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ABSTRACT Recent advances in artificial intelligence (AI), notably deep learning, have sparked widespread
curiosity with bioinformatics, particularly the challenges presented by medical imaging. It’s been really
helpful in enabling the Computer Aided Diagnosis CAD system to provide precise outcomes. Nonetheless,
it is still a difficult task to identify breast cancer in mammography images. The purpose of this effort is to
lower False Positive Rate FPR and False Negative Rate FNR and increase Matthews’s correlation coefficient
MCC value. Two highly tailored object detection models, YOLOv5 and Mask R-CNN, are utilized to get
the job done. YOLOv5 is able to detect the mass and determine whether it is benign or malignant. However,
YOLOV5’s limited real estate necessitates certain tweaks to the original model in order to get the desired
effects. Tumor borders and size are both identified by Mask RCNN as it traverses breast parenchyma in
search of malignancies. Stages of cancer are based on the magnitude of the patients’ tumours. This model
employs YOLOv5+Mask RCNN and is trained on the INbreast, CBIS-DDSM, and BNS dataset. The
proposed model is compared against the baseline version of YOLOv5 to determine how well it performs.
The proposed method improves performance, with an FPR of 0.049%, a FNR of 0.029%, and a high MCC
value of 92.02%. Based on the results of the studies, combining YOLOv5 with Mask RCNN improves
accuracy by 0.06 percentage points compared to using either method alone. Furthermore, this effort may
aid in determining the patient’s prognosis and allowing clinicians to be more accurate and predictable in the
diagnosing process at an early stage.

INDEX TERMS Breast cancer detection, deep learning, YOLOV5, mammogram images, mask RCNN.

I. INTRODUCTION
Breast cancer is the primary contributor to mortality from
cancer in women on a global scale and represents one of
the most prevalent forms of invasive malignancies affecting
the female population. This condition has the potential to
impact individuals of all genders across various age groups,
with a higher prevalence observed among individuals in mid-
dle age and older. In the year 2018, it is anticipated that
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a total of 627,000 individuals experienced mortality, while
an additional 2.1 million incidents were documented. While
there are other types of cancers that are more prevalent in
women, such as cervical, lung, and thyroid cancers, breast
cancer remains a significant concern, representing around
25% of all cancer cases globally [1]. According to the World
Health Organisation (WHO), it is projected that there will
be around 19.3 million newly diagnosed cases of cancer by
the year 2025 [2]. Numerous studies have demonstrated an
upward trend in breast cancer mortality rates across vari-
ous global regions and age cohorts. The global prevalence
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of breast cancer is increasing among individuals of all age
groups. However, it is particularly prominent among women
who are under the age of 50 and have not yet reached
menopause [3]. The incidence rates of breast cancer, adjusted
for age, indicate that Pakistan exhibits one of the highest
rates compared to other Asian countries [4]. According to a
study, the incidence of breast cancer among Asian women
is estimated to be approximately 1 in 9 [5]. The country
experiences a notable and increasing prevalence of breast
cancer. However, the death rate remains elevated due to
factors such as delayed detection, regional and cultural lim-
itations, insufficient diagnostic resources, and a scarcity of
treatment centres. Based on the findings of several research
conducted globally, it has been shown that timely identifi-
cation and intervention in cases of breast cancer are pivotal
factors in achieving favourable outcomes. The prognosis for a
patient with cancer diagnosed at an early stage is significantly
more favourable compared to a patient with cancer detected
at a later, more advanced stage. To achieve a significant
reduction in long-term morbidity and mortality rates, it is
imperative to enhance public knowledge on the importance
of regular screenings, timely diagnosis of symptoms, and
appropriate treatment [6]. The inadequate dissemination of
knowledge regarding breast cancer diagnosis and treatment
among women in Pakistan, particularly those residing in
rural regions, can be attributed to a multitude of causes [7].
As a consequence, a significant proportion of breast cancer
patients, specifically 88.9%, are diagnosed in the later
stages, while 58.8% are identified at an advanced stage,
as reported in reference [8]. Breast cancer exhibits a signif-
icant and escalating fatality rate within the nation, primarily
attributable to delayed diagnosis, regional and cultural obsta-
cles, insufficient technological advancements in diagnostics,
and inadequate availability of treatment resources. Numerous
studies and research endeavours done globally have consis-
tently arrived at a shared consensus: timely identification
and intervention play a pivotal role in achieving successful
remission of breast cancer. Individuals who receive a cancer
diagnosis at an early, non-metastatic stage exhibit a higher
likelihood of achieving complete remission and experiencing
extended survival compared to those who are diagnosed at
a later, metastatic stage. Raising public awareness regarding
the significance of regular screening is of utmost importance.
Early identification of symptoms and subsequent interven-
tion are imperative in substantially reducing mortality and
morbidity rates. Mammograms, however very efficacious in
the early detection of breast cancer, are not exempt from
inherent limitations. Mammography stands as the sole diag-
nostic imaging examination that has been substantiated to
effectively diminish fatality rates associated with breast can-
cer. Asymptomatic women with an average risk profile often
commence annual testing at approximately 40 years of age.
Mammography employs low intensity x-rays to generate
pictures, enabling the detection of ductal carcinoma in situ
(DCIS) and calcification prior to their palpablemanifestation.
Breast cancer and its corresponding calcifications are visually

detected on mammograms as luminous and asymmetrical
areas. Mammography is widely recognised as the foremost
tool for identifying breast cancer due to its effectiveness
in early diagnosis and its potential to reduce breast cancer-
related mortality. The radiological diagnosis may provide
challenges due to the potential for misinterpretation of small
calcifications and poor contrast imaging characteristics [7].
Hence, computer-aided diagnosis (CAD) provides an addi-
tional perspective to facilitate accurate diagnostic outcomes.
This technology has the capability to detect changes that may
not be perceptible to the unaided human eye. This study may
additionally contribute to the identification of the kind of
tumours, distinguishing between benign and malignant cases,
and assisting in the diagnosis of breast pathologies. There
are two primary forms of breast tumours, namely malignant
and nonmalignant tumours [8]. Cysts and fibroadenomas
represent two instances of benign neoplasms. The objects
exhibit well-defined contours without any rough edges or
blurring. The carcinoma in situ designation is used bymedical
professionals to describe tumours that have not metastasized
to other body regions. Malignant and aggressive characteris-
tics are commonly observed in milk duct malignancies. The
aberrant spread of these cells initially occurs inside the breast
parenchyma, followed by dissemination to other parts of the
body [9]. The timely recognition and treatment of aberrant
cell growth are essential for effectively managing its uncon-
trolled proliferation. Individuals who were diagnosed early
and had timely treatment demonstrated a 100% survival rate,
but those who experienced a delayed diagnosis and treatment
exhibited a survival rate of 0%. This implies that the timely
detection and identification of cancer by routine screening
may prevent its metastasis to other bodily organs [10].
The utilisation of the Matthews Correlation Coefficient

(MCC) as a comprehensive measure of a classifier’s per-
formance, as opposed to accuracy alone, is supported by
research [11]. Numerous researchers have diligently endeav-
oured to develop networks that exhibit promising outcomes
in the pursuit of a reliable modality for breast tumour diag-
nosis. The exploration of false positive and false negative
rates, together with Matthew’s correlation coefficient (MCC)
values, remains mostly uncharted in the realm of academic
research. In the context of binary classification, the Matthews
Correlation Coefficient (MCC) is considered a more reliable
metric compared to accuracy. However, it necessitates consis-
tently high performance across all categories in the confusion
matrix. In pursuit of this objective, our research makes sig-
nificant contributions by: In this study, we provide a novel
approach utilising mammograms to develop a model capable
of effectively identifying and classifying breast tumours into
two distinct categories: benign or malignant. The method-
ology employed in this study aims to reduce both the False
Positive Rate (FPR) and False Negative Rate (FNR) while
maintaining precision and accuracy. The Matthews Correla-
tion Coefficient (MCC) is a significant performance statistic
that is subject to continuous improvement efforts. To identify
the most effective approach for detecting and classifying
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breast tumours, we utilise all four variants (Small, medium,
large and extra large) of the YOLOv5 model. Additionally,
we conduct a comparative analysis between our proposed
model and the most advanced networks currently available in
order to offer a comprehensive evaluation of its performance.
The objective is to develop a computational model capable
of accurately identifying breast masses in mammograms and
subsequently classifying them as either malignant or benign.
The misclassified data is subjected to a secondary model
in order to accurately determine the boundaries and size of
tumours, which serve as important indications of the stage
of cancer. By reducing the False Negative Rate (FNR) and
False Positive Rate (FPR) while maintaining accuracy, the
Matthews Correlation Coefficient (MCC) is enhanced. The
assessment of the system’s performance could be achieved
by comparing the outcomes of the proposed model with
those of established models. The paper is structured into
five distinct sections. Section II presents a comprehensive
review of the existing literature. Section III outlines our sug-
gested technique. Section IV provides an in-depth analysis
of the experiments conducted and presents the corresponding
results. Finally, Section V concludes the paper and discusses
potential avenues for future research.

II. LITERATURE REVIEW
The importance of precise and thorough picture analysis and
interpretation cannot be overstated in the field of medical
research. Radiologists and physicians possess enhanced capa-
bilities in the detection and identification of abnormalities.
In their study, researchers presented a framework for the cate-
gorization of breast masses using Computer-Aided diagnosis
(CAD) techniques [13]. This study utilises data obtained from
the Mammographic Image Analysis Society (MIAS), data
collected by the researchers themselves, and data sourced
from the Digital Database for Screening Mammography
(DDSM). The system preprocesses, segments, collects, and
groups functions. The Computer-Aided Diagnosis (CAD)
programme employs a convolutional neural network (CNN)
architecture consisting of eight coevolutionary layers, four
max-pooling layers, and two fully connected layers. Sub-
sequently, a comparative analysis is conducted between the
accuracy and AUC (Area Under the Curve) of the proposed
Convolutional Neural Network (CNN) and two other pre-
trained networks, namely Alex Net and VGG16. The results
of this analysis demonstrate that the recommended CNN
exhibits superior effectiveness in comparison. The proposed
model demonstrated an accuracy of 92.54% on the MIAS
dataset, 96.47% on the DDSM dataset, and 95% on the
self-collected dataset. Additionally, the corresponding AUC
scores for these datasets were 0.85, 0.96, and 0.94, respec-
tively. In [14], the authors successfully employed an extreme
learning technique to perform feature fusion mapping and
extract CNN features for the purpose of breast cancer diagno-
sis and classification. The author proposes the utilisation of
a multi-deep convolutional neural network (DCNN) frame-
work as a means of categorising breast cancer. The objective

of this project is to enhance the accuracy of breast cancer
diagnosis through the utilisation of deep learning algorithms.
The methodology utilises a combination of deep convolu-
tional neural networks (DCNNs) to examine mammograms
and ascertain their classification as either malignant or non-
cancerous. The study presents the experimental findings and
validation of the proposed framework, demonstrating its
capability to reach a high level of classification accuracy.
These results indicate significant potential for computational
advancements in the field of breast cancer diagnostics. The
present study [15] introduces a theoretical framework aimed
at the automated identification, classification, and partition-
ing of breast cancer in mammographic images. This study
employs the MIAS and CBIS-DDSM databases for analysis.
This study employs a sample of pictures that is relatively
restricted in size. Preprocessing often include the removal of
muscle sections that may yield false-positive results, along
with the reduction of artefacts and noise. The implementa-
tion of a median filter has the potential to mitigate noise
present in mammograms. The images undergo a processing
procedure wherein the tumour is rendered imperceptible
through the isolation of the muscular structures, followed
by the conversion of the images into distinct patches. The
efficiency of the system is enhanced by converting the pre-
processed image into patches of size 512-512. Subsequently,
the MASK-RCNN and Deep Lab deep learning models are
employed for the purpose of identifying the presence and
location of malignancy. The results of this study indicate that
MASK-RCNN achieved an Area Under the Curve (AUC)
value of 0.98, whereas Deep Lab exhibited an AUC of 0.95.
In the context of the segmentation task, the achieved mean
average accuracy scores are 0.80 and 0.75. The precision of
the radiologist ranged from 0.80 to 0.88. Hence, this research
contributes to the assistance provided to radiologists in the
categorization of breast tumours. Nonetheless, additional
investigation is required to attain the most favourable out-
comes. In the present investigation [16], the author puts forth
the employment of a YOLO detector using DDSM and breast
datasets for the purpose of detecting breast cancer tumours.
The effectiveness of this approach is evident from the DDSM
dataset, which achieved a score of 99.28%, and the INbreast
dataset, which achieved a score of 98.02%. However, it is
important to note that the high false positive rate (FPR) of
14% is a notable drawback. A novel approach to cancer
classification was introduced, employing feedforward Con-
volutional Neural Networks (CNNs) such as ResNet-50 and
Inception ResNet-V2. In the study conducted by [17], it was
observed that all three approaches demonstrated an accuracy
of 90% or above on both datasets. Specifically, the False Pos-
itive Rate (FPR) for the breast dataset increased to 28.57% for
the CNN approach, 14.28% for the Res-Net50 approach, and
16.66% for the Inception ResNet V2 approach. This paper
presents a proposed approach for the segmentation and clas-
sification of breast cancer tumours using an updated version
of the Firefly algorithm combined with the chicken swarm
optimisation (FC-CSO) and the region-based convolutional
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neural network (RCNN). The proposed approach is applied to
the MIAS dataset. The aforementioned methodology exhibits
a notable level of precision (93%), responsiveness (97%),
selectivity (92%), False Positive Ratio (FPR) (7%), and false
negative ratio (FNR) (3%), while demonstrating a relatively
diminished level of certainty (MCC) (85%). In their study,
the authors of reference [18] propose a methodology that
utilizes the Convolutional Neural Network (CNN) model
and the Mammographic Image Analysis Society (MIAS)
dataset. This approach aims to extract distinctive features
and perform classification of breast cancer tumours. The
method yielded favourable outcomes, including a 95-percent
accuracy, 98-percent sensitivity, 90-percent specificity, and
a 2-percent false-negative rate. However, it is important to
note that the Matthews correlation coefficient (MCC) value
reduces to 89% and the false positive rate (FPR) decreases to
10%. By employing neural networks, the approach proposed
in the study demonstrated a high level of accuracy in pre-
dicting the five-year survival of breast cancer patients. The
researchers employed the Wisconsin Breast Cancer Dataset
for both the training and evaluation phases of an artificial
neural network (ANN) [19]. The study demonstrated state-
of-the-art performance by utilizing the Just Neural Network
(JNN) framework and conducting experiments on the Haber-
man’s Breast Cancer Survival dataset obtained from UC
Berkeley’s Centre for Machine Learning and Intelligent Sys-
tems. The ultimate level of precision achieved was 88.24%.
The study titled ‘‘Delay-Multiply-and-Sum (DMAS): A
Proposed Method for Achieving Ultra-Wideband Confocal
Microwave Imaging’’ introduced a technique for achieving
ultra-wideband confocal microwave imaging. In compari-
son to the DAS imaging method, this technique produced
outcomes of higher precision. The technique of conformal
predictors was founded upon the utilisation of rule-based
genetic algorithms [20]. The efficacy of the technique was
tested using two datasets, one comprising breast cancer
cases and the other involving ovarian cancer cases. The
technique successfully presented the prediction zones. The
superior performance of this technique can be attributed to
its comprehensible rules, which surpassed those of other
conformal predictors. The study demonstrated that ResNet
and Inception achieved superior performance compared to the
YOLO series, with accuracy levels of 91% and 95.5% respec-
tively (Reference). Recent research investigations employing
diverse conventional methods for cancer diagnosis have
demonstrated remarkably high levels of accuracy, reaching
up to 99%. Insufficient emphasis has been given to the mis-
classification ratio and the Matthews correlation coefficient
(MCC) score.When dealing with binary classifications, it is a
valid method to calculate accuracy using confusion matrices,
especiallywhen the data sets are evenly distributed. Neverthe-
less, theMatthews Correlation Coefficient (MCC) emerges as
a more reliable statistical measure in cases where the dataset
exhibits an imbalance. The numerical value in question has
a large magnitude alone in cases where each of the four
divisions within the confusion matrix precisely forecasts

positive results. Moreover, the Matthews Correlation
Coefficient (MCC) exhibits a high value when both the
False Negative Rate (FNR) and False Positive Rate (FPR)
are minimized. The utilisation of high accuracy as the sole
criteria for assessing positive prognosis in clinical diagnosis
may lead to severe repercussions [21]. The author describes
CAD for breast cancer [22]. This project aims to improve
breast cancer diagnosis by establishing a robust classification
system with numerous classifiers. The CAD system analyses
mammograms to determine lesion malignancy usingmachine
learning techniques. The study provides empirical evidence
that the suggested Computer-Aided Diagnosis (CAD) system
can detect and diagnose breast cancer with high accuracy
and sensitivity. The study suggests that computer-assisted
breast cancer diagnosis could be improved. The author in [23]
highlights the utmost significance of security in the digi-
tal age, specifically when it comes to transmitting images
over networks. It emphasizes the importance of achieving
authenticity and confidentiality through a robust two-level
security mechanism. This involves concealing images using
stenographic methods to ensure authenticity and encrypting
them with 2D Cellular Automata rules to maintain confi-
dentiality. This two-tiered approach guarantees heightened
security, with each level bolstering the other in the event of
a breach. Academics [24] studied how deep learning could
improve mammography cancer diagnosis. This study exam-
ines if sophisticated deep learning algorithms can improve
breast cancer detection by studying mammograms. The study
describes the picture preparation and deep learning models
used. The study found that deep learning improves cancer
diagnosis mammography accuracy and patient outcomes.
This research advances breast cancer computer-aided diag-
nosis approaches, which may improve early detection and
patient outcomes. Researchers describe a unique histopathol-
ogy image analysis method for breast cancer diagnosis.
Histo-CADx uses two-stage fusion to improve breast cancer
detection. Deep learning is used to extract useful prop-
erties from histopathology pictures. To incorporate these
collected characteristics, cascaded fusion is used. This docu-
ment covers Histo-CADx’s preprocessing, feature extraction,
and fusion methods. The experimental results show that the
proposed framework can accurately diagnose breast cancer
using histological pictures. This study expands knowledge on
computer-aided detection tools for breast cancer, highlighting
their potential to enhance accuracy and simplify treatment
decisions. If the algorithm predicted a false positive tumour,
the patient would likely incur physical pain through biopsy
or surgery and psychological trauma. If the model mispre-
dicts the lack of malignancies, the condition could be fatal.
Thus, a reliable model that decreases the false positive rate
(FPR), false negative rate (FNR), and Matthews correlation
coefficient (MCC) score is crucial [26]. Significant progress
is made in by the introduction of a multimodal system
that integrates numerous data sources for sleep staging.
The novel approach of using salient wave recognition to
conduct sleep stage analysis is a significant step forward.
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FIGURE 1. (a) Methodology block diagram. (b) Graphical representation of methodology block.

One potential drawback of this paper is that it may require
big datasets for training and validating the network, which
are not always easily accessible. The utilization of graph
convolutional networks, which are able to successfully cap-
ture spatial and temporal relationships in sleep data, is the
author’s contribution in [28]. The model is quite flexible
since domain generalization has been incorporated to make it
more resilient across datasets. Graph convolutional networks
have the potential to be quite resource intensive because to
their computational complexity. In [29], the author makes a
contribution by presenting a new neural network architecture
tailored to the analysis of sleep EEG signals. Spiking neural
networks are used, which is novel and fits well with the
biological origins of EEG data. However, this strategy may

struggle in contexts with limited resources because to the
high computational requirements of training and deploying
such networks.

III. METHODOLOGY
The objective of this endeavour is to automate the procedure
of discerning the malignancy or benignity of an aberration
in a mammography image that portrays a breast tumour.
Figure 1(a) illustrates the overarching framework of the
proposed strategy, while Figure 1(b) presents a graphical
representation of the methodology block diagram. The util-
isation of Contrast Limited Adaptive Histogram Equalization
(CLAHE) as a preprocessing step is employed to enhance and
refine mammograms. Superior results are attained with the
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elimination of artefacts and pectoral muscles. Subsequently,
the photos undergo the addition of BI-RADS annotations.
The researchers utilised a method of augmentation to obtain
more images for the purpose of enhancing the model-learning
process. Subsequently, the data for detection and classifica-
tion was provided to YOLOv5 and Mask RCNN, which are
currently regarded as two of the most advanced models in
existence. TheMask RCNN framework was employed to per-
form semantic segmentation, enabling the identification and
description of the most prominent characteristics exhibited
by the tumours included in the mammograms. The YOLOv5
model underwent a reduction in the fundamental parameters
related to computing. The experiments were conducted using
the same dataset to train the revised version. The improved
performance of the model can be attributed to two factors:
firstly, a reduction in complexity, and secondly, the incorpo-
ration of lightweight features. The outputs of both models are
compared and contrasted. The objectives of this investigation
encompass the prognostication and categorization of both
benign and malignant tumours, with the mitigation of false
positive rates (FPR) and false negative rates (FNR). The
veracity of the findings is confirmed through rigorous testing.
The effectiveness of the recommended model is examined
by a comparative analysis with other similar studies, demon-
strating that the proposed technique yields superior results in
terms of Matthews Correlation Coefficient (MCC) [24]. The
method described in this study presents radiologists with a
practical approach to ascertain the classification, dimensions,
and potential staging of a cancer. In the subsequent parts,
we will delve into the particulars of the process.

A. DATASET DESCRIPTION
Experiments utilized a public INbreast (InBreast | Kaggle)
and CBIS-DDSM dataset (https://www.kaggle.com/datasets/
awsaf49/cbis-ddsm-breast-cancer-image-dataset) and BNS
Dataset (http://cbio.mines-paristech.fr/∼pnaylor/BNS.zip)
with ground truth annotations. A total of 410 full-field digital
mammograms (FFDMs) were obtained from a cohort of
115 women for the purposes of screening, diagnosis, and
follow-up [27]. The experiment protected the patient’s iden-
tity. Healthy, malignant, and noncancerous data are collected.
It combines cranial-caudal (CC) and mediolateral-oblique
(MLO) perspectives. Mammography diagnoses breast can-
cer. Malignant tumours have rough edges, are larger than
surrounding tissue, and are whiter. As seen in Fig. 2, benign
tumours are round or oval with sharp edges.

B. DATA PRE-PROCESSING
This study aims to automate mammography cancer detec-
tion for atypical breast lumps. Photos must be prepared.
Preprocessing enhances desired features and reduces distract-
ing artefacts to improve image quality. This study utilizes
INbreast dataset. After removing background noise, Contrast
Limited Adaptive Histogram Equalization CLAHE enhanced
mammography contrast. Eliminating artefacts and pectoral

FIGURE 2. Benign and malignant breast tumor.

muscles improved results. CLAHE improved tumour visi-
bility in mammography. CLAHE uses tiling. See the image
in ‘‘tiles’’ instead of the whole thing. Two variables are
needed for CLAHE to work. The first contrast-threshold
value was 40. Second, the tile grid’s rows and columns
were specified. After that, the database’s BI-RADS annotated
the photos. These steps prepared the pictures for analysis:
Median andmean filters denoise. Themammographic images
were median and mean filtered to reduce noise and elimi-
nate artifacts. Salt and pepper noise was reduced using the
median filter yet sharp mammography edges were main-
tained. The median filter’s false outlines were subsequently
eliminated with the help of the mean filter. In the medio-
lateral oblique view (MLO) of mammograms, the pectoral
muscles can obscure the tumor site, leading to a false positive.
In order to properly identify the lesion, it is necessary to clear
MLO views of artifacts and pectoral muscles. To do this,
the mammographic pictures were altered by removing the
pectoral muscles. The mammographic pictures were prepro-
cessedwith thesemethods before being sent intoYOLOv5 for
tumor detection and classification. Since tumors and breast
parenchyma can be difficult to distinguish in complicated
pictures, YOLOv5 was updated to improve its effectiveness
in detecting and categorizing cancers. Parameters and model
size were reduced by cutting off the convolutional layer from
the Bottleneck CSP module’s input feature map and directly
connecting it to the output feature map. The salt-and-pepper
noise and sharp edges in mammograms are initially preserved
by using a median filter. Median filter equation could be
written as

imgo(xi, yi) = med{imgi(xi − Ĵ, yi − k)j,kϵT} (1)

where imgo(xi,yi)is the output and imgi(xi,yi) are the input
operated images, respectively, and j and k denote the pixels in
the image, the 2-dimensional mask has dimensions of n x n as
depicted in Eq(1). The median filter could produce spurious
outlines, which could then be removed using the mean filter.

C. PECTORAL MUSCLE DELETION
The pectoral muscles are visible in the mammographic
images when viewed in the mediolateral oblique (MLO)
position. Mammographic images show them alongside breast
parenchyma since their intensity values are the same. This
could result in an incorrect diagnosis of the tumor’s location.
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Because of this, accurate lesion identification relies on MLO
views being processed to exclude artefacts and pectoral mus-
cle as shown in figure 3.

FIGURE 3. Pectoral muscle and breast tissue.

Figure 4 presents the results both before and after the
mammograms were preprocessed.

FIGURE 4. (a) Original image (b)denoised image (c) identified pectoral
region using global threshold (d) pectoral muscle removal using global
and gray level threshold.

D. ANNOTATIONS
Annotation labels create meaningful annotated mammo-
graphic images. Both algorithms utilize marked data. Mask
RCNN semantic segmentation. It distinguishes tumour types.
Malignant tumours have jagged edges, while benign ones
are smooth. Two files hold data annotations. Mammogram
images and bounding box dimensions are in.jpg and.txt files,
respectively. Annotated picture file in Figure 5. The XML
file shows histological evidence of the lesions. Radiologists
classify tumours using BI-Rads. The 107 instances

FIGURE 5. Annotated images.

include 41 BI-RAD 2 or 3 masses and 75 BI-RAD 4, 5, or
6 malignant masses.

E. DATA AUGMENTATION
Data augmentation purposefully alters photographs to enlarge
the dataset and training model. It lets the model learn to
intentionally absorb features for better object discrimination.
107 lesioned mammograms were utilised to train and test the
model. Some breasts had several masses. 116 masses result.
Fig. 6 shows how data augmentation can increase training
data sample size and model performance.

FIGURE 6. Augmentation of data.

F. YOLOv5 ARCHITECTURE
YOLOv5 is a neural network that employ deep learning to
recognize and categorize objects. This study employs the
use of mammography images to distinguish between benign
and malignant tumours. Both melanoma and melanocytic
nevus can be recognised efficiently due to the end-to-end
nature of the process [29]. It makes use of global features
and copes effectively with unexpected inputs. Thus, YOLO
can play this role. Mass detection begins by drawing a
bounding box around the abnormality on the input image to
classify it as benign or malignant. YOLO architecture has
three main parts 31. YOLOv5 Backbone, Neck, and Head
(Figure 7). Bottleneck CSP, designed for feature extraction,
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FIGURE 7. YoloV5 architecture.
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FIGURE 8. Bottleneck CSP improved architecture.

is YOLOv5’s central model. The proposed methodology
utilizes improved yolov5 although YOLOv5 model is fast
and efficient, it may have trouble predicting and classifying
lesions in particularly complicated pictures where the dis-
tinction between tumors and breast parenchyma is blurry.
The YOLOv5 main model is quite sophisticated, with many
convolutional layers spread throughout its four Bottleneck
CSP modules. While this may result in more accurate feature
extraction, the larger model and associated implementation
challenges are a result of the greater number of parameters.
Thus, the model is enhanced by tweaking the skeleton in
order to cut down on parameter and overall model size. The
initial backbone layer requires fewer calculations, speeding
up training. Slices the three-image into four 320 × 320 ×

3 parts. The second backbone layer’s 32-convolution kernel
layer merges the four segments’ output feature maps into a
12 × 320 × 320 map. With Batch Normalization, the data is
processed further (BN). Level 3 of the structural backbone
adds a 3 × 3 convolution layer to Bottleneck CSP’s 1 × 1
(Conv2d layer, Batch Normalization, and ReLu). When com-
bined, Bottleneck yields the following:

A1 = B1 × A0 (2)

A2 = B2 × [A0,A1] (3)

AK = Bk × [A0,A1, . . . ,Ak − A1]. (4)

where [A0, A1. . . .] represents the concatenation in
Eq(2, 3), Bk represents the layer weights, and Ak represents
the k-th layer’s output in Eq (4). As a result, the dimensions

of the output feature map end up matching those of the
input. The YOLOv5 model incorporates PANet in its neck
architecture to generate feature pyramids, which effectively
enhances the model’s performance by lowering runtime and
streamlining the overall process [27]. It helps the model func-
tion well when faced with unexpected data. The YOLOv5
model’s brain was built with final detection in mind. It’s
made up of three distinct layers. Each of the three levels
has a size of 80 × 80, 40 × 40, and 20 × 20. Different
sized images are located employing anchor boxes that contain
class probabilities, objectless scores, and bounding boxes.
G. Improvement & enhancements to YOLOv5 The YOLOv5
model is fast and accurate, but it has trouble distinguish-
ing cancers from breast parenchyma in images. The basic
model has many convolutional layers and four Bottleneck
CSP modules, making it difficult. Increasing the model’s
parameters makes hardware implementation harder, but it can
extract features with high accuracy. This research improves
the foundational model. The Bottleneck CSP module’s input
feature map was coupled to the model’s output feature map to
reduce input parameters and model size. Convolutional layer
removed from branch. Figure 9 contrasts YOLOv5 backbone
module variants. Modifying Bottleneck CSP modules may
reduce parameters but reduce deep feature extraction effi-
ciency. Equation 5 can calculate damage.

C = P(tumor) × lossp (5)

IOU = area(BP ∩ Bgt)/area(BP ∪ Bgt) (6)

FIGURE 9. Benign & malignant input and output image.

The loss-calculating function is depicted by Equation (5). The
probability that the grid cell in question contains a tumor is
denoted by P (Tumor), and the confidence level is denoted
by C as depicted in Eq(5). If the target’s center is inside a
grid cell during training, the value is 1. The default value
is zero. The loss value is the difference between the true
bounding box of a grid cell and the predicted bounding box.
Commonly employed to quantify the degree to which two
boxes coincide, IoU stands for ‘‘the junction and unity of
two boxes.’’ Equation (6) demonstrates the calculation pro-
cedure. The probability of a tumor’s presence, denoted by the
symbol P(tumour), is given by C = (tumour) / (confidence).
To determine lossp, the difference between the predicted
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bounding box and the ground truth box is calculated and
assigned a value based on whether or not the tumor’s center
is located within the cell grid (P = 1). The degree of overlap
between two detection frames is measured by the IOU, which
is given by the equation (6). the projected frame Bp and the
actual frame Bgt.H. Mask RCNNBased on Faster-RCNN 16,
Mask-RCNN detects object shape using pixel-by-pixel
approximation and segmentation mask predictions for each
Area of Interest (RoI).

The convolutional neural network (CNN) is capable of
generating object bounding boxes, class labels, and confi-
dence ratings by using regions. The term ‘‘mask’’ refers
to a covering that is worn over the face, typically made
The RCNN model employed in this context follows a two-
stage approach. Submission of Initial Proposal At the outset,
a backbone network such as Inception or ResNet, along with
a region proposal network (RPN), is utilised. The backbone
algorithm establishes the delineation of the region of interest
(ROI), while the region proposal network (RPN) proposes a
potential site of a tumour inside the delineated ROI. Anchor
boxes are utilised to accurately locate objects. The algorithm
produces suggested geographical areas on a single occasion
for each image. The proposed regions inside the feature map
encompass the item.

Stage 2: Anticipatory Analysis The bounding boxes and
item classes of the proposed regions are predicted through the
utilisation of a two-pass RCNN detection method. To ensure
the preservation of a uniform region size, researchers may opt
to utilise the RoI Align technique or RoI pooling approach.
Tumour Size Prediction As previously said, early detection
of illnesses serves as a preventive measure. Initially, the
tumour is of such diminutive proportions that it is impercep-
tible. The entity undergoes expansion, infiltrates the dermal
parenchyma, and assumes a spiky morphology. According to
the findings presented in Table 1, tumoursmeasuring between
20mm and less than 50mm in diameter exhibit a higher
likelihood of successful treatment compared to tumours mea-
suring 50mm or more. This observation implies the presence
of metastatic malignancy in the latter group. The model is
trained using aMask RCNN. Figure 8 illustrates the reception
of the image by the core processing network of the Convolu-
tional Neural Network (CNN). While ROI Align generates

TABLE 1. YOLO-V5+Mask RCNN on augmented datasets.

ROI features, the Region Proposal Network (RPN) identifies
and delineates them. The RCNN and Mask heads estimate
Mask Intersection over Union using the expected mask and
ROI features. MaskIoU Head has four convolutional and
three completely connected layers. Mask Intersection over
Union class outputs come from the last fully connected
layer. Detecting the condition early prevents it. At first,
a tumor is invisible. The item expands, penetrates the skin’s
parenchyma, and is spiky. Metastatic malignancy is indicated
by lesions beyond 50 mm, although those 20–50 mm can be
treated. Breast cancer staging, created in 2–5, ranks tumors
by aggressiveness [25]. The model was trained using mask
RCNN. The Mask RCNN algorithm segments mammogra-
phy tumors and identifies those that need additional scrutiny.
The two-category dataset uses semantic segmentation.

Both YOLOv5 and Mask RCNN used methodical
approaches during their training processes. Contrast Limited
Adaptive Histogram Equalization (CLAHE) was used in the
preprocessing step of YOLOv5 to improve mammography
and remove artifacts. To improve the dataset, data augmenta-
tion techniques were used. To test the model’s performance,
it was trained on a variety of resolutions (440×448, 640×648,
and 832 × 832). In order to make YOLOv5 more efficient,
especially in differentiating cancers from breast parenchyma,
we reduced some of its parameters. Metrics for evalua-
tion included things like recall, average precision percent,
precision, true positives, and false positives.

Mask RCNN used semantic segmentation to define and
identify tumor features. To ensure a fair comparison, the
dataset and preprocessing processes were in line with
YOLOv5. Considering the importance of early detection,
Mask RCNN was trained for precise tumor identification
and its capacity for tumor size prediction was studied. Mask
Intersection over Union (MaskIoU) was one of the metrics
used to evaluate Mask RCNN. These approaches sought to
enhance breast tumor identification and categorization by
focusing on aspects including model efficacy, precision, and
the capacity to manage complex mammography images.

Subsequently, edge contours are extracted from the entirety
of the mass in order to build the most compact bounding box
for each individual mass. Finally, the bounding box provides
an estimation of the volume of the tumour. This therapeutic
intervention demonstrates efficacy in addressing even the
most atypical neoplasms. The Python programming language
is capable of making size predictions.

IV. EXPERIMENTATION
In the dataset, 60% of the total 2120 mammograms are
allocated for model training, while 30% are reserved for
validation purposes, and the remaining 10% are designated
for testing. The web-based markup tool, Makesense.ai, was
utilised to assign labels to photos, categorising them as either
benign or malignant, and also providing a boundary in the
form of a rectangle. The bounding box of the lesion is labelled
by mammographers. The augmentation technique was used
solely to the training data. The primary objective of this
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FIGURE 10. Identified and categorized breast tumours.

technique is tomodify the images in the training set during the
training process, so enabling the model to acquire knowledge
of a wide range of conceivable scenarios. Therefore, the test
dataset was not subjected to augmentation. Themodel’s train-
ing on the augmented dataset provided confirmation of this
finding. The original data set was augmented and divided into
two separate test sets. Another strategy that was employed
involved the division and enhancement of the training data.
The second iteration exhibits much higher mean Average
Precision (mAP) values. The present investigation utilised the
second approach.

Figures 9 present visuals that depict both input and output
for benign and Malignant Image. The pixel values of the
mammography, ranging from 0 to 214 with a contrast of
14 bits, can be converted into a total of 16,384 values when
scaled to a range of 0 to 255. The lesion coordinates and
ground truth annotations of the XML file are normalised
within the range of [1, 0], with respect to the height and
width of the image. The parameters are preserved for the pur-
pose of training subsequent photographs. Simulations utilise
scaled mammograms. The models were trained at three dif-
ferent resolutions: 440 × 448, 640 × 648, and 32 × 832.
Conducting training on the baseline model followed by the
upgraded version using same data can be employed to assess
the effectiveness of the modified version. This analysis aims
to compare the outcomes of both models. This study involves
the training of the YOLOv5 model utilising a series of
experimental scenarios.

V. RESULTS
The MCC metric is often regarded as the most effective
measure for evaluating binary classification ability. The max-
imum value of the confusion matrix is attained when all
four parameters are accurately predicted. The average accu-
racy of the model holds significance. This metric assesses
the effectiveness of system training. Based on the available
data, it can be observed that the revised model resulted in a
notable increase of 0.092 in the Matthews Correlation Coef-
ficient (MCC) value. The validation of the model’s enhanced
performance across all four parameters, namely True Positive

FIGURE 11. Breast tumor size prediction.

FIGURE 12. F1 score for dataset.

Rate (TPR), True Negative Rate (TNR), False Positive Rate
(FPR), and False Negative Rate (FNR), is evident. When
assessing the efficacy of the model, various metrics are used.
The performance metric parameters are given below from
Eq (7) to Eq(15), as shown at the bottom of the next page,
where Eq(7) shows sensitivity, Eq(8) shows precision, Eq(9)
shows Accuracy, Eq(10) presents specificity, Eq(11) shows
mAp, Eq(12) shows False negative rate, Eq(13) shows False
positive rate, Eq(14) presents Mathew Correlation coeffi-
cient, and Finally Eq(15) presents F-measure.

According to the findings presented in Figure 10, it can be
observed that the model, which underwent suitable training,
had the capability to detect and classify breast masses. The
ease of the model in recognizing and classifying the breast
mass is depicted in Figure 10. The estimations regarding the
size of the tumour were accurate as well. Figure 11 displays
three instances ofmalignancy. Figure 12 depicts amalignancy
of 20mm, accompanied by two more stage 3 tumours mea-
suring 40mm and 39mm, respectively. The F1 score can be
defined as the harmonic mean of the Precision and Recall
metrics. The method takes into consideration both false
positives and false negatives. The F score exhibits greater
precision compared to accuracy, particularly in scenarios
where there is an unequal distribution of classes. However,
comprehending the F score can be more challenging. The
highest level of accuracy is achievedwhen the number of false
positives and false negatives are equal. According to
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FIGURE 13. Training and validation processes loss.

Figure 12, the range of ideal F1 scores lies between
0.6 and 0.9.

Model performance is depicted in Figure 13. The observed
IOU loss during both the training and validation stages indi-
cated that the model achieved its optimal performance at
epoch 200. Overfitting is observed beyond this threshold.
The present study employed a Python 3.6 implementation
of the cutting-edge algorithms YOLOv5 and Mask RCNN
to perform the generalization of the work, specifically for
the purpose of identifying and categorizing mammography
masses. Tumours are classified based on their size. The data
for training, validation, and testing purposes was distributed
in a random manner. Only the training set was subjected
to augmentation. The testing data was not observed during

the training phase. The experiment utilised a learning rate of
0.0010 and a decay rate of 0.999 each iteration. A LR model
with limited complexity is trained. The ROC curve visually
represents the relationship between the true positive rate, also
known as sensitivity, and the false positive rate, which is the
complement of specificity, across different thresholds for a
specific parameter.

Once a decision threshold is determined, each point on
the Receiver Operating Characteristic (ROC) curve indicates
a mix of sensitivity and specificity, as seen in Figure 14.
The experimental results presented in Figure 15 demonstrate
that the utilisation of modified YOLOv5 in combination with
Mask RCNN leads to a notable increase in the MCC value,
rising from 83% to 92%. The observed decrease in the false

Sensitivity = TP/
TP+ FN (7)

precision = TP/
TP+ FP (8)

Accuracy = TN + TP/
FP+ TN + TP+ FN (9)

Specificity = TN/
FP+ TN (10)

mAp =
1
N

∑N

i=1
APi (11)

FNR = 1−Sensitivity = FN/
TP+ FN (12)

FPR = 1 − Specificity = FN/
TP+ FN (13)

MCC = (TP) (TN ) − (FP)(FN )
/

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN ) (14)

F −Measure = 2(sensitivity)(Precision)/
Sensitivity+ Precision (15)
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FIGURE 14. Receiver operating characteristics curve analysis.

FIGURE 15. Result comparison of YOLOV5 with improved YOLOV5.

positive rate (FPR) value is likewise statistically significant.
Both the original and revised versions exhibit a False Positive
Rate of 0.06 and a False Negative Rate of 0.03, respectively.
There has been a significant improvement in precision, with
the accuracy rate rising from 91.50% to 98%. Figure 16
illustrates the contrast between the suggested methodology
and the current literature.

Similarly, the result utilized for BSN dataset are given
below.

The neural network underwent training using the stochastic
gradient descent (SGD) optimisation algorithm. The hyperpa-
rameters employed in this investigation were as follows: The
training process consisted of 20,000 iterations, with a maxi-
mum number of epochs set to 200. The learning rate used was
0.01, and a batch size of 8 images was employed. The sys-
tem under consideration is equipped with an Nvidia 1080-ti
graphics processing unit (GPU), 16 gigabytes of random
access memory (RAM), and an Intel i7 central processing
unit (CPU). The enhancement in our model’s performance
during the training process may be observed in Figures 17
and 18. Plots depicting the precision and lossmetrics through-
out training epochs are available for both the training and
validation datasets. The automated identification of cellular
nuclei is an essential undertaking for deep learning-based
methodologies. Figure 19 illustrates the outcomes of lesion

FIGURE 16. Result comparison with existing literature.

FIGURE 17. The training-period loss plot per epochs.

FIGURE 18. Accuracy as a function of time during training.

detection obtained from a specific dataset. Subfigure (a) dis-
plays the original images extracted from the test set, whereas
subfigure (b) exhibits the detection findings achieved using
the YOLOv5 algorithm.
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FIGURE 19. Detection result and images from the dataset.

Following the completion of the training process, the net-
work was chosen based on its precision with respect to the
validation set. Subsequently, the detection performance of the
selected network was assessed using the test set. The object
detection model achieved a precision of 0.86 and a recall of
0.77. The findings are presented in ‘‘Table 2’’.

TABLE 2. Metrics results.

VI. CONCLUSION AND FUTURE WORKS
The objective of this study was to develop a deep learning
model that can accurately detect and classify breast masses
at an early stage, as well as assess the aggressiveness of
malignant tumours. The introductory section provides an
overview of breast anatomy, the historical development of
Computer-Aided Diagnosis (CAD) software, and the many
forms of breast cancer. This section provides an overview
of the techniques employed by radiologists. The historical
development of Computer-Aided Diagnosis (CAD) software,
as well as its application in the healthcare sector, are also
addressed. This section aims to provide a comprehensive
assessment of recent research and machine learning method-
ologies. In order to detect the missing data, a comparison
and assessment of the available data is conducted. The paper
titled ‘‘Datasets and Data Processing’’ provides an overview
of the INbreast dataset and outlines the steps taken to prepare
it for training a model. Preprocessing filters are employed to
eliminate muscular artefacts and noise. The inclusion of addi-
tional data resulted in an increase in the size of the dataset.
Two steps are proposed. The initial step entails modifying the
detection algorithm. This section provides a comprehensive
overview of the internal workings of our proposed YOLOv5
algorithm. The scope of this study encompasses the examina-
tion of brain, neck, and spine functionality. The computations
and footprint of the model are simplified. The concatenation
layer receives data that has been bypassed from an addi-
tional convolution layer. The architectural components of the

model are depicted. The efficacy of the model exhibited a
decline in tandem with the reduction in its footprint and
the overall number of calculations performed. The Mask
RCNN method demonstrates the higher performance of the
model. The subsequent analysis delves into the intricacies of
Mask RCNN and semantic segmentation. The Mask RCNN
algorithm is utilised to calculate the mass of tumours. The
stage of cancer is determined by the size of the tumour.
Therefore, the YOLOv5+Mask RCNNmodel utilises anchor
boxes derived from mammographic images to accurately
forecast the type of mass and accurately pinpoint the tumour.
Breast lumps are assessed in terms of their dimensions and
potential for cancer. The assessment of tumour aggressive-
ness is facilitated through the utilisation of image analysis
techniques. The process of max pooling involves passing the
output of one algorithm as input to another algorithm. The
experimental section provides a comprehensive description
of the preparation process for the INbreast Dataset. The pho-
tographs were annotated by an expert to indicate the presence
of tumours. The process of categorising data into bonding
boxes, distinguishing between healthy and malignant data.
The XML file contains data on tumours that have been scored
using the BI-RAD scoring system. In order to comprehend
augmentation approaches, researchers initially enhanced the
datasets used for training and testing purposes. Subsequently,
solely the test dataset was expanded. A comparison was
made between both strategies. In order to ensure repro-
ducibility, we provide a comprehensive set of model training
settings, assessment metrics, graphs, outcomes, and exper-
imental figures. The accuracy and Matthews Correlation
Coefficient (MCC) value demonstrated improvement. The
combined utilisation of the hybrid innovative methodology,
specifically the integration of YOLOv5 and Mask RCNN,
demonstrated superior performance compared to individual
detection approaches. The utilisation of this technique has the
potential to enhance the efficiency of radiologists’ decision-
making processes, as it involves the validation of findings by
an expert in the relevant field. The incorporation of supple-
mentarymodels alongside YOLOv5 to enhance theMatthews
Correlation Coefficient (MCC) has the potential to yield
intriguing outcomes. These models may also exhibit high
performance on 3D mammography.

DATA AVAILABILITY
The data would be available upon special request to the
corresponding author via email.
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