with MCOGAN.

FIGURE 18. Impact of generated training images on accuracy.

used in traditional malware detection systems to identify
and classify malware. However, malware creators can easily
modify or obfuscate syntactic information to evade detection,
making it necessary to consider semantic information as
well. Semantic information refers to the meaning or intent
of the malware’s behavior, which can be inferred from the
complete instruction set of the suspected file. By analyzing
the semantic information of malware, detection systems
can identify and detect variations of previously launched
malware that have been modified to evade syntactic-based
detection methods. Therefore, considering both syntactic
and semantic details of datasets in malware detection can

lead to more comprehensive and effective detection systems.
Therefore, we emphasized the importance of syntactic as well
as semantic details of the datasets used. It is noticed that most
work has been done using theMalimg dataset as a benchmark,
thus concentrating only on the syntactic information of
the malware. In our work, we have employed semantic
information also by preserving the complete instructions set
of the suspected file.

H. COMPARATIVE ANALYSIS
The proposed architecture will have a great impact on
modeling malware detection tasks. In this work, we have
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FIGURE 19. Accuracy comparison with different datasets using heatmap.

TABLE 5. Statistical comparative analysis.

proposed a GAN-based framework for playing our part in
resolving the never-ending battle between attackers and the
AMS. Due to its popularity, deep learning has always been
a point of attention for researchers. Previously, researchers
used different techniques to detect malware like data
augmentation using VAE, ML-based algorithms, DNNs, etc.
We have compared some of the related previous work with

our proposed work (Table 5). We undertook this comparison
with these studies because all of these prior papers utilized a
similar dataset, specifically centered around malware. What
unites them is their focus on conducting experiments within
the domain of malware. We selected representative datasets
based on their relevance to the specific malware detection
scenarios addressed by the methods under comparison.
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Moreover, the malware types and characteristics targeted by
the compared methods remain consistent.

In [49], authors amplified the opcode part of a PE file
and used it for malware detection. PE file was dissected for
segregation of different parts, i.e., PE header, data, text, etc.
They used GANs to amplify the malware using Opcode but
they succeeded to gain 75% accuracy as they faced data loss
due to dropping off the other parts of the suspected file.
In [50], researchers came up with the concept of only using
the suspected file’s header. They generated the new data by
using header information but they succeeded to enhance the
accuracy by only 1%. Most of the early work has been done
on malware features like opcodes, API call graphs [40], API
calls sequencing [39], etc. TheseAPI calls and opcodes-based
images deteriorate the absolute excellence of image-based
methodologies. The authors in [38] proposed a model for
malware detection by just covering the dynamic behavior of
the malware. In [39], the authors emphasized the importance
of API call sequence patterns of the malware. They described
their results only on a specific dataset ignoring the fact that
how well the model will be reusable for emerging malware.
When compared with our proposed work, our proposed
architecture focuses on the enhancement of the generalization
capability of the malware classifiers. Moreover, MCOGAN is
sustainable as it does not need retraining of the model for any
new malware as training through adversarial examples has
prepared the framework to deal with new variant scenarios.
The statistical analysis reveals that our approach outperforms
other methods in terms of accuracy and ROC. Our findings
can be summarized as follows:

1) Performance Across Various Datasets:
In prior studies, when evaluating their models with
different datasets, such as Malimg and Figshare, the
reported accuracies closely resembled their original
findings.
In the case of MCOGAN, an interesting and note-
worthy trend emerges. When applying MCOGAN
to these diverse datasets, a significant improvement
of nearly 10% is observed in the performance of
each model. In the case of Figshare, the accuracy of
McDole et al. [38] initially stood at 0.85 but saw
an improvement to 0.92. Similar observations were
made for the Malimg dataset. When the approaches of
Hwang et al. [39] and Choi et al. [49] were evaluated
using Figshare and Malimg datasets, the accuracy
increased by approximately 6 to 7%. This enhancement
across various datasets is visually represented in
Figure 19, highlighting the substantial impact of the
MCOGAN framework on the models’ capabilities.

2) Enhanced Data Augmentation:
In previous comparative studies, we can observe
various data augmentation strategies. One approach,
for instance, employed GANs to amplify the opcode
segment of a PE file, achieving a reasonable 75%
accuracy in malware detection. However, this strategy
incurred data loss, as it focused exclusively on the

opcode segment while omitting other vital parts of the
suspected file. Another study took a slightly different
route by relying solely on the header information of
suspected files, resulting in a marginal 1% boost in
accuracy.
Now, in the context of MCOGAN, we witness a trans-
formative approach to data augmentation. MCOGAN’s
primary strength lies in its proactive stance against
data loss. Instead of tunnel vision on a single aspect,
MCOGAN prioritizes enhancing the generalization
capabilities of malware classifiers. This strategic shift
enables MCOGAN to outshine the limitations of data
loss and positions it as a sustainable, adaptable solution.

3) Exploration of Malware Features:
The majority of the mentioned studies primarily
emphasized different aspects of malware features,
including opcodes, API call graphs, API call sequenc-
ing, and more. While these features have proven to be
effective, they might not fully leverage the potential of
image-based methodologies.
Our proposed MCOGAN architecture addresses these
limitations and enhances the generalization capabil-
ity of malware classifiers. It provides a sustainable
solution that can adapt to emerging malware scenarios
without retraining.

In comparison to previous studies, our approach of using
GANs with malware images has improved the detection rate
efficiently. Due to the similarity of features, it was easier for
the attackers to generate adversarial samples related to these
features and attacks on different but similar models with the
same technique. In our work, we have focused on utilizing the
whole EXE file by converting it into a greyscale image. The
percentage of added noise quantized by the number of bits
changed is minimized. Moreover, the proposed MCOGAN
carried out adversarial training by combining the generated
samples with the real training samples to increase the model’s
robustness. The performance is improved by 10%, which is a
good indicator of the efficacy of our proposed work.

VIII. CONCLUSION AND FUTURE WORK
Malicious software (Malware) is one of the foremost threats
on the Internet today. Many problems of data security
arise due to the unstopping propagation of malware. In the
past few years, several techniques have been developed
for the in-depth inspection of malware, ranging from static
code review to dynamic exploration of malware behavior.
However, the previous work lacked a complete system for
the timely detection of malware combining analysis and
detection along with signature and machine learning-based
detection engines. Therefore, it was much required to present
an architecture to detect both existing as well as novel
malware in the network. Keeping that in view, we presented
a well-integrated hybrid architecture of an Anti-Malware
System (AMS) comprising conventional signature-based
detection along with AI-based detection modules. Moreover,
we proposed a robust framework for enhancing the optimality
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of malware classifiers. We presented a GAN-based Malware
Classifier Optimizer (MCOGAN) with the capability of
generating fake benign files to test any state-of-the-art
malware discriminator, which can act as a trainer of
the training module for enhancing the optimality of that
particular discriminator. We conducted the experiments using
the Figshare dataset. Two state-of-the-art models were used
as discriminators. The accuracies were enhanced by a good
percentage for both the models.

In the proposed work, the complete architecture of an
AMS is presented, which is effective in detecting malware
with increased efficiency. In the future, we aim to measure
the resilience of the proposed architecture by using several
unknown variants of malware.We aim to improve the training
part of the MCO component along with improvement in the
generator of the samples. We plan to conduct experiments
with more datasets, such as Malimg and Malevis. Expanding
our research endeavors in this direction involves delving
into several potential research areas. A crucial aspect is
the comprehensive assessment of the AMS’s performance
across diverse datasets to guarantee its adaptability to various
malware families and their distinct variations. This evaluation
should encompass datasets featuring a spectrum of file
formats, sizes, and obfuscation techniques.

Additionally, an avenue for further exploration lies in
the refinement and extension of the Generative Adversarial
Network (GAN) employed within the AMS. This entails a
thorough examination of advanced GAN variants or cus-
tomized modifications explicitly designed for the generation
of both malicious and benign samples. Such enhancements
aim to fortify the AMS’s ability to discern and effectively
counter a broader array of malware scenarios, thereby
contributing to the system’s overall robustness.
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