
Received 27 October 2023, accepted 14 January 2024, date of publication 25 January 2024, date of current version 5 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3358724

Teaching Networks to Solve
Optimization Problems
XINRAN LIU 1, YUZHE LU1, ALI ABBASI 1, MEIYI LI 2, (Graduate Student Member, IEEE),
JAVAD MOHAMMADI 2, (Senior Member, IEEE),
AND SOHEIL KOLOURI 1, (Senior Member, IEEE)
1Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
2Department of Civil Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA

Corresponding author: Soheil Kolouri (soheil.kolouri@vanderbilt.edu)

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract HR00112190135.

ABSTRACT Leveraging machine learning to facilitate the optimization process is an emerging field that holds
the promise to bypass the fundamental computational bottleneck caused by classic iterative solvers in critical
applications requiring near-real-time optimization. The majority of existing approaches focus on learning
data-driven optimizers that lead to fewer iterations in solving an optimization. In this paper, we take a different
approach and propose to replace the iterative solvers altogether with a trainable parametric set function, that
outputs the optimal arguments/parameters of an optimization problem in a single feed forward. We denote
our method as Learning to Optimize the Optimization Process (LOOP). We show the feasibility of learning
such parametric (set) functions to solve various classic optimization problems including linear/nonlinear
regression, principal component analysis, transport-based coreset, and quadratic programming in supply
management applications. In addition, we propose two alternative approaches for learning such parametric
functions, with and without a solver in the LOOP . Finally, through various numerical experiments, we show
that the trained solvers could be orders of magnitude faster than the classic iterative solvers while providing
near optimal solutions.

INDEX TERMS Machine learning for optimization, deep set learning.

I. INTRODUCTION
Optimization problems are ubiquitous in computational
sciences and engineering. Classic solutions to optimization
problems involve iterative algorithms often relying on prede-
termined first and second order methods like (sub)gradient
ascent/descent, conjugate gradients, simplex basis update,
among others. These methods often come with desirable
theoretical convergence guarantees, but their iterative nature
could be limiting in applications requiring near-real time
inference. Moreover, these algorithms’ performance remains
the same regardless of the number of times a similar
optimization problem is visited. Recently, there has been an
emerging interest in leveraging machine learning to enhance

The associate editor coordinating the review of this manuscript and

approving it for publication was Adnan Kavak .

the efficiency of optimization processes and address some of
these shortcomings. The learning based solutions are often
referred to as Learning to Optimize (L2O) methods in the
literature.
While L2O methods do not come with theoretical

guarantees, they hold the promise of: 1) reducing the number
of iterations needed to arrive at a solution, and 2) improving
over time as more optimization problems are visited. L2O
allows for transferring recent advances in machine learning,
e.g., self-supervised learning, meta-learning, and continual
learning, to learn data-driven optimization algorithms that
could improve over time. Most existing L2O methods aim to
learn a function that receives the current loss or its gradient,
and based on the memory of previous loss values (or gradients)
provide an update for the optimization parameters. Hence,
these methods do not eliminate the iterative nature of the

17102

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-0772-3928
https://orcid.org/0009-0008-4116-0920
https://orcid.org/0000-0002-0178-7883
https://orcid.org/0000-0003-0425-5302
https://orcid.org/0000-0001-8495-5362
https://orcid.org/0000-0001-5694-8042

X. Liu et al.: Teaching Networks to Solve Optimization Problems

solution but aim at improving the iterative solution to: 1)
reduce the number of total iterations, and 2) leading to better
solutions for non-convex problems.
In this paper, we consider an inherently different use-case

of machine learning in solving optimization problems.
We propose to replace the classic iterative solutions of an
optimization problemwith a trainable parametric (set) function
that directly maps the input of the optimization problem to
the optimal parameters in a single feed forward. This process,
which we denote as Learning to Optimize the Optimization
Process (LOOP), is inspired by biological systems that
are capable of solving complex optimization problems upon
encountering the problem multiple times. By omitting the
classic iterative solutions,LOOP overcomes one of the major
optimization bottlenecks enabling near-real-time optimization
in a wide range of critical applications.
LOOP is particularly suitable when one needs to

perform a certain type of optimization (e.g., linear/quadratic
programming) over a specific distribution of input data (e.g.,
sensors data collection) repeatedly. These problems abound in
practice, with examples being cyber-physical infrastructures,
autonomous vehicle networks, sensor networks monitoring
a physical field, financial markets, and supply chains. For
example, the resiliency and cost-effectiveness of our cyber-
physical energy system relies on finding optimal energy
dispatch decisions in near-real-time. This is a prime example
of an optimization required to be repeatedly solved over the
distribution of electricity demands on the power grid. Another
example is traffic flowmanagement in transportation networks,
where traffic control systems need to determine traffic lights’
status based on the traffic measurements continuously.
At a first glance, the use of neural networks for solving

frequently solved optimization problems may seem inefficient.
However, such paradigm shift would allow us to leverage
recent advances in deep learning, in particular, deep learning
on edge-devices, continual learning, and transfer learning to
improve the performance of an optimizer over time, even for
a fixed given computational budget. Below we enumerate our
specific contributions.

1) Providing a generic framework, LOOP , for replacing
the classic iterative optimization algorithms with a
trainable parametric (set) function that outputs the
optimal arguments/parameters in a single feed forward.

2) Proposing two generic approaches for training paramet-
ric (set) functions to solve a certain type of optimization
problem over a distribution of input data.

3) Demonstrating the success of our LOOP framework
in solving various types of optimization problems
including linear/nonlinear regression, principal com-
ponent analysis, the optimal transport-based coreset,
and the quadratic programming in supply management
application.

II. RELATED WORK
One of the classic applications of machine learning in
optimization has been in predicting proper hyper-parameters

to solve an optimization problem. Such hyper-parameters
could include learning rate, momentum decay, and regular-
ization coefficients, etc. The existing literature on learning
to predict hyper-parameters include approaches based on
sequential model-based Bayesian optimization (SMBO) [1],
[2], [3], and gradient-based methods [4], [5], [6]. At their
core, these methods instantiate different variations of the
same optimization algorithm, e.g., stochastic gradient descent
(SGD), by selecting different hyper-parameters.

More recently, a large body of work has focused on
leveraging machine learning to improve the optimization
process by replacing the engineered optimizers with learnable
ones. These methods, referred to as Learning to Optimize
(L2O) approaches, are based on learning a parametric function,
often in the form of a recurrent neural network, that receives
the current loss (or its gradient) as input and outputs the
parameter updates [7], [8], [9], [10], [11]. Such methods
are effective in optimizing a wide range of optimization
problems by reducing the number of iterations and often
achieve better solutions for non-convex optimization problems.
Chen et al. [12] provide a comprehensive review of these
approaches and their numerous applications. Unlike the
hyper-parameter search methods that instantiate different
variations of the same optimization algorithm (e.g., SGD),
L2O approaches effectively search over an expansive space
of optimization algorithms to find an optimal algorithm.
The optimal algorithm (i.e., the learned optimizer) fits input
data distribution for a specific optimization problem (e.g.,
linear/quadratic programming); hence, it can lead to better
performance than generic algorithms.
In this paper, our focus is entirely different from

both hyper-parameter optimization approaches, and L2O
approaches discussed above. Instead of searching in the
space of possible optimizers, our goal is to replace the
optimization algorithm with a parametric (set) function
that directly maps the optimization’s input data to the
optimal arguments/parameters. The motivation behind such
transition is to: 1) discard iterations altogether, 2) have an
optimizer that improves over time and encounters more
optimization problems of a specific type. More importantly,
the proposed framework allows one to leverage some of the
core machine learning concepts, including continual/lifelong
learning, transfer learning, domain adaptation, few/one/zero-
shot learning, model compression (through sparse training
and/or training), and many others into the improving the
optimization process.

Several recent papers in the literature leverage deep neural
networks to approximate the output of an optimization
algorithm, which is in essence similar to our proposed
framework, LOOP . In VoxelMorph, for instance, Balakr-
ishnan et al. [13] trained a convolutional neural network to
register medical images; image registration is a non-convex
optimization problem often solved through time-consuming
iterative and multi-scale solvers. In an entirely different
application, Pan et al. [14] trained a neural network to
predict the set of independent operating variables (e.g., energy

VOLUME 12, 2024 17103

X. Liu et al.: Teaching Networks to Solve Optimization Problems

dispatch decisions) for optimal power flow (OPF) optimization
problems, denoted as DeepOPF. They showed that DeepOPF
requires a fraction of the time used by conventional solvers
while resulting in competitive performance. More recently,
Knyazev et al. [15] trained a neural network to directly predict
the parameters of an input network (with unseen architecture)
to solve the CIFAR-10 and ImageNet datasets. LOOP is
the common theme behind these seemingly unrelated works.
In this paper, we establish LOOP as a generic alternative
framework to the classic optimization algorithms, as well
as, the L2O approaches, and show that many optimization
problems can be directly solved through training neural
networks.

III. METHOD
We start by considering unconstrained optimization problems
of the following type:

u∗
= argmin

u
f (X , u) (1)

whereX = {xn ∈ Rd
}
N
n=1 is the set of inputs to the distribution,

u ∈ Rl is the optimization parameters, and f (X , u) is the
objective function with respect to parameters u and inputs X .
To replace this optimization with a set function approximator,
we propose two approaches as in Figure 1.

Solver in the LOOP– In our first formulation, during the
training, we use the classic solvers to obtain u∗ and use it as
the ground truth. Then we pose the problem as a supervised
learning problem. Our training objective is shown below:

argmin
θ

EX∼PX [d(φθ (X), u∗)]

s.t. u∗
= argmin

u
f (X , u) (2)

where d(·, ·) : Rl
× Rl

→ R+ is a discrepancy/distance
defined in Rl , and φθ denotes our set neural network, and PX
is a set distribution.

Without Solver– The use of a solver in our first formulation
could be limiting, as such solvers are often computationally
expensive turning the training excruciatingly slow. More
importantly, in non-convex problems the calculated u∗ for
input X is not unique (e.g., due to different initialization),
which leads to solving a regression problem with changing
targets. To avoid these problems, in our second formulation,
we directly optimize the objective function and with a slight
abuse of the term call it a ‘‘self-supervised’’ formulation:

argmin
θ

EX∼PX [f (X , φθ (X))] (3)

where the expected objective value over the distribution of
the input sets is minimized. Note, for constrained problems
(depending on the use case) we leverage different optimization
techniques. For instance, we can enforce simple constraints
(e.g., u ≥ 0) into our model (i.e., the set function) using
Rectified Linear Unit (ReLU) activations in the output layer of
our network. Also, we can use the Lagrange dual function and
absorb the constraints into our objective function as penalty

terms. Next we describe the different optimization problems
we consider in this paper.

A. PROBLEM 1: LINEAR/NONLINEAR REGRESSION
We start by the simple and yet routine problem of regression.
Let Xi = {(x in ∈ Rd , yin ∈ R)}Nin=1 where the goal is to learn
a parametric function ρu : Rd

→ R. Here, index i refers to
the i’th regression problem of interest. In linear regression,
ρu(x) = uT x (we absorbed the bias into x for simplicity of
notation). For nonlinear regression ρu(x) = uTψ(x), ψ :

Rd
→ Rl is a nonlinear mapping to a feature space (i.e., the

kernel space). The optimization problem is then as follows:

u∗
= argmin

u

1
2

N∑
n=1

∥ρu(xn) − yn∥22 + λ�(u) (4)

where �(u) is the regularization term (e.g., ℓ2 or ℓ1 norm),
and λ is the regularization coefficient. Our goal is then to learn
a network that can solve the regression problem for unseen
input data.

B. PROBLEM 2: PRINCIPAL COMPONENT ANALYSIS
Next, we consider the principle components analysis (PCA)
problem, a common technique to project high-dimensional
samples into a lower dimensional space while maximizing the
variation of the data. Let Xi = {x in ∈ Rd

}
Ni
n=1, then PCA seeks

an orthornormal set of k vectors, {wl}kl=1 such that:

wl = argmax
w

wT Siw s.t. wTj wl =

{
1 j = l
0 j < l

where Si =
1
Ni

∑Ni
n=1(x

i
n − x̄ i)(x in − x̄ i)T is the covariance

matrix of the data, and x̄ i =
1
Ni

∑Ni
n=1 x

i
n is the mean.

Deriving the closed-form-solution for this problem involves
calculation of the eigenvectors of the covariance matrix,
i.e., Siw∗

l = λlw∗
l . Here λl and w

∗
l are the l’th eigenvalue

and eigenvector, respectively. This optimization problem
can be presented as a set-function that receives a set of d-
dimensional points, X i with cardinality |Xi| = Ni, and
returns U∗

= [w∗

1,w
∗

2, . . . ,w
∗
k]. Using this representation,

LOOP approximates the discussed set-function and outputs
the top k principle components for the input set. Hence, we aim
to find a φθ , such that φθ (X) ≈ U∗ for X ∼ PX .

C. PROBLEM 3: OPTIMAL TRANSPORT-BASED CORESET
For our third problem, we consider the optimal transport-based
coreset problem. The notion of coreset originates from
computational geometry [16] and has been widely used in
machine learning tasks. Constructing a coreset from a large
dataset is an optimization problem of finding a smaller set
to best approximate the original dataset on a certain measure.
Claici et al. [17] leveraged optimal transport theory and
introduced Wasserstein measure to calculate the coreset. Their
work aims to minimize the Wasserstein distance of the coreset
from a given input data distribution. In this paper we consider

17104 VOLUME 12, 2024

X. Liu et al.: Teaching Networks to Solve Optimization Problems

FIGURE 1. Our two proposed approaches for training LOOP : 1) with solver in the loop (left), and 2) without solver in the loop and by directly minimizing
the objective function (right).

this transport-based coreset problem with respect to a fixed
size output.
Let X = {xn ∈ Rd

}
N
n=1 be an input set. We assume that

elements of each set are i.i.d. samples from an underlying
distribution. Our sets are represented as empirical distributions,
i.e., p(x) =

1
N

∑N
n=1 δ(x − xn). Given a size M (M ≪ N),

we seek a set U∗
= {µm ∈ Rd

}
M
m=1 with the empirical

distribution qU (x) =
1
M

∑M
m=1 δ(x − µm), such that

U∗
= argmin

U
W2(p, qU) (5)

where W2(·, ·) denotes the 2-Wasserstein distance. Existing
approaches to this optimization problem rely on iterative linear
programming to compute optimal transports in each iteration.
We replace this costly process with a parametric set function
φθ such that φθ (X) ≈ U∗ for X ∼ PX (Figure 2). The
optimal transport-based coreset problem is equivalent to the
free-support Wasserstein barycenter problem [18] when there
is only one input distribution.

D. PROBLEM 4: SUPPLY MANAGEMENT IN
CYBER-PHYSICAL SYSTEMS
Lastly, we utilize LOOP to solve the fundamental problem of
supply management in Cyber-Physical Systems (CPS). The
electric power grid is an example of a CPS that is increasingly
facing supply-demand issues [19], [20], [21]. Power networks
are large-scale systems spanning multiple cities, states,
countries, and even continents and are characterized as
a complex interconnect of multiple entities with diverse
functionalities. The grid of the future will differ from the
current system by the increased integration of decentralized
generation, distributed storage, and communications and
sensing technologies. These advancements, combined with
climate change concerns, resiliency needs, and electrification
trends, are resulting in a more distributed and interconnected
grid, requiring decisions to be made at scale and in
a limited time window. At its basic form, the energy
supply-demand problem seeks to find the most cost-effective

power production for meeting the end-users’ needs and can
be formulated as,

argmin
u

N∑
n=1

Cn(un)

s.t.
N∑
n=1

un =

M∑
m=1

xm, un ≤ un ≤ un (6)

where un is the produced electric power from source n and
Cn is its corresponding cost, which is a quadratic function.
Given that un represents the power output, it is bounded by
physical limitation of the resource n, i.e., un and un. In this
setup, xm refers to the hourly electric demand in nodem (where
the term ‘node’ identifies an end-user/consumer). Note, the
values of xm are positive. The equality constraint ensures the
supply-demand balance. In practice, this problem is solved
on an hourly basis to serve the predicted electric demand for
the next hour. We aim to approximate this process with a
parametric set function, such that φθ (X) ≈ U∗ for X ∼ PX .

IV. EXPERIMENTS
In this section, we demonstrate the application of LOOP on
problems enumerated in Section III and compare it to classic
solvers. Throughout this section, GT refers to the Ground
Truth and Solver refers to the results obtained from using
commercial solvers to solve optimization problems of interest.
For each problem and for each model architecture, we repeat
the training of our LOOP models five times, and we test the
performance on a set of 100 problems per model. We then
report themean and standard deviations of all experiments over
the five models and the 100 test sets. We start by laying out the
specifics of our models and then discuss the implementation
details for each problem.

A. MODELS
Given that the inputs to our optimization problems are all sets,
we pose these problems as learning permutation invariant deep

VOLUME 12, 2024 17105

X. Liu et al.: Teaching Networks to Solve Optimization Problems

FIGURE 2. For an input set X = {xn ∈ Rd }Nn=1, LOOP returns a coreset U = {µm ∈ Rd }Mm=1 that minimizes the
Wasserstein distance between the empirical distributions p(x) =

1
N

∑N
n=1 δ(x − xn) and qU (x) =

1
M

∑M
m=1 δ(x − µm).

neural networks on set-structured data. To that end, we use
Deep Sets [22] with different pooling mechanisms and the Set
Transformer [23].

Deep Sets are permutation invariant neural architectures
(i.e., the output remains unchanged under any permutation
of input set’s elements), which consist of: 1) a multi-layer
perceptron (MLP) encoder, 2) a global pooling mechanism
(e.g., average pooling), and 3) a MLP decoder that
projects the pooling representation to the output; φ(X) =

ψ(pool({η(x1), · · · , η(xn)})). Here, η is the encoder that
extracts features from each element of X independently,
resulting in a permutation equivariant function on the input set,
and ψ is the decoder that generates final output after a pooling
layer (pool). To achieve a permutation invariance set function,
the pooling mechanisms must be a permutation invariance
operator (e.g., average pooling, or more advanced methods
like Pooling by sliced-wasserstein embedding (PSWE) [24]).
Specifically, we use global average pooling (GAP) and
Sliced-Wasserstein Embedding (SWE) [24], [25] respectively
as the pooling layer.

Set Transformer follows a similar blueprint of permutation
equivariant encoder, permutation invariant pooling, and
permutation equivariant decoder as Deep Sets. However,
while the encoder in the Deep Sets model acts on each set
element independently, Set Transformers use attention to pass
information between elements in the encoder. This allows the
encoder to model relations between elements, which can be
crucial to approximate a parametric (set) function in some
learning tasks.

More precisely, the encoder is a stack of multiple trainable
(Induced) Set Attention Blocks (SAB and ISAB) [23] that
perform self-attention operations on a set and produce output
containing information about pairwise relations between
elements. Note that these blocks are permutation equivariant,
that is, for any permutation π of elements in X = {xi}ni=1,
block(πX) = πblock(X). As a composition of permutation
equivariant blocks, the encoder is also permutation equivariant
and captures higher-order interaction features. The decoder
aggregates features by a learnable pooling layer, Pooling by
Multihead Attention (PMA) [23], and send them through a
SAB to get output. Since PMA is a permutation invariant

operator, and the rest of the operators (SAB or ISAB) are
all permutation equivariant, Set Transformer becomes a
permutation invariant architecture.

B. PROBLEM 1: LINEAR/NONLINEAR REGRESSION
1) DATASET
We follow a generative model y = wTφ(x) + ϵ, where φ(·)
is the feature map, w contains the ground truth parameters
of our regression problem, and ϵ denotes noise. For feature
maps, in the linear case we have φ(x) = [1, x]T and in the
nonlinear case, we select φ(x) = [ρ(x−µ1), . . . , ρ(x−µM)]
with ρ(x) being a radial basis function and {µm}

M
m=1 form

a grid in a predefined interval. To generate each dataset
Xi, we first sample the set cardinality Ni uniformly from a
predefined interval. Then, we sample w, {ϵn}

Ni
n=1, and {xn}

Ni
n=1,

and generate our (x in, y
i
n) pairs (train and test).

For each model architecture and each learning setting
(i.e., with and without solver in the LOOP) we train our
LOOP model 5 times and report the test MSE of our model,
the solver, and the ground truth. Figure 4 shows sample
qualitative results of our nonlinear regression experiments
with ground truth, solver, and LOOP results overlayed on
the observed noisy data. In addition, for the Set Transformer
architecture, we report the test performance of our trained
LOOP model and the solver as a function of the number
of training samples (Figure 3). We see that while for all
architectures LOOP is able to perform comparable with the
solver, for the Set Transformer architecture the gap between
LOOP and the solver is the smallest.

C. PROBLEM 2: PRINCIPAL COMPONENT ANALYSIS
1) DATASET
We used the MNIST [26] dataset to sample train and test
sets. MNIST contains 60,000 train and 10,000 test images
of handwritten digits. The size of a single image is 28 ×

28. During training, we first select pairs of random digits to
sample images from. Then a random number of data ranging
from 500 to 1000 is uniformly sampled from the two digits to
form the input set.
Given an input set Xi, our network aims to predict the

top K = 5 eigenvectors of the input data. In ‘‘solver in

17106 VOLUME 12, 2024

X. Liu et al.: Teaching Networks to Solve Optimization Problems

FIGURE 3. Performance comparison between LOOP and the solver for three different model architectures (left) and for the two proposed learning
settings (with or without the solver in the LOOP) for the linear regression (a) and nonlinear regression (b) problems. The plots on the right shows the
performance of the Set Transformer network and the solver as a function of training samples.

FIGURE 4. Sample qualitative results for our nonlinear regression problem compared with the Ground Truth (GT) and the solver’s result. Note that the input
set cardinality is a random variable and it varies among these plots.

the LOOP’’ approach, the top K = 5 eigenvectors are
calculated by the solver. Then our set transformer [23] is
trained to maximize the cosine similarities between the
ground-truth eigenvectors and the predicted ones. In our
‘‘no solver’’ approach, the set transformer maximizes the
area under the curve of the captured variances along the
predicted eigenvectors. We train 5 different models for this
experiment and evaluated each model on 100 different test
problems. For our metric, we calculate the cosine similarities
between the predicted vectors and the principle components
obtained from the solver. The mean and standard deviation
of the cosine similarities for each eigenvector is depicted in
Figure 5 (left). We also show the performance of the trained

model as a function of different number of training samples
from 128 to 2048 (on the right). Results of ‘‘solver in the
LOOP’’ and ‘‘no solver’’ training are shown for the Set
Transformer model in 5. Our network is able to effectively
predict the top principle components in all experiments, while
having a higher fidelity for the ones with larger eigenvalues.

D. PROBLEM 3: TRANSPORT-BASED CORESET
1) DATASET
We generate datasets by drawing samples from random 2D
Gaussian Mixture Models (GMMs). We start by initializing a
random number of Gaussians with random means but a fixed

VOLUME 12, 2024 17107

X. Liu et al.: Teaching Networks to Solve Optimization Problems

FIGURE 5. LOOP ’s performance in predicting the principle components as measured by the cosine similarity between the solver’s and our model’s
outputs. We also provide the performance of the network as a function of the input data cardinality. On the bottom is the visualization of the first
eigenvector calculated by our LOOP model on four different problems with two random pairs of digits. We can see that the network’s output is
quantitatively and qualitatively aligned with the first principle component.

FIGURE 6. Performance comparison between LOOP and the solver for our three different models (left) under the two proposed learning settings. The
y-axis represents the average Wasserstein distance between the input distribution p and the coreset distribution qU , when the coreset are: 1) random
samples from the uniform distribution, 2) the output of the solver, and 3) the output of our LOOP model. The plots on the right of each column show the
performance of the Set Transformer and the solver as a function of the number of training samples.

covariance matrix. Then, we draw random number of samples
from each of these randomly initialized Gaussians to generate
our input sets X i.

2) RESULTS
Results of the two training approaches ‘‘solver in the LOOP’’
and ‘‘no solver’’ using three different models are shown in 6.
Since the problem is equivalent to the free-supportWasserstein
barycenter problem, we used the solver from the Python
Optimal Transport package [27] as the solver. To compare the
output of our LOOP model with the solver, we useW2(p, qU)
as our metric (the lower the better). Also, to provide a reference
for comparison, we also consider the Wasserstein distance
between the input distribution, p, and a uniform distribution
in the input domain, q̄, which we refer to as Rand (equivalent
to chance). We used the Sliced-Wasserstein distance (SWD)
[28] as the objective function in the ‘‘no solver’’ training,
as SWD is significantly faster to compute than theWasserstein

distance. Finally, we compare the performance of LOOP and
the solver as a function of number of training samples
in Figure 6.

E. PROBLEM 4: SUPPLY MANAGEMENT IN
CYBER-PHYSICAL SYSTEMS
1) DATASET
We use the publicly available IEEE 2000-bus system data
set [29] as the seed infromation to generate hourly energy data
for one week. We use different load profiles for weekdays and
weekends and randomly scale the original data. The scaling
coefficient lies between 0.95 and 1.05. This process results in
24 × 7 data points. We use the data of odd hours for training
and that of even hours for testing. The IEEE 2000-bus system
is a 2,000 nodes graph representing a realistic large scale
electric grid. This network consists of 1,125 demand nodes
and 544 supply nodes.

17108 VOLUME 12, 2024

X. Liu et al.: Teaching Networks to Solve Optimization Problems

FIGURE 7. LOOP ’s performance measured by the distance of its output from the optimal solution and the feasible set We
define the optimality distance as

∑N
n=1

∣∣un − u∗
n
∣∣ /

∑N
n=1 u∗

n, where u∗
n and un refer to the solver’s and LOOP ’s outputs.

The feasibility distance
∑N

n=1

∣∣∣un − uproj
n

∣∣∣ /
∑N

n=1 uproj
n where uproj

n denotes projection of un onto the feasible set.

2) RESULTS
For solver in the LOOP , we use the mean squared error as

the loss function, i.e., L =

∑N
n=1(un−u

∗
n)

2

n . Here {u∗
n}
N
n=1 are

the solver’s output. We use the quadratic programming (QP)
solver of CVXPY library [30] as our solver. In our second
learning setting, i.e., with no solver in the LOOP , we include
the optimization constraints in our objective as penalty terms.
Therefore, the loss function will consist of three terms,

L =

N∑
n=1

Cn(un) + λ1

(
N∑
n=1

un −

M∑
m=1

xm

)2

+ λ2

[
(ReLU (un − un))2 + (ReLU (un − un))2

]
(7)

where λis are the penalty coefficients. We use λ1 = 0.001,
λ2 = 10 in our experiments.
In 7, the first term represents the cost of electricity

production. The second term ensures the equality of supply and
demand, and the third term enforces the supply to be bounded.
We bound the output according to inequality constraints for
testing. To quantify the performance of our LOOP model,
we report two metrics: 1) optimality, which measures how
far we are from the solver’s output, and 2) feasibility, which
measures the distance ofLOOP’s output from the feasible set.
We measure feasibility distance by projecting the network’s
output onto the feasible set and measuring the distance
between the original and project solutions.
Figure 7 shows the results for two LOOP approaches

(solver in the LOOPand no solver) using different models.
The gap between our two learning settings for this problem is
more significant than previous unconstrained ones.

This is because theLOOP model with no solver minimizes
a combination of the objective function and the penalty
terms. Unlike the solver in the LOOP model (which could
leverage optimality information), the LOOP model with
no solver does not establish any relation between feasibility
and optimality. We also present results of different penalty
parameters for the LOOP model with no solver in the
supplemental materials, where the gap between the two
LOOP approaches is reduced by more careful tuning of
penalty terms (λ1 and λ2). Moreover, Table 1 presents the
average computing time of different solvers (ECOS [31],
CVXOPT [32], OSQP [33], Matpower 7.1 [34]), and
LOOP over ten runs. Using GPU, three LOOP approaches
outperform all solvers. On CPU, the LOOP model of Set
Transformer performs on par with the today’s solvers while
other LOOP models are noticeably faster.

F. CONTINUAL LEARNING ON LOOP
A promising capability of LOOP is to continually train the
network to adjust to the change in the input distribution. Note,
LOOP (specifically in the no solver in the LOOP setting) is
ripped for continual learning. In short, the LOOP agent can
evaluate the quality of its prediction (i.e., by measuring the
objective value or by checking the feasibility) and perform
continual learning if the prediction quality is degraded.
We perform a continual learning experiment onLOOP , while
the agent is tasked to solve nonlinear regression problems
where the frequency spectrum of the input data drifts from
Task 1 to Task 2. To overcome catastrophic forgetting,
we use memory replay [35] as one of the core bio-inspired
mechanisms for overcoming catastrophic forgetting [36].
Table 2 demonstrates the application of LOOP in continual

VOLUME 12, 2024 17109

X. Liu et al.: Teaching Networks to Solve Optimization Problems

TABLE 1. Average computing time of using different solvers and LOOP approaches over ten runs.

TABLE 2. Test MSE for both tasks after each training phase using LOOP (left) and LOOP with memory replay (right). The models are trained on task
1 in phase 1 and on task 2 in phase 2.

learning of non-linear regression under domain shift. We see
that memory replay enablesLOOP to learn the new task (Task
2) while achieving positive backward transfer on Task 1. More
details are provided in the supplementary materials. Lastly,
the application of other continual learning mechanisms like
regularization-based approaches [37] and gradient projection
approaches [38], [39], opens up an exciting research direction
for future work.

V. CONCLUSION
This paper presents a novel alternative for existing iterative
methods to solve optimization problems. Specifically, this
paper introduces LOOP (Learning to Optimize Optimization
Process) framework, which approximates the optimization
process with a trainable parametric (set) function. Such a
function maps optimization inputs to the optimal parameters
in a single feed forward. We proposed two approaches
for training LOOP; using a classic solver for providing
ground truth (supervised learning) and without a solver in
the LOOP (self-supervised learning). The performance of
the proposed methods is showcased in the contexts of diverse
optimization problems; (i) linear and non-linear regression,
(ii) principal component analysis, (iii) transport-based coreset,
and (iv) supply management in cyber-physical setups. We used
three separate models in our experiments, namely deep sets
with global average pooling, deep sets with sliced-Wasserstein
Embedding, and Set Transformers. Our results supports that
replacing optimization problemwith a single forward mapping
yields outputs within a reasonable distance from commercial
solvers’ solutions. LOOP holds the promise for the next
generation of optimization

APPENDIX A
OPTIMAL TRANSPORT
We present additional results of applying our proposed
LOOP framework to the optimal transportation problem
with respect to a fixed reference. Let X = {xn ∈ Rd

}
N
n=1

be an input set and let Y = {ym ∈ Rd
}
M
m=1 represent our

fixed reference set. As in transport-based coreset problem,
we assume that the elements of each set are i.i.d. samples

FIGURE 8. Under the transportation plan, 0, the particle at ym splits and
goes to multiple xns (on the left), while the barycentric projection (on the
right) captures the center of mass where ym is transported to.

FIGURE 9. Quantitative (left) and qualitative (right) performance
comparison between LOOP and the solver. The y-axis in the quantitative
results (left) represents the average Wasserstein distance between the
input distribution PX and the approximated Monge coupling U .

from an underlying distribution and represent our sets as
empirical distributions, p(x) =

1
N

∑N
n=1 δ(x − xn) and q(y) =

1
M

∑M
m=1 δ(y− ym). Then the optimal transport problem seeks

the optimal transportation plan, 0 ∈ RN×M , such that,

argmin
0

N∑
n=1

M∑
m=1

d(xn, ym)0n,m

s.t.
N∑
n=1

0n,m =
1
M
,

M∑
m=1

0n,m =
1
N

(8)

where d(·, ·) : Rd
× Rd

→ R+ is the transportation cost. The
optimization in Eq. (8) is a linear programming problem, and,
generally speaking, isO(N 3) to solve. The transportation plan

17110 VOLUME 12, 2024

X. Liu et al.: Teaching Networks to Solve Optimization Problems

FIGURE 10. Performance on Task 1 after training on Task 2 using LOOP (left) and LOOP with memory replay (right).

FIGURE 11. Performance of LOOP on the supply management problem
using different penalty parameters(λ1 = λ2). The y-axis is the relative error
when compared to solutions from the solver (lower the better).

(i.e., the Kantorovich plan), 0n,m, represents how much mass
is split and transported from xn to ym. An approximate Monge
coupling can be attained through barycentric projection of the
optimal transportation plan through:

um = M
N∑
n=1

0n,mxn (9)

Figure 8 demonstrates the concept of the transportation plan
and its barycentric projection. Matrix U = [u1, . . . , uM] ∈

Rd×M is related to the K-Means problem with K = M and
is extensively used in the literature in the context of linear
optimal transport [40] and Wasserstein embeddings [41].
The optimization in Eq. (8) followed by the barycentric

projection in Eq. (9) can be thought as a process that receives
X and for a fixed Y returns matrixU ∈ Rd×M . Then, our goal
is to approximate this process with a parametric set function,
such that φθ (X) ≈ U∗ for X ∼ PX .

We use the same GMM data generator as in Section IV-D
and show the results of the training approach ‘‘solver in the
LOOP’’ using three different models in 9.

APPENDIX B
CONTINUAL LEARNING ON LOOP DETAILS
For datasets, we follow the same generative model y =

ωTφ(x) + ϵ as in the nonlinear case of Section IV-B,
but with different feature map. We select φ(x) =

[cos(b1x), cos(b2x), · · · , cos(bMx)], where the frequencies
{bm}

M
m=1 form a grid in a predefined interval. For Task 1, the

frequency interval is set to be [2π3 , 2π], while in Task 2, it is
increased to [4π5 , 4π]. Specifically, we use the Set Transformer
architecture with solver in the LOOP to fit the data. We train
LOOP for 4 times with and without the memory replay and
report the test MSE of both methods. Figure 10 visualizes the
test results for Task 1 after training phase 2.

APPENDIX C
SUPPLY MANAGEMENT IN CYBER-PHYSICAL SYSTEMS
We present a sensitivity study of different penalty parameters
for the LOOP model with no solver, where λ1 is the
penalty parameter for equality constraint and λ2 is the penalty
parameter for inequality constraint. As we can see from the
plot, when we increase the penalty parameters, the output from
LOOP becomes closer to the feasible set but deviates from
the optimal solution.

REFERENCES
[1] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘‘Sequential model-based

optimization for general algorithm configuration,’’ in Proc. Int. Conf. Learn.
Intell. Optim. Cham, Switzerland: Springer, 2011, pp. 507–523.

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘‘Algorithms for
hyper-parameter optimization,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 24, 2011.

[3] J. Snoek, H. Larochelle, and R. P. Adams, ‘‘Practical Bayesian optimization
of machine learning algorithms,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 25, 2012.

[4] Y. Bengio, ‘‘Gradient-based optimization of hyperparameters,’’ Neural
Comput., vol. 12, no. 8, pp. 1889–1900, Aug. 2000.

VOLUME 12, 2024 17111

X. Liu et al.: Teaching Networks to Solve Optimization Problems

[5] D. Maclaurin, D. Duvenaud, and R. Adams, ‘‘Gradient-based hyperparam-
eter optimization through reversible learning,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2113–2122.

[6] Y. Wei, P. Zhao, and J. Huang, ‘‘Meta-learning hyperparameter performance
prediction with neural processes,’’ in Proc. Int. Conf. Mach. Learn., 2021,
pp. 11058–11067.

[7] K. Gregor and Y. LeCun, ‘‘Learning fast approximations of sparse coding,’’
in Proc. 27th Int. Conf. Mach. Learn. (ICML), Jun. 2010, pp. 399–406.

[8] K. Li and J. Malik, ‘‘Learning to optimize,’’ 2016, arXiv:1606.01885.
[9] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,

B. Shillingford, and N. De Freitas, ‘‘Learning to learn by gradient descent
by gradient descent,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3981–3989.

[10] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo,
M. Denil, N. Freitas, and J. Sohl-Dickstein, ‘‘Learned optimizers that scale
and generalize,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 3751–3760.

[11] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. Freitas, ‘‘Learning to learn without gradient descent
by gradient descent,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 748–756.

[12] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and
W. Yin, ‘‘Learning to optimize: A primer and a benchmark,’’ 2021,
arXiv:2103.12828.

[13] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca,
‘‘VoxelMorph: A learning framework for deformable medical image
registration,’’ IEEE Trans. Med. Imag., vol. 38, no. 8, pp. 1788–1800,
Aug. 2019.

[14] X. Pan, M. Chen, T. Zhao, and S. H. Low, ‘‘DeepOPF: A feasibility-
optimized deep neural network approach for AC optimal power flow
problems,’’ 2020, arXiv:2007.01002.

[15] B. Knyazev, M. Drozdzal, G. W. Taylor, and A. R. Soriano, ‘‘Parameter
prediction for unseen deep architectures,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 34, 2021.

[16] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, ‘‘Geometric
approximation via coresets,’’ Combinat. Comput. Geometry, vol. 52, nos. 1–
30, pp. 1–23, 2005.

[17] S. Claici, A. Genevay, and J. Solomon, ‘‘Wasserstein measure coresets,’’
2018, arXiv:1805.07412.

[18] M. Cuturi and A. Doucet, ‘‘Fast computation of Wasserstein barycenters,’’
in Proc. Int. Conf. Mach. Learn., 2014, pp. 685–693.

[19] M. Mohammadi, J. Thornburg, and J. Mohammadi, ‘‘Towards an energy
future with ubiquitous electric vehicles: Barriers and opportunities,’’
Energies, vol. 16, no. 17, p. 6379, Sep. 2023.

[20] M. Mohammadi and A. Mohammadi, ‘‘Empowering distributed solutions in
renewable energy systems and grid optimization,’’ in Distributed Machine
Learning and Optimization: Distributed Machine Learning and Optimiza-
tion: Theory and Applications. Springer, 2023, pp. 1–17. [Online]. Avail-
able: http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=165754

[21] K. Nelson, P. Moura, and J. Mohammadi, ‘‘EVs and ERCOT: Foundations
for modeling future adoption scenarios and grid implications,’’ in Proc.
11th Workshop Model. Simul. Cyber-Phys. Energy Syst. (MSCPES), 2023,
pp. 1–6.

[22] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov, and
A. J. Smola, ‘‘Deep sets,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 3394–3404.

[23] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y.W. Teh, ‘‘Set transformer:
A framework for attention-based permutation-invariant neural networks,’’
in Proc. Int. Conf. Mach. Learn., 2019, pp. 3744–3753.

[24] N. Naderializadeh, J. F. Comer, R. W. Andrews, H. Hoffmann,
and S. Kolouri, ‘‘Pooling by sliced-Wasserstein embedding,’’ in
Proc. Adv. Neural Inf. Process. Syst., A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., 2021, pp. 1–12. [Online]. Available:
https://openreview.net/forum?id=1z2T01DKEaE

[25] Y. Lu, X. Liu, A. Soltoggio, and S. Kolouri, ‘‘SLOSH: Set locality sensitive
hashing via sliced-Wasserstein embeddings,’’ 2021, arXiv:2112.05872.

[26] Y. LeCun. (1998). The Mnist Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[27] R. Flamary et al., ‘‘POT: Python optimal transport,’’ J. Mach.
Learn. Res., vol. 22, no. 78, pp. 1–8, Mar. 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-451.html

[28] S. Kolouri, K. Nadjahi, U. Simsekli, R. Badeau, and G. K. Rohde,
‘‘Generalized sliced Wasserstein distances,’’ 2019, arXiv:1902.00434.

[29] T. Xu, A. B. Birchfield, K. M. Gegner, K. S. Shetye, and T. J. Overbye,
‘‘Application of large-scale synthetic power system models for energy
economic studies,’’ Proc. 50th Hawaii Int. Conf. Syst. Sci., 2017.

[30] S. Diamond and S. Boyd, ‘‘CVXPY: A Python-embedded modeling
language for convex optimization,’’ J. Mach. Learn. Res., vol. 17, no. 83,
pp. 1–5, 2016.

[31] A. Domahidi, E. Chu, and S. Boyd, ‘‘ECOS: An SOCP solver for embedded
systems,’’ in Proc. Eur. Control Conf. (ECC), Jul. 2013, pp. 3071–3076.

[32] L. Vandenberghe. (2010). The CVXOPT Linear and Quadratic
Cone Program Solvers. [Online]. Available: http://cvxopt.org/
documentation/coneprog.pdf

[33] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, ‘‘OSQP: An
operator splitting solver for quadratic programs,’’Math. Program. Comput.,
vol. 12, no. 4, pp. 637–672, Dec. 2020.

[34] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, ‘‘MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,’’ IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12–19, Feb. 2011.

[35] G.M. van de Ven, H. T. Siegelmann, and A. S. Tolias, ‘‘Brain-inspired replay
for continual learning with artificial neural networks,’’ Nature Commun.,
vol. 11, no. 1, pp. 1–14, Aug. 2020.

[36] D. Kudithipudi, M. Aguilar-Simon, J. Babb, M. Bazhenov, D. Blackiston,
J. Bongard, A. P. Brna, S. Chakravarthi Raja, N. Cheney, and J. Clune,
‘‘Biological underpinnings for lifelong learning machines,’’ Nature Mach.
Intell., vol. 4, no. 3, pp. 196–210, 2022.

[37] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, ‘‘A continual learning survey: Defying
forgetting in classification tasks,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 7, pp. 3366–3385, Jul. 2022.

[38] G. Saha, I. Garg, and K. Roy, ‘‘Gradient projection memory for continual
learning,’’ in Proc. Int. Conf. Learn. Represent., 2020.

[39] A. Abbasi, P. Nooralinejad, V. Braverman, H. Pirsiavash, and S. Kolouri,
‘‘Sparsity and heterogeneous dropout for continual learning in the null space
of neural activations,’’ 2022, arXiv:2203.06514.

[40] W. Wang, D. Slepčev, S. Basu, J. A. Ozolek, and G. K. Rohde, ‘‘A linear
optimal transportation framework for quantifying and visualizing variations
in sets of images,’’ Int. J. Comput. Vis., vol. 101, no. 2, pp. 254–269,
Jan. 2013.

[41] S. Kolouri, N. Naderializadeh, G. K. Rohde, andH. Hoffmann, ‘‘Wasserstein
embedding for graph learning,’’ in Proc. Int. Conf. Learn. Represent., 2021.

XINRAN LIU received the B.S. degree in mathe-
matics and applied mathematics from Chongqing
University, in 2019, and the M.S. degree in
mathematics from Vanderbilt University, in 2021,
where she is currently pursuing the Ph.D. degree
in computer science. Her research interests include
machine learning applications of computational
optimal transport, especially in computer vision
and signal processing.

YUZHE LU received the B.A. degree in math-
ematics and computer science from Vanderbilt
University, in 2022. He is currently pursuing
the master’s degree in machine learning with
Carnegie Mellon University. His research interests
include machine learning, computer vision, natural
language processing, and optimal transport.

17112 VOLUME 12, 2024

X. Liu et al.: Teaching Networks to Solve Optimization Problems

ALI ABBASI received the B.Sc. degree in electrical
engineering from the University of Tehran, in 2020.
He is currently pursuing the Ph.D. degree in
computer science with the MINT Laboratory,
Vanderbilt University, Nashville, TN, USA. His
research interests include continual learning and
bio-inspired neural networks, exploring their capa-
bilities to effectively memorize, and selectively
forget their past experiences.

MEIYI LI (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees in electrical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2017 and 2020, respectively,
and the Ph.D. degree from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2021. She is
currently pursuing the Ph.D. degree in electrical
engineering with The University of Texas at Austin,
Austin, TX, USA, with a focus on power and energy
systems optimization.

Her research interests include learning to optimize and distributed
optimization within the power and energy domain. She has received
numerous accolades, including the Prestigious ‘‘Best of the Best’’ Paper
Award at the 2019 IEEE Power and Energy Society General Meeting. Her
impressive academic record includes the National Scholarship for Outstanding
Academic Achievements, in 2018, the Carnegie Institute of Technology
Dean’s Fellowship, in 2020, and the Distinguished Alumni Endowed Graduate
Fellowship at The University of Texas at Austin, in 2022.

JAVAD MOHAMMADI (Senior Member, IEEE)
received the Ph.D. degree from the Electrical
and Computer Engineering Department, Carnegie
Mellon University (CMU), in 2016.
He is currently an Assistant Professor with the

Department of Civil, Architectural, and Environ-
mental Engineering, The University of Texas at
Austin. Before joining UT, he was a Faculty Mem-
ber of the Electrical and Computer Engineering
Department, CMU. His research interests include

distributed decision-making in networked cyber-physical systems, including
energy networks and electrified transportation systems. AFOSR,ARPA-E, and
the Department of Energy support his grid modernization efforts. His research
on building energy management has received financial support from local
governments and institutions, such as the Sloan Foundation. As a Graduate
Student, he was a recipient of the Innovation Fellowship from the Swartz
Center for Entrepreneurship.

SOHEIL KOLOURI (Senior Member, IEEE)
received the Ph.D. degree from the Biomedical
Engineering Department, Carnegie Mellon Univer-
sity (CMU), in 2015. Currently, he is an Assistant
Professor with the Department of Computer
Science, Vanderbilt University, Nashville, TN,
USA, where he leads the Machine Intelligence and
Neural Technologies (MINT) Laboratory. Prior to
joining Vanderbilt University, he was a Research
Scientist with HRL Laboratories, LLC., Malibu,

CA, USA, where he led multiple DARPA programs on AI in autonomy. His
research interests include pattern recognition in medical images, applied
mathematics, machine learning, and computer vision, with a specific focus
on computational optimal transport and geometry. He is an Active Member
of the Association for Computing Machinery (ACM). He was a recipient of
the Bertucci Fellowship Award from the College of Engineering, in 2014,
for outstanding graduate students, and the Outstanding Dissertation Award
from the Biomedical Engineering Department, in 2015. His work has been
recognized by numerous international awards, including the Best Paper Award
at the 2022 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP).

VOLUME 12, 2024 17113

