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ABSTRACT This study proposes a new model to combine the advantages of the indirect method, neural
network, and evolutionary algorithm for the optimization of long-duration, low-thrust orbit rendezvous
problems in low Earth orbits. The strategy of dividing the trajectory into three stages with fixed laws of
thrust (the second stage keeps coasting without thrust) in the previous studies is inherited, in which the
orbit changes of each stage are the decision variables and allocated evenly to each revolution. We derive
a new simplified indirect method of the single-revolution transfer to replace the fixed-direction solution
when evaluating the total velocity increment in the global optimization framework based on the differential
evolution algorithm. Two neural networks are trained and applied to further accelerate the solving process.
A correction algorithm for obtaining the trajectory and thrust laws of high-precision numerical dynamics is
also proposed. The simulation results prove that the mixed model can obtain better solutions compared with
previous methods because the simplified indirect method ensures the satisfaction of the first-order necessary
condition. The neural networks can avoid the time-consuming shooting process of the indirect method and
decrease the optimization time to less than 1 s. Moreover, the correction algorithm just requires five iteration
steps to obtain the high-precision solution. The method can be applied for both approximate mission analysis
and precise trajectory generation for orbit transfers in low Earth orbits.

INDEX TERMS Orbit rendezvous, mixed optimization, simplified indirect method, neural network.

I. INTRODUCTION
Electrical propulsion has been widely applied in space
missions owing to its high efficiency [1], [2], [3], [4], [5],
[6], [7]. The thrust level is limited by the power system
of the spacecraft, which can result in long-duration orbit
transfers. Optimization of such multi-revolution transfers is
a challenging problem because the terminal states are highly
sensitive to the bias of the initial conditions after long-
duration propagation [8], [9], [10]. Furthermore, low-thrust
trajectory calculation is also highly time-consuming when
perturbations must be considered and significantly decreases
the efficiency of the target-shooting process.

Extensive studies have been conducted for low-thrust
trajectory optimization of the two-body dynamics [11], [12],
[13], [14], [15], [16]. The multiple shooting method [15] and
shape-based method [16] can be applied to overcome the
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difficulty in guessing initial values. The two-body optimal
trajectory can then be considered an initial guess to solve
the perturbed-orbit rendezvous problem by iterations [17],
[18]. However, although such methods can correct the
deviations caused by perturbations, they cannot actively
use perturbations to change the orbit. In low-Earth orbits
(LEOs), the time-varying drifts of the right ascension of the
ascending node (RAAN) and the argument of perigee caused
by J2 perturbation must be included in optimization [19].
The RAAN difference between two orbits may continue
increasing and thus lead to a failure of iteration that begins
with the two-body solution.

On the contrary, the spacecraft can be allowed to go to an
intermediate orbit of a certain drift rate and change its RAAN
indirectly [5], [9], [20], [21], [22], [23], [24]. Huang et al. [9]
proposed an approximate method to evaluate the optimal
fuel consumption, and Wijayatunga et al. [5] proposed an
approximate guidance calculation for low-thrust transfers.
Such approximations can be applied in the optimization
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of a multi-debris removal mission. Cerf [20] derived the
optimal transfer trajectory between circular orbits by the
minimal principle using a three-stage assumption including
natural RAAN drift; Wen et al. [21] further improved on this
approach by using a yaw-switch strategy. Huang et al. [22]
and Shen [23] constructed equality constraint optimization
models by simplifying the effect of thrust to approximate
the expression of orbital elements, thus significantly reducing
the calculation burden. Casalino and Andrea [24] also
studied the trajectory optimization that actively uses both
J2 perturbation and atmospheric drag. These methods can
be applied only to circular orbits, and are not sufficiently
practical for transfers in LEO constellations or debris
clusters. Huang and Li [25] recently proposed a parametric
optimization model for low-eccentricity orbit rendezvous,
which also included a correction process to obtain a high-
precision trajectory. This method assumes the direction of
thrust to be fixed to reduce the complexity and thus leads
to loss of thrust efficiency when the thrust arc in each
revolution is long. Recently, the deep neural network has been
widely applied in space trajectory optimization of landing
problem [26], [27], [28], asteroid exploration [29], [30] or
transfers in the Earth orbits [31], [32]. However, directly
constructing a neural network for the approximation of multi-
revolution low-thrust transfers in LEOs is difficult. Because
the revolution number is over hundreds and the influence of
J2 perturbation is considerable, current optimization methods
cannot ensure obtaining the global optimal solutions when
sampling the training data. A lot of local optimal solutions
in the training data may greatly decrease the precision.
Therefore, this studywould find a newmethod to combine the
advantages of neural networks and evolutionary algorithms.

This study conducts a follow-up study of Huang’s original
work in [25], proposing a novel mixed trajectory optimization
model for low-thrust perturbed-orbit rendezvous in low-
eccentricity orbits. The global optimization framework by
dividing the trajectory into three stages that follow respective
laws of thrust (the second stage keeps coasting without
thrust) is inherited. The difference is that a simplified
indirect method to obtain the optimal law of thrust of a
single revolution with given changes in orbital elements is
proposed to replace the sub-boundary value problem with
fixed-direction thrust in [25], and two neural networks for
quickly obtaining the feasibility and evaluating the thrust-on
time are trained to further improve the efficiency. The
simplifications in the optimization can greatly improve the
efficiency but bring errors between the simplified model and
the high-precision dynamic model. Thus, a new correction
process for obtaining the high-precision trajectory and thrust
laws is also proposed.

Compared with [25], the mixed method in this study
requires less velocity increment for the same transfer,
especially when the ratio of thrust is great (close to full thrust)
because the thrust law obtained by the simplified indirect
method is more efficient than the fixed-direction strategy.
Compared with previous indirect methods directly used for

multi-revolution transfers, the indirect method in this study
is just applied for a single revolution, which is easier to
solve and can avoid obtaining local optimal solutions with
different revolutions (which can be observed in [33], [34],
and [35]). Compared with methods to directly train neural
networks for multi-revolution transfers, the neural networks
for single-revolution transfer are easier to train and the
inputs can be scaled to adapt to different thrust accelerations.
Moreover, since the optimal law of thrust is expressed by the
phase angle, it can be substituted to the numerical dynamics
model to obtain a high-precision trajectory via a modified
correction procedure.

The rest of this study is organized as follows. Section II
describes the problem and the optimization model in [25].
Section III presents the simplified indirect method for
single-revolution transfer and the corresponding neural
network delegatemodels. Themixed optimization framework
is also proposed in this section. Section IV gives numerical
simulations for the training of the neural networks, the
optimal trajectory by the mixed optimization model, and
comparisons with previous works. Finally, Section V draws
the conclusions.

II. PROBLEM DESCRIPTION AND BASIC ASSUMPTIONS
The focus of this study is the time-fixed fuel-optimal orbit-
rendezvous problem for LEOs with low eccentricity, which is
often encountered in orbit transfers between satellites in the
same constellation or objects in the same debris cluster. The
dynamics equations of a spacecraft with low-thrust electrical
propulsion [25] are:
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dt
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p
t )(1+e cos f )]

de
dt

=

√
1 − e2

na
[(αr + αpr ) sin f + (αt + α

p
t )(cosE+cos f )]

di
dt

=
r cos u

na
√
1 − e2

(αn + αpn)

d�

dt
=

r sin u

na
√
1 − e2 sin i

(αn + αpn)

dω

dt
=

√
1−e2

nae
[−(αr+αpr ) cos f +(αt+α

p
t )(1 +

r
p
) sin f ]

− cos i
d�

dt
dM
dt

= n−
1 − e2

nae
[(αr + αpr )(2e

r
p

− cos f )

+(αt + α
p
t )(1 +
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(1)

where a, e, i, �, ω, and M are the classical orbital elements
of spacecraft, f is the true anomaly, p = a(1 − e2) is
the semi-latus rectum, u is the argument of latitude (also
called the phase angle), and n =

√
µ/a3 is the orbital

angular velocity. Note that when the eccentricity is very close
to zero, the dynamic equations based on the position and
velocity [9] should be used instead. ap = [αpt , α

p
n, α

p
r ] are the

three acceleration components of perturbations in the local

17262 VOLUME 12, 2024



A.-Y. Huang, T.-J. Zhang: Mixed Optimization Approach for Low-Thrust Perturbed Rendezvous

FIGURE 1. The three-stage orbit rendezvous strategy.

vertical/local horizontal reference frame(r: oriented in the
direction of the position, n: the orbit normal, t: Perpendicular
to r and n). αt , αn, and αr are the three components of thrust
acceleration a:

a =

 αt
αn
αr

 = c(t)αmax

 ft
fn
fr

 (2)

where αmax is the max acceleration (in this paper it’s assumed
themass change is negligible compared with the initial mass),
c(t) ∈ [0, 1] is a time-varying coefficient to represent the
actual magnitude of acceleration (0 implies off and 1 implies
full thrust), and [ft , fn, fr ]T is a normalized vector to represent
the direction of the thrust.

The time-fixed orbit rendezvous problem can be expressed
as follows. The initial orbit of the spacecraft is fixed to
[a0, i0, �0, ex0, ey0, u0] using the first class of nonsingular
orbital elements, the target orbit is [af , if , �f , exf , eyf , uf ],
and the transfer duration is fixed to1t . The optimization task
is to find the optimal law of thrust (including the direction
and magnitude of thrust) to minimize the fuel consumption
function J :

J =

∫ 1t

0
c(t)ṁdt (3)

where ṁ is the mass flow rate when the thrust is on.
For the orbits in a debris cluster or constellation, their

differences in semimajor axis, inclination, and eccentricity
are close to zero. The major aim of velocity increment is
to eliminate the RAAN difference. Thus, as explained and
validated in [20], [21], [22], and [23], when calculating
the changes in orbital elements caused by thrust, the orbit
can be treated as a circular orbit and the coupling terms
in (1) are neglected. From these assumptions, Huang and
Li [25] formed a parametric optimization model. The method
includes two levels to obtain a solution closer to the global
optimal solution of the time-fixed low-thrust rendezvous
problem and retain high efficiency. First, the trajectory is
assumed to be divided into three stages, as illustrated in
Fig. 1 (1t is the fixed transfer duration, 1t1, 1td , 1t2 are
the duration of each stage).

The durations (1t1, 1t2) and the direct changes in orbital
elements 1σi(1a1, 1i1, 1�1, 1ex1, 1ey1) by the thrust of

the first stage are decision variables. Then, the drift changes
in RAAN, the argument of the perigee, and the argument
of the latitude (u) can be analytically calculated using the
orbit averaging theory [19]. The orbital elements should be
converted to the mean elements [19] before being applied
in (4) (the original elements in (1) are named the osculating
elements):

1�d = (�̇d − �̇0)(1t −
1t1
2

) + (�̇f − �̇d )(1t2 −
1t2
2

)

1ωd = (ω̇d − ω̇0)(1t −
1t1
2

) + (ω̇f − ω̇d )(1t2 −
1t2
2

)

1ud = (nd − n0)(1t −
1t1
2

) + (nf − nd )(1t2 −
1t2
2

)

(4)

where n is the mean orbital angular velocity, and the
subscripts ‘0’, ‘d’, and ‘f’ mean the parameters of the initial
orbit, drift orbit, and target orbit, respectively.

The sum of the direct changes and drift changes should be
equal to the orbit difference between the initial and target
orbits at the rendezvous time, which forms the constraint
equations [25]:

1a1 + 1a2 = 1a0
1i1 + 1i2 = 1i0

1�1 + 1�2 + 1�d = 1�0

1ex1′
+ 1ex2 = 1ex0

1ey1′
+ 1ey2 = 1ey0

1ud = 1u0 (5)

where 1a2, 1i2, 1�2, 1ex2, 1ey2 and 1a2,1i2,1�2,1ex2,
1ey2 are the direct changes in orbital elements of the first and
third stages, respectively. 1ex1′, 1ey1′ are the changes in the
two components of eccentricity with the drift ofω considered:

1e =

√
ex12 + ey12

ue = arctan(ey1, ex1)

1ex1′
= 1e cos(ue + 1ωd )

1ey1′
= 1e sin(ue + 1ωd ) (6)

Then, η1, k11, k12, β1, φ1, u1 and η2, k21, k22, β2, φ2, u2 are
defined as the thrust parameters of a single revolution in the
first and third stages, which can be analytically solved for by
the average orbital changes in one revolution [25].

When the decision variables 1t1, 1t2, η1, k11, k12, β1,

φ1, u1 are given, 1a1, 1i1, 1�1, 1ex1, 1ey1, 1�d , 1ωd ,

1ud and the thrust-on time of the first stage are known
and 1a2, 1i2, 1�2, 1ex2, 1ey2 are solved. Then, the thrust
parameters of the third stage η2, k21, k22, β2, φ2, u2 are
solved and the thrust-on time is obtained.

Finally, using the total thrust-on time as the objective
function, a differential evolution (DE) algorithm [36] is
applied to search for the best decision variables. A correction
algorithm is also proposed in [25] to help obtain the trajectory
of high-precision by a few iterations.
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As analyzed in the following simulation results, when the
thrust is nearly fully on, there will be a significant efficiency
loss of the fixed-direction strategy because the thrust is
assumed to be expansions of two impulses in each revolution.
Therefore, we applied a simplified indirect method to obtain
the optimal single-revolution solution to replace the strategy
in [25] with a fixed thrust direction. The method is detailed
in Section III.

III. MIXED OPTIMIZATION METHOD
In this section, the simplified indirect method is first
proposed to replace the sub-boundary value problem of
fixed-direction thrust. To further improve the efficiency
of feasibility evaluation and thrust time calculation, two
neural networks with the same input and hidden layers are
trained by the results of the simplified indirect method.
The new optimization framework modified by that in [25]
is then proposed together with the correction process with
high-precision numerical dynamics equations.

A. SIMPLIFIED INDIRECT METHOD FOR LOW-THRUST
SINGLE-REVOLUTION TRANSFER
This section describes the relationship between the
fixed-orbit element changes in semimajor axis, inclination,
RAAN, and eccentricity vector (1σ = [1a, 1i, 1�,1ex ,
1ey]) and the optimal law of thrust in one revolution by
the indirect method. Note that in this section, 1σ is the
direct change by thrust. The change in u and the effect
of perturbation will be considered in the next section.
Indirect methods transform the optimal control problem into
a boundary value problem by the minimal principle, which
can be solved by nonlinear iteration methods [33], [34], [35].
Unlike in previous studies, the model described here was
simplified based on the assumptions discussed in Section II.
When the change in the semimajor axis is small, the

angular velocity of the spacecraft can be assumed constant
and the argument of latitude (u ∈ [0, 2π ], and du

dt =

n0) can be used as the independent variable instead of
time (t ∈ [0,T ]) to express the orbital motion in one
revolution. According to (1), for a near-circular orbit without
any perturbation, we can replace dt by du/n0:

da
du

=
2a0cftαmax

n0V0
di
du

=
cfnαmax

n0V0
cos u

d�

du
=

cfnαmax

n0V0 sin i0
sin u

dex
du

=
cαmax

n0V0
(2ft cos u+ fr sin u)

dey
du

=
cαmax

n0V0
(2ft sin u− fr cos u)

(7)

where [a, i, �, ex , ey] are the orbital elements during the
transfer, ex = e cosω and ey = e sinω are the two
components of the eccentricity vector, and u = ω + M is
the argument of the latitude.V0 =

√
µ/a0 and n0 =

√
µ/a03

are the mean velocity and mean angular velocity of the

spacecraft, respectively. a0 and i0 are the initial semimajor
axis and inclination, respectively. c is the abbreviation of c(t)
or c(u).

(3) can be also rewritten as (8), which denotes the ratio
between the thrust-on arc and the whole revolution and is
equivalent to the fuel consumption.

J =

∫ 2π
0 cdu

2π
(8)

The requirement for orbit rendezvous can be expressed as

∫ 2π

0

da
du

= 1a∫ 2π

0

di
du

= 1i∫ 2π

0

d�

du
= 1�∫ 2π

0

dex
du

= 1ex∫ 2π

0

dey
du

= 1ey

(9)

To solve this optimal control problem ((7) is the dynamics
equation, (8) is the objective function, and (9) is the terminal
constraint) when the changes in orbital elements of one
revolution are given, one can first write the Hamilton function
according to the minimum principle:

H = λ0c+ λσ
T σ̇ (10)

where σ̇ = [ da
a0du

, di
du ,

d�
du , dexdu ,

dey
du ] indicates the derivatives

of the orbital elements (the semimajor axis a has been
nondimensionalized by a/a0 ). λσ = [λa, λi, λ�, λex , λey ] is
the Lagrange multiplier (also called costate variables) to be
determined, and λ0 is another multiplier [33] to normalize λσ

(i.e., to make
∣∣[λ0, λa, λi, λ�, λex , λey ]

∣∣ = 1).
Then, the optimal law of thrust should minimize H .

According to (7) and (10), the items related to ft , fn, fr can
be summarized as

cαmax

n0V0

 2λa + 2 cos uλex + 2 sin uλey
cos uλi + sin u

sin i0
λ�

sin uλex − cos uλey

T  ft
fn
fr

 (11)

Let f = [ft , fn, fr ]T denote the thrust direction. To minimize
H , f should always be

f = −
s

∥s∥
(12)

where s =

 2λa + 2 cos uλex + 2 sin uλey
cos uλi + sin u

sin i0
λ�

sin uλex − cos uλey

, and thus H is

H = (λ0 −
αmax ∥s∥
n0V0

)c (13)

Because the range of c is [0, 1], to minimize H , c depends
only on the value of λ0 −

αmax∥c∥
n0V0

:

c =

{
0, λ0 −

αmax∥s∥
n0V0

≥ 0

1, λ0 −
αmax∥s∥
n0V0

< 0
(14)
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Let ρ = λ0 −
αmax∥s∥
n0V0

denote the switch function [33]. (14)
indicates that the thrust acceleration should be either the
maximum value or zero, which is called Bang–Bang control.
The equation for λσ is

λ̇σ = −
∂H
∂σ

= 0 (15)

which indicates that in the simplified single-revolution
transfer, the covariant variables λσ are constant during the
transfer. Therefore, the optimization model obtained by the
indirect method includes six unknown parameters (λσ and λ0)
and six shooting equations:

∫ 2π
0

da
a0

=
1a
a0∫ 2π

0 di = 1i∫ 2π
0 d� = 1�∫ 2π
0 dex = 1ex∫ 2π
0 dey = 1ey∥∥[ λa λi λ� λex λey λ0 ]

∥∥ = 1

(16)

In this way, the optimal control problem is transformed
into a boundary value problem and can be solved with a
traditional nonlinear solving package such as MinPack-1
[37]. When (16) is solved, the optimal law of thrust and the
ratio of thrust-on time can be obtained as

1tthrust =
T0
2π

∫ 2π

0
cdu (17)

where T0 is the period of the initial orbit and is
assumed to be constant in (16). Notably, when 1σ =

[1a, 1i, 1�,1ex , 1ey] is too large and exceeds the limit
of thrust level, there is no solution of (16). This condition
means that such a low-thrust transfer is infeasible.

In summary, when 1σ = [1a, o1i, 1�,1ex , 1ey] is
given, λσ and λ0 can be solved using (16). When λσ and λ0
are fixed, the changes in orbital elements can be calculated
by applying (9). As explained in [33], when solving (16) by
employing nonlinear algorithms, initial guesses of λσ and
λ0 are required. However, it is difficult to make appropriate
initial guesses that can guarantee convergence. Although in
this study the single-revolution problem was simplified, it is
highly time-consuming to generate random guesses of λσ

and λ0 repetitively and use them in the shooting process.
Therefore, as described in Section III-B, we developed a
surrogate model by utilizing a neural network to avoid the
shooting process and improve the efficiency.

B. NEURAL-NETWORK SURROGATE MODEL FOR
SINGLE-REVOLUTION TRANSFER
Neural network technology, which has become increasingly
popular in recent years, is typically applied to generate surro-
gate models by using massive existing data sets to approach
the output of a complex system [38]. The simple structure is
convenient for the trajectory optimization problems of fixed
input dimension and the performance has been proved in

FIGURE 2. Structure of two neural networks.

several existing studies [29], [30], [31], [32]. A typical neural
network is composed of multiple layers, including an input
layer, an output layer, and several hidden layers. In each
layer, the input information is propagated to the next layer
by nonlinear activation functions. In this study, two neural
network surrogate models for single-revolution transfer were
developed. One judges the feasibility of low-thrust transfer
with given orbital changes, and the other evaluates the thrust
time.

As discussed in Section III. A, the input layer of each
neural network is five-dimensional (the orbital changes
required for the spacecraft to complete the single revolution
transfer: 1a/a0, 1i, 1�,1ex , 1ey). The output of the first
neural network is a Boolean variable (the input transfer
is feasible or not) and the output of the second is a real
number (the ratio of the thrust time to the transfer duration).
The structure is illustrated in Fig. 2. The sampling data
for training are generated as follows. Firstly, the range of
each input variable should be determined to avoid invalid
data. According to (7), when the thrust is always on and
in the tangential direction, the maximum increment of the
semimajor axis is

1amax =
2παmax

n0V0
2a0 (18)
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FIGURE 3. Flow chart of the mixed optimization.

Similarly, when the thrust is normal, themaximum changes
in RAAN and inclination are

1imax =
2παmax
n0V0

∣∣∣∣ 2 ∫ π/2
−π/2 cos udu

2π

∣∣∣∣ =
4αmax
n0V0

1�max =
2παmax
n0V0 sin i0

∣∣∣∣ 2 ∫ π/2
−π/2 cos udu

2π

∣∣∣∣ =
4αmax

n0V0 sin i0

(19)

where

∣∣∣∣ 2 ∫ π/2
−π/2 cos udu

2π

∣∣∣∣ =
2
π
is the coefficient considering the

superposition of orbit changes with different phases [22].
In addition, when the thrust is tangential but the directions
within u ∈ [0, π] and u ∈ [π, 2π ] are opposite, the changes
in eccentricity are maximum:{

1exmax =
1amax
a

2
π

=
8αmax
n0V0

1eymax =
1amax
a

2
π

=
8αmax
n0V0

(20)

If any component in 1σ = [1a, 1i, 1�,1ex , 1ey] of a
given transfer is over the ranges calculated by (18), (19),
and (20), it can be directly obtained that the transfer is
infeasible. Therefore, the training data need not include 1σ

over these ranges.
Secondly, a group of randomvectors (five-dimensional real

numbers within [-1, 1]) is generated to represent the input data
of1σ . Let {xi}, i = 1, 2, 3, 4, 5 denote one of the vectors, the
corresponding orbit changes are

[1a, 1i, 1�,1ex , 1ey]

= [x11amax, x21imax, x31�max, x41exmax, x51eymax]
(21)

Then, the indirect method described in Section III. A is
applied to judge the feasibility and obtain the thrust-on time
of each input vector. All the inputs and results subsequently
form the sampling data set.

Finally, the sampling data set is divided into two parts,
a training set and a testing set, to train the two neural
networks shown in Fig. 2. In this study, Keras was employed
to complete the training. Keras is a high-level open-
source library built with Python for the neural network and
deep learning. The details of Keras are provided in the
literature [38].
In summary, the two neural networks use the same input

to judge the feasibility of low-thrust transfer and evaluate
the thrust time. It should be mentioned that when generating
the sampling data, the thrust acceleration of the spacecraft
is fixed (denoted by αtr ). When the actual acceleration is
not equal to the fixed value, only a simple transformation
is needed and there is no need to re-train the neural
network.

According to (7), the optimal trajectory for another given
acceleration αmax and input1σ is equivalent to the trajectory
for the fixed acceleration αtr and input 1σe = αtr1σ/αmax,
where αtr/αmax is the scale factor. Hence, the neural networks
can be applied for different thrust levels after the training.
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FIGURE 4. Flow chart of the correction process.

C. OPTIMIZATION FRAMEWORK USING DE
Using the neural network models, the framework in [25]
can be modified to a mixed optimization model illustrated
in Fig. 3. Firstly, the semimajor axis and inclination of
the initial orbit are used in (7)∼(16) to generate a dataset
of single-revolution transfers with different orbit changes
and solve for the costate variables. The dataset is used to
train the two neural networks. Then, for orbit rendezvous
problems of similar semimajor axis and inclination, the neural
networks are fixed and need not be re-trained.When the thrust
acceleration αmax, initial and target orbits (used to calculate
the orbit differences 1σ ), and the transfer duration 1t of the
problem are inputted, DE is applied to search for the opti-
mal decision variables (λa1, λi1, λ�1, λex1 , λey1 , 1t1, 1t2),
in which the neural network based model is applied to
evaluate the objective function of the population. DE is
an efficient evolutionary algorithm for the optimization of
continuous variables [36] and has also been well applied to
trajectory optimization problems in [9] and [25]. Note that
DE is not the focus of this paper and the proposed model
is not highly dependent on the selection of the evolutionary
algorithms. Other latest evolutionary algorithms can be also
well applied.

In Fig. 3, αtr1σ2T0/(1t2αmax) represent the average
changes in one revolution of the third stage when the input
acceleration αmax is different from the acceleration αtr used
for neural network training. The objective function is the sum
of the thrust time of each stage by (17):

J = 1tthrust1
1t1
T0

+ 1tthrust2
1t2
T0

(22)

where 1tthrust1 and 1tthrust2 represent the thrust times of a
single revolution corresponding to the first and second stages,
respectively, and 1t1

T0
and 1t2

T0
represent the revolution number

of the two stages. When DE converges, the optimal changes
in orbit elements and thrust laws are obtained. The trajectory
(time history of the orbital elements) based on the simplified
dynamics ((7) and (4)) can also be obtained by combining the
thrust determined by the optimal co-state variables (λσ1 and
λσ2) and the analytical drifts by J2 perturbation.

D. CORRECTION PROCESS USING HIGH-PRECISION
DYNAMICS
The solution obtained by the process in Fig. 3 is approximate.
This section proposes an iteration process to calculate the
rendezvous trajectory with the high-precision numerical
dynamic model. Since the law of thrust of each stage is
expressed by the phase angle u using (9) and (11), when
the numerical dynamic model is applied (ap in (1) includes
the perturbations such as the drag of the atmosphere, the
high-order Earth’s non-sphere model, the gravities of the
sun and moon, and the solar radio pressure. The models are
the same with [25]), and the trajectory can be obtained by
three sequential numerical integrations ([0, 1t1], [1t1, 1t −
1t2], [1t − 1t2, 1t2]). In the first and third stages, the
phase angle u is obtained by the spacecraft’s osculating orbit
elements. In the second stage, the thrust is zero. In this way,
the terminal orbit elements of the spacecraft are predicted.

However, there is a gap between them and the target
orbit due to the difference in the dynamic equations. Let
1σp = [1ap, 1ip, 1�p, 1exp, 1eyp, 1up] denote the orbit
differences between the predicted orbit and actual target
orbit. To obtain the thrust law that eliminates the differences,
the correction algorithm in [25] is modified to the process
illustrated in Fig. 4. The detail of calculating the correction
terms to 1σ1 and 1σ2 by 1σp is inherited. The difference
is that in this study, updated 1σ1 and 1σ2 in each iteration
step are used to update the thrust laws (λσ1 and λσ2) via
the simplified indirect method instead of the fixed-direction
solution in [25]. In this manner, the optimality of each
revolution is guaranteed by the indirect method, and the
global optimality of the transfer trajectory is guaranteed by
searching for the orbital element changes via evolutionary
algorithms.

IV. SIMULATION AND DISCUSSION
The test scenario is constructed as follows. The initial
and target orbits of the spacecraft are detailed in Table 1.
The thrust is 0.1 N, the initial mass is 500 kg, and the
specific impulse is 2000 s (the power is about 1.5 kW).
The required changes in orbital elements for rendezvous are
1σ0 = [1a0, 1i0, 1�0, 1ex0, 1ey0, 1u0]= [−45.443 km,
−1.192◦, −2.214◦, −0.0046, 0.0096, 58.901◦]. Since the
fuel flow rate is less than 5.1 × 10−6 kg/s, the thrust
acceleration αmax is assumed to be constant (2× 10−4m/s2).
We first trained the neural network surrogate models of
single revolution transfer, then solved the mixed optimization
model by DE, and finally obtained optimal trajectories of
different thrust levels and compared them with previous
methods.
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TABLE 1. Initial orbits of the spacecraft and target.

FIGURE 5. Loss function (BCE) of the first neural network.

FIGURE 6. Loss function (MSE) of the second neural network.

A. NEURAL NETWORKS TRAINING PROCESS
The training data were generated as follows. The initial
semimajor axis and inclination in (4) were set to a0 =

7157.398 km, i0 = 98.6435◦, and αmax = 2 × 10−4m/s2.
Then, 300 000 random five-dimensional real number vec-
tors within [-1, 1] were created to represent different
single-revolution transfers by (18) ∼ (20) and used as
input for the indirect optimization method to obtain the
feasibility of each transfer and the corresponding thrust
time. The transfer was recognized as infeasible when (16)
failed to converge after 100 shooting iterations of randomly
initial co-states. Finally, about 33,000 transfers were solved

successively. The average shooting number is about 40 and
the convergence takes more than 20 seconds.

The structures and settings of the neural networks are
detailed in Table 2. Cross-validation is applied by dividing
the total data into ten subsets and using each of them as the
validation set. The ten cases with different training sets and
validation sets are tested separately and the loss functions
after convergence are close. The results are shown in Table 3
and the histories of loss function are illustrated in Fig. 6
and Fig. 7. According to (3), the neural networks’ outputs
are not influenced when there are small biases of a0 and i0.
It was validated that the outputs are acceptable (the mean
BCE of the ten cases is greater than 0.99 and the meanMSEis
less than 0.00031) when the bias of the semimajor axis and
the inclination are within ±200 km and ±2◦, respectively.
Obtaining the output of the trained neural networks takes
less than 1 × 10−5 seconds, which is more efficient than
the solving process of the indirect method. However, the
training time (less than 1000 s) should be considered when
new a0 and i0 are given and the neural networks need to be
re-trained.

B. FUEL-OPTIMAL TRAJECTORY
The transfer duration was fixed to 30 days and the optimal
trajectory was specified as follows. The duration of the
first stage was 10.865 days, [1a1, 1i1, 1�1, 1ex1, 1ey1] =

[−287.445 km, −0.1115 ◦, 0.4117 ◦, 0.00616, 0.000612],
[λa1, λi1, λ�1, λex1 , λey1 ] = [0.400515, 0.15821, −0.52045,
−0.05102, 0.01096], and the thrust-on time was 9.698 days.
The duration of the second stage for free drifting was
3.403 days. The duration of the third stage was 15.732 days,
[1a2, 1i2, 1�2, 1ex2, 1ey2] = [242.001 km, −1.0807 ◦,
0.398 ◦, −0.000874, −0.00469], λa2, λi2, λ�2, λex2 , λey2 =

[−0.17226, 0.85444, −0.30873, −0.002031, 0.01701], and
the thrust-on time was 14.199 days. The equivalent velocity
increment was 412.95 m/s. To avoid directly changing
RAAN by the cross-track thrust, the optimal trajectory firstly
decreases the semimajor axis to less than 6900 km and
restores it to the target semimajor axis at the third stage.
By contrast, the method in [25] cannot obtain a feasible
solution due to the efficiency loss of the fixed-direction
strategy. The minimal thrust acceleration to complete the
transfer of the proposed method is 1.8 × 10−4 m/s2 yet that
of the method in [25] is 2.9 × 10−4 m/s2.
When the high-precision dynamics is applied (including

the Earth’s non-spherical gravitation of 20×20 order, the
gravities of the sun and moon, the atmosphere drag, and
the solar radial pressure, in which the spacecraft’s area is
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TABLE 2. Structures and parameter setting.

TABLE 3. Training results.

TABLE 4. Orbit errors during the correction.

FIGURE 7. Histories of the orbital differences.

6.0m2, the drag coefficient is 2.2, and the solar radial pressure
coefficient is 1.3), the corrected [λa1, λi1, λ�1, λex1 , λey1 ] =

[0.4514, 0.1741, −0.6578, −0.1858, −0.01909] and
λa2, λi2, λ�2, λex2 , λey2 = [−0.1604, 0.8755, −0.3637,
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FIGURE 8. Optimal magnitude of thrust: (a) First stage, (b) Third stage.

FIGURE 9. Optimal thrust direction: (a) First stage, (b) Third stage.

TABLE 5. Optimization results for different accelerations.

FIGURE 10. Thrust direction of the first stage: (a) Mixed model, (b) Fixed-direction.

0.007780, 0.02937]. The errors between the prediction and
target orbits during the iterative correction are detailed in
Table 4. After 5 steps of corrections, the orbit difference

was neglectable and the final velocity increment was
443.67 m/s. The histories of orbit elements during the
transfer are illustrated in Fig. 7, and the thrust laws of
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FIGURE 11. Thrust direction of the third stage: (a) Mixed model, (b) Fixed-direction.

the first and third stages are illustrated in Fig. 8 and
Fig. 9.

C. TRAJECTORIES OF DIFFERENT THRUST LEVELS AND
COMPARISON WITH PREVIOUS WORKS
The shooting of a single-revolution transfer in this study
requires less than tens of repeating with random initial
values, which is much easier than that of a many-revolution
transfer in previous indirect methods (more than hundreds
of shooting). Therefore, the proposed mixed model can
quickly obtain the global solution. The advantages in
convergence efficiency and optimality of the three-stage
strategy compared with previous methods for low-thrust
perturbed orbit rendezvous have been also proved in [25]. The
calculation time of the proposed method is less than 1s (when
a high-precision trajectory is required, each correction step
takes 1 more seconds), which is close to the method in [25]
because the upper-level DE algorithms of the two methods
are similar. Therefore, we just compare the two methods’ fuel
cost (velocity increment).

When the thrust acceleration αmax is not equal to 2 ×

10−4 m/s2, as discussed in Section III-B, the input orbit
differences should be pretreated by a multiplying factor
0.0002/αmax to apply the neural networks. When αmax =

2.9 × 10−4 m/s2 (the minimal acceleration for feasible
rendezvous using the method in [25]), our method obtained
a solution of 335.84 m/s and the method in [25] requires
355.01 m/s. Different thrust accelerations were also tested
and detailed in Table 5. It’s proved the mixed model with the
single-revolution indirectmethod requires less thrust-on time.

When αmax = 8×10−4 m/s2, the optimal thrust directions
of the proposed method and the fixed-direction strategy
in [25] are illustrated in Fig. 10 and Fig. 11 (the durations
of each stage by the two methods are equal). In the third
stage, the thrust ratio is less than 0.35 and the fixed-direction
solution is close to the single-revolution indirect method
because higher thrust acceleration results in easier transfer
to the middle drift orbit, and a shorter thrust arc is closer to
the extension of an impulse. However, in the first stage, the

thrust ratio is greater than 0.5, and thus the thrust directions
obtained by the two methods are a little different.

V. CONCLUSION
The optimization of low-thrust time-fixed perturbed-orbit
rendezvous in LEO is studied and a novel mixed approach
based on neural networks and indirect method is proposed.
The three-stage transfer strategy to use the natural drift of
RAAN is inherited and the optimization framework of [25]
is improved by replacing the fixed-direction strategy with
the simplified indirect method when solving the thrust law
of the single-revolution transfer. The efficiency is further
improved by training two neural network surrogate models
to check the feasibility of a transfer and evaluate the thrust
time. The simulation results prove that the mixed model can
obtain better trajectories compared with the method in [25].
The convergence efficiency and optimality of the mixed
method compared with previous methods are guaranteed by
the inherited DE-based framework, which has been proved
in [25]. The neural networks just require a certain time
for the training processes and then can be applied to avoid
repeating the time-consuming shooting process of the indirect
method. The time for obtaining the optimal trajectory is
less than 1 s. The method can be applied to low-thrust
trajectory optimization of missions such as active debris
removal and in-orbit service. The proposed method assumed
the semimajor axis and inclination are constant and the
eccentricity is zero in the right function of (7), which are
proved acceptable for obtaining high-precision trajectories
between low-eccentricity and low-Earth orbits. When the
changes in the semimajor axis and inclination are significant,
the error would become not negligible. Future work will
consider the continuously changing model for such orbit
transfers.
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