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ABSTRACT Currently, most service robots typically receive and execute commands in a passive manner,
which is unsuitable for more meaningful Human-Robot Interaction (HRI). In this study, a Human-Robot
Empathy Decision-MakingModel (HREDM) of service robots is developed for personal assistance services.
HREDM contains the perception, cognition, and decision-making that enables the robot to understand the
emotions of users and respond appropriately with behaviors that appease or encourage them. First, the SE-
ResNet (Squeeze-and-Excitation-Residual Neural Network) is used to recognize and understand users’ facial
emotions. Then, a Q-Learning-based reinforcement learningmodel is constructed, which enables the robot to
actively learn and interact with users by training on their interaction preferences. The proposed mechanism is
used to assess the relationship between the robot’s behaviors and the users’ emotions and to make decisions
to influence the users positively. The experiment results demonstrate that the proposed model allows the
robot to actively learn, analyze, and make decisions based on identified emotions, leading to appropriate
calming behaviors. Further, it attained a score of 3.7 in a satisfaction assessment with volunteers.

INDEX TERMS Service robots, human–robot interaction, behavior decision-making, emotion regulation,
emotion understanding.

I. INTRODUCTION
Service robots are designed to assist and nurse humans [1].
They usually carry out user instructions such as medication
delivery and rehabilitation training in hospitals, nursing
homes, etc. Unfortunately, most of their interactions lack
initiative and naturalness, which can negatively impact the
user experience. Humans can understand the emotions of
others and can influence them through their behaviors,
such as pacifying angry colleagues and inspiring depressed
friends. In contrast, most service robots usually only respond
to commands given by users. It would be of great significance
to the user experience and mental health of the disabled,
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if service robots could understand the emotions of humans
and choose appropriate behaviors to comfort or encourage
them, rather than being passive as it is currently. This study
aims to establish a human emotion-focused behavioral deci-
sion mechanism and utilize a reliable emotion recognition
network to understand users for service robots designed for
individuals with disabilities. By discovering the correlation
between calming behavior and emotions, this mechanism
allows robots to empathize with and better support the needs
of disabled individuals, rather than solely performing their
assigned tasks.

Emotional empathy refers to comprehending and experi-
encing the other’s emotional experience by sharing similar
feelings [2], [3]. Most current Human-Robot Empathy (HRE)
researches focus on facial expression understanding and how
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FIGURE 1. Human empathy. Humans can understand the emotions of
others and inspire depressed friends.

the robot expresses emotions [4]. Meanwhile, psychological
researchers suggest a link between empathy and the ability
to understand the thoughts of others [5], [6]. This study
focuses on finding the correlation between calming behaviors
and emotions, which is the role of interactive behaviors in
regulating emotions. Emotion regulation involves conscious
and unconscious strategies to lessen, maintain, or increase
positive or negative emotions [7]. External devices such
as robots can be utilized to interact with users to produce
emotional stimuli to regulate emotions, in addition to the
individual’s inhibitions or stimulus responses. And the
disabled, a special and large group in society, require services
and emotional regulation. Their physical and psychological
abnormalities and impairments impact their physical health,
interpersonal interactions, and independence, particularly
psychologically [8], [9]. Therefore, emotion regulation can be
important in maintaining and influencing the mental health of
the disabled.

Several studies focused on the importance of emotion
and empathy. In chatbots for Human-Computer Interaction
(HCI), an emotion-centric approach to emotional response
has been proposed to study how to empathize with users
in chat responses and then give suitable responses [10].
A multimodal HCI method is used to recognize the user’s
emotions through expressions, words, and gestures. Then,
an agent with designed plots is used to communicate with
users through text with the aim of regulating emotions
[11]. By combining inference methods and hierarchical
analysis, a multi-emotional decision model is constructed,
and the algorithm is implemented in a simulation platform
for validation and analysis of effectiveness [12]. Additionally,
an emotion regulation simulation robot environment is
constructed based on a Markov decision process. It weights
the analysis of user personality and intent through hier-
archical analysis to accomplish the maximum transition
from negative to positive emotions while minimizing robot
service costs [13]. Researchers have also begun to combine
emotional information with other auxiliary information to
facilitate behavioral decision-making. A model combining
spatiotemporal knowledge of the environment with emotions

is constructed, which can reason out the service behavior
of the robot, select interaction with users, and verify its
effectiveness in a simulation environment [14]. However, the
current algorithms’ emotion regulation processes are seldom
practically applied in real environments, andmost of them are
experimented with in simulation environments.

Researchers have also attempted to implement the
decision-making process by reinforcement learning (RL)
algorithms. An approach integrating Q-learning and
multi-layer neural networks is employed for coordinated
decision-making of multiple-behavior conflicts of robots
[15]. A brain computing model inspired by biology is built
and integrated with an emotion model based on external
rewards and situational memory. Its continuous control of
mobile robots is achieved with a model-free approach and
a decision method constrained by a global value function
[16]. The agent that introduces emotions is proposed in [17]
and [18], which uses three emotions, namely happiness,
sadness, and fear, as positive and negative enhancement
signals to achieve maximum happiness. Nonetheless, they
regard the robot as a target for control and ignore the
robot’s interaction and empathywith humans. A task-oriented
dialogue system is built using the Emotion-Sensitive Deep
Dynamic Q-learning (ES-DDQ) algorithm. This research
developed an emotional modeling approach, designed quick
rewards related to emotions, and implemented simulated
user behavior [19]. However, it primarily interacts through
dialogues and aims to simulate user behavior to produce
suitable actions. A reinforcement learning algorithm using
fuzzy hierarchical analysis to calculate reward values was
applied to perform emotion regulation in HRI in a laboratory
and obtained a high degree of satisfaction from experimental
users [20]. However, it can only be applied to specific
scenarios. The proposed HREDM approach could deal
with the above works well in terms of decision-making
effectiveness. However, few previous studies refer to empathy
and the actual interaction between robots and humans. There
is also a lack of consistency in the input and recognition of
emotions.

To deal with the above problems, this study attempts to
develop a behavioral decision-making mechanism for service
robots that is based on the analysis of human emotions. This
mechanism enables the robot to choose the proper behaviors
to comfort or motivate disabled users according to its
understanding of their emotions. Firstly, the Resnet-50 fusion
attention mechanism SENet is used to analyze emotions. The
results are used as the inputs of the RL model that is based
on Q-learning. The RL model is designed for training active
interaction, learning user interaction preferences, and ana-
lyzing the correlation between the service robot’s behavior
and the user’s emotions. Finally, the decision is made by
the model to affect the user’s emotions positively. The robot
can play an active role in appeasing the user’s emotions and
changing the blunt and emotionless interaction through this
mechanism.
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FIGURE 2. The structure of the SE-Residual module. It is composed of a
bottleneck followed by an inserted SE-block.

The main contributions of this study are:
(1) The proposed method can enable robots to pay

attention to users’ emotions and adjust their behavior based
on their emotions. By identifying the emotions of users
through perceptual and cognitive learning, the proposed
model incorporates empathizing with the user and regulating
emotions into the interaction and decision-making.

(2) The experimental verification was done in simulation
and real-world environments. The feasibility of this approach
was evaluated through several applicability experiments,
and a near-satisfactory rating was achieved after multiple
volunteer experiences.

(3) A facial expression dataset was constructed containing
five basic expressions, with a total of 7,829, and utilized for
training the emotion recognition network.

II. EMOTION RECOGNITION STRATEGY BASED ON
SE-RESNET
This section describes the emotion recognition model, which
is mainly based on facial expressions. And the feature
extraction capability of the backbone network is enhanced by
the attention mechanism module.

Emotions are human attitudes and feelings towards objec-
tive things, which are situational, transient, and have more
obvious outward expressions [21], and facial expressions
are outward expressions of emotions. To achieve accurate
facial expression recognition and emotion understanding,
it is necessary to extract precise and critical features,
because facial expressions are subtle, change frequently,
and have slight differences between classes. In this study,
ResNet-50 [22] as the backbone network is used for feature
extraction, and the SE-block in SENet [23] is introduced to
improve the accuracy and efficiency of feature extraction.
The SE-Residual module is shown in Fig. 2, and the overall
network parameters are shown in Table 1.

TABLE 1. Outline of the SE-ResNet.

ResNet with a residual block can solve the overfitting
and gradient disappearance problem, which contains residual
and short-cut branches. This structure not only enhances
the expressiveness of the network and the propagation of
gradients but also reduces the memory occupation required
during inference. The residual branch of ResNet-50 employs
a structure called bottleneck, which is described as follows:
first reduces the dimension of the input features after 1×1
convolution, then computes them by 3×3 convolution, and
finally uses 1×1 convolution for the dimension reduction to
ensure the same dimension as the input. After obtaining the
gradient of the residual block output for the loss function
∂l/∂y, the input gradient is

∂l
∂x
=

∂y
∂x

∂l
∂y
= (

∂f (x)
∂x
+ I )

∂l
∂y
=

∂f (x)
∂x

∂l
∂y
+

∂l
∂y

, (1)

where, I is the identity matrix in gradient backpropagation.
Connected by a short-cut branch, the output gradient ∂l/∂y
can be passed losslessly to the input ∂l/∂x. This effectively
alleviates the phenomenon of gradient disappearance due to
the depth of the network, and thus the performance does not
deteriorate.

Inspired by the phenomenon that humans selectively
devote attention to global information when observing and
perceiving things, various networks of attention mechanisms
have been proposed in deep learning, with SENet being one
such mechanism. SENet enables convolution to focus on
the relationships between channels, rather than only local
receptive fields. It allows the network to learn the importance
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of features between different channels. It has the advantage of
being highly versatile and can be embedded in most network
structures. It first compresses the channel domain, which
means that the multiple channels contained in the original
feature are compressed into a vector with the dimension of the
original number of channels, and the specific implementation
process is shown in formula(2).

zc =
1

H ×W

H∑
i=1

W∑
j=1

uc (i, j) , (2)

where, uc is the input featuremap,H andW are the height and
width, respectively, zc and is the output vector uc obtained by
compression.

Next, the information in the compression operation is used
to generate different weights under different channels. The
process is shown in formula(3).

Fex(z,W ) = σ (g(z,W )) = σ (W2δ(W1z)), (3)

where Fex(z,W ) is the output after excitation, and W1 ∈

R
C
r ×C and W2 ∈ RC×C

r are the two fully connected layers
in the module, respectively, r is the scaling factor, σ (·) is the
sigmoid function, and δ is the ReLU activation function. After
that, the obtained results are used as weights and weighted to
the uc channel by channel to complete the rescaling of the
original features in the channel dimension, which is used as
the input of the next layer of the network in the form of the
formula (4).

x̃c = Fscale(uc, sc) = sc · uc, (4)

where X̃ =
[
x̃1, x̃2, . . . . . . , x̃c

]
, Fscale(uc, sc) denotes the

product of sc and the feature map.

III. THE ROBOT-ASSISTED SERVICE MODEL BASED ON
HREDM
This section describes the decision-making model based on
Q-learning and a multilayer robot-assisted service model
that includes perception, cognition, decision-making, and
execution. The service model is built by combining the
decision-making model with the emotion recognition model
in Section II.

Unlike deep learning, which relies on the acquisition
and construction of datasets, reinforcement learning builds
environments for exploring unknown regions and developing
training on known regions, eventually arriving at its own
decisions to obtain the optimal solution to the problem,
as shown in Fig. 3. Among the many reinforcement learn-
ing algorithms, the model-free offline learning algorithm
Q-learning has attracted the attention of many scholars, and
its simple and efficient learning process brings a firm reliance
on decision-making [24].

In the Q-learning modeling for decision-making, the agent
interacts with the constructed environment and takes different
actions from the current state to reach the next state. Different
reward values are brought during the transition, and the next
state it enters is determined by the current state and reward.

FIGURE 3. Diagram of reinforcement learning based emotion. The robot
transitions states by taking actions.

There are four concepts to be illustrated: (1) state space and
action space, (2) learning rate, (3) reward, and (4) policy.

State space: The emotional state of the user in the
environment. There are five classes of considered emotions.
S represents the state space and S = {s1, s2, s3, . . . . . .}.

Action space: An action performed by the agent during
the interaction when selecting the next round of appeasing
the user’s emotional state. The action space contains six
classes of actions. A represents the action space and A =
{a1, a2, a3, . . . . . .}. The detailed definition of S and A will
be elaborated in Section IV.

Learning rate: It can be used to calculate the future reward
decay for cumulative rewards of state sequences. It means that
the earlier the reward has less impact on the current.

Reward: The reward r can be used to measure the
addition of emotion regulation after the agent performs the
corresponding action ai. During the interaction training,
different actions of the robot bring different degrees of
emotional empathy.

Policy: The policy is used to represent the probability
distribution of the agent choosing the next action in the
current state. The strategy is used as the action policy as
shown in the following Algorithm 1. It means that the action
under the maximum is chosen with probability in state si, and
the other actions are chosen randomly with probability. The
purpose of this strategy is to increase the diversity of action
choices, explore more possibilities, and ensure that all actions
have the probability of being chosen, rather than stopping at
the currently considered optimal strategy. Its update strategy
uses the greedy strategy. The maximum Q-value in the next
state is updated for the current Q-value.

Algorithm 1 ϵ-Greedy Strategy
Input: Random probability ϵ

Output: Action a
1: if random p < ϵ then
2: a← argmax(Q(s, a))
3: else
4: a← random A
5: end if
6: return a
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Algorithm 2 Q-Learning Decision Algorithm Based on ϵ-
Greedy Strategy
Input: Training rounds episode episode, random probability

ϵ, learning rate γ , reward r
Output: Action value function Q(s,a)
1: Initial Q(s,a) at random
2: for i = 1 to episode do
3: if s not the terminal then
4: if random p < ϵ then
5: a← argmax(Q(s, a))
6: else
7: a← random A
8: end if
9: Q(s, a)← Q(s, a)+ γ [r + λQmax(s, a)− Q(s, a)]

10: else
11: Q(s, a)← Q(s, a)+ γ [r − Q(s, a)]
12: end if
13: end for
14: return Q(s,a)

Q-learning algorithm is used to implement a service
robot interaction behavior decision as shown in Algo-
rithm 2. By establishing a correlation between user emotions
and interaction behaviors, the service robot autonomously
explores and make decisions about interaction behaviors.
It achieves to regulate the user’s emotion from negative
to positive or maintains positive emotion on the basis of
empathy. The algorithm relies on the input emotion as the
initial state and selects the subsequent action through the
action selection strategy to move to the next state. Then the
Q-table is updated using the update strategy, this process is
repeated until the training reaches the target epoch and the
final decision model, which is the final Q-table, is obtained.

The robot service model is illustrated in Fig. 4. It takes
the emotion recognition results inferred by the recognition
model as input and interacts with the user using the decision
results inferred by the decision model obtained from the
training. In the perception layer, the user’s facial features are
recognized and localized. In the cognitive part, the expression
features are extracted and emotion recognition is analyzed
by SE-ResNet. The behavior decision results are obtained by
Q-learning autonomous learning and training. After that, the
decision results are released to the service robot to complete
the interaction behavior. Finally, themotion control acts as the
execution layer to complete the interaction behaviors through
visual positioning, mobile robot navigation, and manipulator
and soft claw grasping.

The proposed HREDM is used as the upper layer of
the robot service model, i.e. the perception, cognition,
and decision-making parts. As an intermediary between
users’ emotions and interaction behavior, HREDM can
effectively empathize with human beings, make appropriate

TABLE 2. The summary of the emotion dataset.

decisions, and finally make the interaction behavior meet
the users’ preferences. This approach ensures that persons
with disabilities have a more positive user experience and
emotional engagement in HRI.

IV. EXPERIMENT
In this section, the experiments are separated into three
parts: (1) The emotion recognition experiment based on the
self-constructed facial expressions dataset, which is used to
verify the dataset typicality and the recognition performance
of the model; (2) The applicability evaluation of the proposed
HREDM based on (a) a simulation environment and (b) a real
service robot for the disabled in a laboratory; (3) The statistics
of volunteer test results on HREDM.

A. FACIAL EXPRESSIONS DATASET
The expression dataset is collected based on the laboratory
environment and contains five expressions, namely neutral,
happiness, anger, surprise, and sadness, which are the basic
human expressions that can convey emotions. This dataset
collects expression image data from multiple people at
different angles, light exposure, and with or without glasses.
Because deep learning needs to be trained by extensive data,
the data is expanded to fully train the number of network
parameters and avoid the overfitting phenomenon. The
methods of expansion include randomly flipping, cropping,
adjusting the contrast, and adjusting the brightness of the
image data during the training input. The dataset is divided
into a training set (6224 pictures), a validation set (791
pictures) and a testing set (814 pictures) and summarized in
Table 2.

B. EMOTION RECOGNITION EXPERIMENT
Training environment: the operating system is Windows10
64-bit, using the deep learning framework is Tensorflow
1.13.1 based on Python 3.6; GPU is NVIDIA GEFORCE
2070Super (8G), CPU is Intel Core i5-10400. The SE-ResNet
network is trained under the above training environment, and
the pre-trainedmodel is used for fine-tuning the training, with
the number of training epochs is 400, the batch size is 100,
and the learning rate set at 0.0001. The accuracy and loss
value changes under the test set are shown in Fig. 5. As can
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FIGURE 4. The robot service model based on the HREDM. It consists of the proposed HREDM and the execution layer.

FIGURE 5. The alteration of accuracy and loss on the validation set. The
performance of the model is indicated by the stability of the accuracy and
the convergence of the loss.

be seen from the figure, because of the pre-trained model,
the loss value converges quickly. The recognition accuracy

is consistently above 81%, and the final stage of training is
maintained between 90% and 98%.

The SE-ResNet used is compared with other current
deep learning algorithms as a way to test the recognition
effectiveness of SE-ResNet. Since the application mainly
relies on the background of disabled assistance, there is no
relevant public dataset yet, so the dataset used is self-built.
Other comparisonmethods were used partly with the publicly
available datasets CK+ and JAFFEE and partly with their
self-built datasets, and the comparative analysis is shown in
Table 3. As shown in Table 3, the algorithm used in this paper
performs similarly to the current recognition algorithms in
terms of accuracy, which is slightly lower than the IF-GAN
algorithm by 2.21%. It shows that the algorithm used can
recognize users’ facial expressions and achieve the goal of
emotion recognition and understanding.

C. APPLICABILITY EVALUATION EXPERIMENT BASED ON
HREDM
Since interaction training using Q-learning algorithm
requires repeated interactions between the user and the robot,
the robot can learn the user’s interaction habits independently.
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TABLE 3. Accuracy comparison of the state-of-the-art methods.

TABLE 4. Definition of Q-learning state space.

This iterative interaction process can reduce the user’s
experience and comfort level. Therefore, a simulation
environment is designed to implement the training process.
Rather than repeatedly expressing a variety of emotions over
extended periods, the user can simply input their current
emotion within the simulation environment to establish
interaction with the robot. The definitions of Q-learning
state space is shown are Table 4. Happiness is a positive
emotion and is treated as the desired state of training. The
corresponding deterministic reward values for the different
behaviors are designed as formula (5). The number of training
episodes is 100, the random selection probability is 0.9, and
the learning rate is 0.01.

r=


−1 s = s1
+1 s = s2
−0.5 s = s4
−0.1 s = else

(5)

Table 5 shows the action space within two distinct exper-
imental environments. Within the simulated environment,
examples of behaviors that are related to the life of the
disabled are provided. In the physical environment, behaviors
are based on daily needs and experimental conditioning.
These behaviors serve as examples to validate the pro-
posed decision-making model. Furthermore, these behavioral
spaces can be expanded and extended in accordance with
actual scenarios and service objects.

The flowchart of training is shown in Fig. 6, where the
purpose of the training is to make the user positive through

TABLE 5. Definition of Q-learning action space.

FIGURE 6. Flowchart of training. This represents the process of training
within an episode. The gray diamond is the judgment, if it is a positive
state then end the training, otherwise continue to select the behavior.

repeated interactions. At the start of the training, an emotion
state will be randomly generated, followed by a choice and
the output of a behavior using the ϵ-greedy strategy. A change
in emotion will result from this behavior since it will have
an emotional impact on the user. When the emotion state
changes to ‘‘happiness’’, which is utilized as a positive state
objective, the round of training is stopped; otherwise, the
interaction training is continued. The generated Q-table will
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FIGURE 7. Simulation environment. (a) the house built in Gazebo, (b) the
corresponding map.

be able to reflect the relationship between the users’ emotions
and calming behavior with training. That derived from the
training will serve as the foundation for decision-making
during the following experimental section.

1) EXPERIMENT BASED ON SIMULATION ENVIRONMENT
A simulated environment was built for testing. First of all,
it combines some daily needs of the disabled, which is
based on a brief survey of their current situation. There are
seven activities of daily needs, including eating, cleaning
personal hygiene, rehabilitation, psychological counseling,
active social interaction, physical condition assessment, and
career training. Then, a house model is built based on the
floor plan by Gazebo in ROS (Robot Operating System),
and different points in the house correspond to different
activities, allowing for clear visualization of decision results.
The simulation environment and the map are shown in Fig. 7.

We trained our reinforcement learning model based on
these seven activities and obtained the graph of the change
in reward values and Q-table as shown in Fig. 8 and Fig. 9,
respectively. As can be seen in Fig. 8, the robot initially
failed to meet the user’s needs. The reward is always negative
because the robot has no prior knowledge of the user and
selects the interaction behavior at random. The robot learned
the user’s interaction habits after 50 episodes of training, and
the reward change became steady. In Fig. 9, most Q values
are negative because all emotions result in lower rewards,
except ‘‘happiness’’, which has a positive reward. TheQ-table
shows that when the user is in a ‘‘neutral’’ state, the robot
will consider whether the person wants to ‘‘eating’’, when
in a ‘‘sadness’’ state it will ask if it needs ‘‘psychological
counseling’’, and when the person is ‘‘happiness’’, it will ask
if the user wants to do some social activities with others.

The obtained Q-table is used for the simulation test, during
which the camera captures the user’s emotion, and then
the robot makes a decision based on the Q-table. When
the robot receives the result of the decision, it moves to
the corresponding position autonomously according to the
command signal. A snapshot of the simulation experiment
process is revealed in Fig. 10, showing the process when
the user is in ‘‘anger’’ and ‘‘sadness’’. The result of the
decision ‘‘personal hygiene cleaning’’ is sent to the robot
when the user is ‘‘anger’’, and the robot autonomously moves
to the point of ‘‘personal hygiene cleaning’’. Meanwhile, the

FIGURE 8. Variation of reward during decision-making training based on
the simulation model set-up. The convergence of the model is reflected
by the rate of the reward change.

FIGURE 9. Q-table obtained from decision-making training based on the
simulation model set-up. The larger Q(s,a) is, the greater the probability
that it will be chosen during the experiment.

‘‘psychological counseling’’ is sent when the user is ‘‘sad-
ness’’, and the robot navigates to the point of ‘‘psychological
counseling’’. These demonstrate that the proposed model can
be utilized in service robots and enables robots to make
empathetic decisions based on user’s emotions.

2) EXPERIMENT BASED ON REAL ENVIRONMENT
Through training the model on six behaviors in the physical
world, we attained a change in reward value during the
training process, as illustrated in Fig. 11, as well as the
final Q value acquired from the training, as shown in
Fig. 12. As can be seen from Fig. 11, the change in the
reward value from the initial repeated fluctuation to the final
stabilization gradually, indicates that the user’s preference
tendency has been learned in many training eposides and can
make appropriate decisions. In Fig. 12, it is clear that the
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FIGURE 10. Experiment results. Applicability evaluation experiments based on simulation environment when the initial state of the user
is (a) anger and (b) sadness.

FIGURE 11. Variation of reward during decision-making training based on
the real environment set-up.

users would like the robot to ‘‘staying away temporarily’’
when they are ‘‘anger’’ so that they can calm down alone
for a while; when they are ‘‘sadness’’, the robot should
‘‘comfort’’; and when they are ‘‘happiness’’, the robot’s most
appropriate behavior is to open the door and let them ‘‘going
out for a walk’’. Humans experience the above emotional
states along with appropriate psychological expectations, and

FIGURE 12. Q table obtained from training the real environment set-up.

when expectations are satisfied, the emotional state will
change and remain positive. This shows that the model
can successfully learn the user’s interaction habits and
psychological expectations from the interaction process,
identify the relationship between emotions and interactions,
and change the user’s emotions from negative to positive.

The experiment environment, service robot, and inter-
action system are shown in Fig. 13. We have previously
looked into head gesture recognition in [31], allowing
persons to communicate their feelings towards a robot
through head gestures. The head gestures are introduced
into these experiments. Meanwhile, a distributed computing
approach is utilized to simulate a service robot that may be
remote-controlled within various settings, such as homes and
hospitals.

15786 VOLUME 12, 2024



X. Zhu et al.: Interaction Behavior Decision-Making Model of Service Robots

FIGURE 13. Experiment settings. The laboratory environment, service robot, and interaction system.

FIGURE 14. Experiment results. Applicability evaluation experiments based on the real environment when the emotion of
the user is anger.

FIGURE 15. Feedback questionnaire. Volunteers are asked to rate the
satisfaction of both groups of decision models.

FIGURE 16. Ten volunteers’ satisfaction ratings of two interaction
models.

VOLUME 12, 2024 15787



X. Zhu et al.: Interaction Behavior Decision-Making Model of Service Robots

FIGURE 17. Part of the satisfaction experiment snapshot. The interaction process with (a) HREDM and (b) random decision-making. The
different users have different interaction tendencies under the same emotion.

The experiment results are presented in Fig. 14. After
capturing the user’s face and recognizing the emotion, the
recognition outcomes are fed into the decision model to
obtain empathy results. Results are asked and confirmed to
the user by the speaker. After receiving the user’s ‘‘nodding’’
response, the current behavior command is published to the
mobile manipulator to complete the interaction. The Fig. 14
illustrates the experiment process when the user is angry.
Initially, the user’s emotion was ‘‘anger’’ and the robot got
away from the user by the user’s instructions. Subsequently,
the user’s emotional state transitioned to ‘‘surprise’’. After
that, the robot delivers the user with water and tries to bring
more positive emotions to users.

The service robot, based on the proposed HREDM, can
effectively recognize and responds to the user’s emotions
and head gestures through its interaction behaviors, which
ultimately lead to positive emotion regulation. The results
demonstrate that the model can accurately identify the user’s
emotions and decide the appropriate interaction behavior
under the trained model, which brings positive emotion
regulation to the user. This model can be applied to a
variety of service robots to achieve empathetic behavior
decisions based on the user’s emotions, appropriately respond
to varying emotions, and establish trust and reliance with the
user.

D. STATISTICS OF VOLUNTEER TEST RESULTS ON HREDM
Ten volunteers participated in an experiment to the evaluate
the validity of the proposed model. The experiment was
conducted based on the simulation environment and divided
into two groups: empathy-based decision-making(HREDM)
and random decision-making. The HREDM group uses the
model obtained in section IV, part C(1) of the experi-
ment for interactive decision-making. The group based on
random decision-making refers to the random selection of
decision-making behaviors in the set of behaviors with an
average probability after recognizing the emotion. It means
that the decision-making results are independent of emotion.
Before the experiment, the volunteers knew that they would
need to perform two groups of investigations related to
emotion regulation, but they were not told which group
of models they were currently in. In this way, the bias of
their subjective impressions on evaluations can be reduced.
Due to conditional restrictions, the interactive behavior set
adopts the behavior set in the simulation experiment part
of section IV, part C(1). During the experiment, volunteers
can make expressions at will to experience the interaction
process. After volunteers have experienced the two inter-
action models, they need to complete the questionnaire to
rate their satisfaction with the two interaction models. The
questionnaire is shown in Fig. 15.
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The satisfaction score is shown in Fig. 16 and the
snapshot of part of the experimental process is shown in
Fig. 17. The evaluation results show that the average score of
HREDM is 3.7, slightly surpassing that of random decision-
making. Two of the volunteers rated the HREDM as ‘‘very
satisfied’’. These can indicate that the proposed model’s
capacity for emotional regulation effectively caters to most of
the participants. However, one volunteer rated the proposed
decision and the random decision as dissatisfied, expressing
dissatisfaction because the interaction process took a long
time before the desired behavior was decided. It is attributed
to the limited range of behaviors in the current training
and individual variation among users. In addition, since the
comparison algorithms randomly select behaviors with an
average probability, the bias of the decided behaviors is
significant. Moreover, the willingness tendency of different
users under the same emotion varies greatly, so empathy-
based decision-making does not score notably superior to ran-
dom decision-making. It further illustrates that our proposed
model can possess an approximate imitation and endeavor of
human empathy. Still, space remains for optimization, like
augmenting the set of behaviors and including more users to
train the model for superior generalizability.

V. CONCLUSION
This study attempted to build a decision mechanism for
human-robot interaction called HREDM, which could facil-
itate more intimate interactions between service robots and
the disabled. This mechanism allows robots to comprehend
the emotions of their service users, choose appropriate
behaviors, and respond reasonably to affect those emotions.
In HREDM, the emotion recognition neural network is used
to analyze and recognize users’ emotions. A Q-learning-
based reinforcement learning model was constructed to
analyze the correlation between the behaviors of robots
and the users’ emotions. Based on the above, HREDM
makes inferences and decisions to influence the users’
emotions positively. The experiment results demonstrate that
the proposed mechanism enables the robot to actively find
the relationship between interaction behaviors and emotions
to please users actively. According to the performance of the
proposed approach on multiple volunteers, it indicates that
this method can, to some extent, promote users’ emotional
changes toward more positive aspects. Although it is simply
a clumsy imitation of human empathy, this mechanism
may provide some insight into conventional HRI. We will
investigate HRE and related topics in greater detail.
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