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ABSTRACT Within the realm of public health, the end-to-end traceability and monitoring of vaccines play
an indispensable role in ascertaining the safety and efficacy of vaccines, especially the precise localization
of vaccines in the vaccine cold storage. However, challenges such as limited space, dense stacking of boxes,
and frequent obstructions in the vaccine cold storage, particularly in Small to Medium Cold Storage (SMCS),
pose significant obstacles to effective localizing. Existing vaccine box localizing methods in cold storage,
like manual localizing, Radio Frequency Identification (RFID) technology, and traditional visual localizing,
struggle with obstructions and inefficiencies, leading to limited accuracy and real-time update capabilities.
This paper introduces an innovative solution for vaccine box localization in obstructed environment within
SMCS, leveraging computer vision technology. Specifically, to address the challenge of accurately locating
vaccine boxes in densely stacked and heavily obstructed SMCS, this paper exploits the strong correlation
between the vaccine boxes and workers during the storage process. The vaccine box is indirectly located
by focusing on the less numerous and less obstructed cold storage workers. Furthermore, to enhance the
tracking accuracy of the workers, the YOLOvVS model was modified, resulting in the development of the
Vaccine Cold Storages YOLOVS5 (VCS-YOLOVS5) model tailored for obstructed environment in SMCS.
Additionally, the final location of the vaccine box is determined by a behavior recognition model, identifying
instances where the workers’ hands are not in contact with the vaccine box. Extensive experiments confirm
that VCS-YOLOVS sets a new benchmark in vaccine box localization and worker tracking, significantly
surpassing the performance of standard models in accuracy and real-time effectiveness.

INDEX TERMS YOLOVS, object tracking, vaccine box location, small to medium obstructed cold storage,
behavior recognition.

I. INTRODUCTION

Vaccines play an irreplaceable role in safeguarding public
health because vaccination is the most cost-effective and
efficient public health intervention tool for the prevention and
control of infectious diseases [1]. An active vaccine is crucial
for ensuring its immune functionality. Thus, to ensure the

The associate editor coordinating the review of this manuscript and

approving it for publication was Shovan Barma

safety and efficacy of each vaccine, rigorous monitoring and
management are required in the research and production stage
as well as the storage and transportation stage. In the storage
and transportation stage, the cold storage unit, which serves as
a transitional repository for vaccines, plays a significant role
in the vaccine cold chain distribution. In the cold storage, the
precise localization of vaccine boxes is helpful for effective
vaccine management. Consequently, enhancing the ability to
precisely localize vaccines within cold storage facilities is
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vital for improving vaccine quality, reducing wastage, opti-
mizing supply chain efficiency, and ensuring public health
safety.

Existing vaccine management primarily relies on attaching
traceability codes to vaccine packaging. Subsequently, these
codes are scanned throughout vaccine distribution and cold
chain storage to acquire relevant data. Besides, due to limited
investment and maintenance costs, most vaccine cold stor-
ages, especially in Small to Medium cold storages (SMCS),
still depends on manual management using handheld PDAs
(Personal Digital Assistants) for operations like stock entry,
inventory checks, and dispatch. This management approach
cannot precisely determine the location of vaccine boxes in
the storage units, potentially leading to the oversight of vac-
cines nearing expiration. Hence, finding an accurate method
to localize these vaccine boxes in vaccine cold storage is
paramount.

Due to limited research specifically locating vaccine boxes
in cold storage, this study explores the potential solutions to
vaccine boxes localization in vaccine cold storages, such as
IoT (Internet of Things) locating technology and automated
equipment locating solutions commonly used in general
logistics. These methods provide a baseline for addressing
the unique challenges of locating vaccine boxes in cold
storage environments. The IoT locating technique employs
electronic tags attached to goods, which communicate with
readers via radio waves to update their position information.
Zeng et al. [2] proposed a smart decision-support system
architecture based on RFID (Radio Frequency Identifica-
tion) technology, which collects the location information of
real-time goods through RFID tags. Liu et al. [3] designed
a hazardous materials intelligent storage management sys-
tem using UWB (Ultra-Wide Band). By deploying UWB
nodes and installing UWB tags on goods, the system can
determine the location of goods within the warehouse in real-
time. However, due to dense stacking of vaccine boxes and
limited space in SMCS, IoT technologies like RFID face
challenges in SMCS, including signal transmission block and
restricts on the placement and range of readers. Meanwhile,
although UWB is more accurate, it struggles with higher costs
and complex installation in these constrained spaces. For
automated equipment locating solutions, automation devices
like storage robots, AGVs (Automated Guided Vehicles), and
automatic sorting systems are widely applied in the logistics
field can also be introduced to the vaccine cold storage.
Shi et al. [4] designed a smart robot storage logistics system
adaptable to highly dynamic environmental changes, and
Liu et al. [5] applied multiple AGVs for more efficient ware-
house management. However, automated technologies such
as storage robots and AGVs often struggle in the dense and
confined spaces of SMCS. Besides, specialized adaptations
for cold and humid conditions also improve their complex-
ity and cost. It is worth mentioning that disease prevention
and control centers predominantly use SMCS, so these tech-
nologies and equipment are not suitable for the widespread
promotion in SMCS.
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In addition to these technologies and equipment, com-
puter vision technology has been widely applied to identify
the object and determine the location of goods with its
efficiency, accuracy, and cost-effectiveness in recent years.
Yang et al. [6] used an improved RetinaNet algorithm for
the precise locating of boxes within warehouses, aiding robot
stacking and unstacking. However, this method encounters
limitations in distinguishing boxes with similar external fea-
tures, a common environment in SMCS environments where
vaccine boxes often appear identical. Zou and Liu [7] pro-
posed an image instance segmentation algorithm based on
the improved Mask R-CNN to enhance object recognition
and precise localization in complex environments. It can
accurately calculate the target’s spatial position but performs
poorly when objects are severely obstructed. These computer
vision methods struggle with challenges such as distinguish-
ing similar-looking vaccine boxes and handling obstructed
conditions. Consequently, these methods are not directly
applicable for locating vaccine box in SMCS environments.

To address these challenges mentioned above, this paper
proposes a comprehensive framework for accurately locat-
ing vaccine boxes in SMCS environments with obstructions.
First, the traceability codes on the boxes are recognized
by industrial cameras as workers transport vaccine boxes
into cold storage. Then, to address the challenge of accu-
rately locating vaccine boxes in densely stacked and heavily
obstructed SMCS, this paper exploits the strong correlation
between the vaccine boxes and workers during the storage
process. The vaccine box is indirectly located by focusing on
the less numerous and less obstructed cold storage workers.
The YOLOVS5 detector followed by the DeepSORT algorithm
is employed for workers tracking. Furthermore, to enhance
the tracking accuracy of the workers, the YOLOvVS model
was modified, resulting in the development of the Vaccine
Cold Storages YOLOVS (VCS-YOLOVS5) model tailored for
obstructed condition in SMCS. Additionally, the final posi-
tion of the vaccine box is determined by the ResNet behavior
recognition model. Specifically, when a worker transitions
from transporting to a non-transporting state, indicated by
their hands no longer being in contact with the vaccine box,
the worker’s location at that moment is considered as the
final position of the vaccine box. For clarity, ‘localization’
specifically refers to determining the exact position of a
vaccine box within the cold storage at a precise moment,
while, ‘tracking’ refers to continually determining the precise
locations of workers in the cold storage in this paper.

The main contributions of this paper are summarized as
follows:

1) This study proposes a comprehensive framework for
vaccine box localization in Small to Medium Cold Storages
(SMCS). This framework integrates traceability code recog-
nition, worker tracking, worker behavior recognition, and
vaccine box localization, addressing the need for real-time
precise localization of vaccine boxes. Experiments demon-
strate the superior performance of this framework, setting a
new benchmark in this field.
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2) This study advances the field by offering a cost-
effective, computer vision-based vaccine boxes localization
alternative to existing methods in SMCS. The approach not
only reduces operational costs by minimizing the need for
extensive hardware infrastructure but also fills a critical
research gap in accurately locating vaccine boxes in SMCS.

3) Given the challenges faced by existing computer vision
methods in distinguishing visually similar vaccine boxes,
locating the same vaccine box in a video stream, and han-
dling occlusion, this paper transforms the problem of vaccine
box localization into a worker tracking issue by leveraging
the strong correlation between vaccine boxes and worker.
Consequently, it indirectly achieves accurate locating of vac-
cine boxes. Due to the relatively small number of workers,
their distinct features and the difficulty of complete occlu-
sion, this approach effectively overcomes the aforementioned
challenges.

4) To further enhance the precision of the YOLOVS
algorithm in tracking workers, this paper has made improve-
ments to the YOLOvVS5 model from three perspectives:
generalization, feature extraction, and bounding box model-
ing under occlusion. This paper proposed the VCS-YOLOv5
model tailored for occlusion environment in SMCS, sig-
nificantly enhancing the performance in terms of tracking
workers.

The rest of this paper is organized as follows. Section II
outlines several related works. The proposed method is pre-
sented in detail in Section III. Section IV is devoted to the
presentation of the experimental results and the analysis per-
formed on the dataset. Section V discusses the experimental
results, contrasts them with previous studies, explores limi-
tations, and suggests future research directions. Section VI
summarizes this study and discusses future work.

Il. RELATED WORK

A. IoT LOCALIZATION TECHNOLOGIES

In the realm of IoT localization, technologies such as RFID,
UWRB, Bluetooth, and ZigBee have established themselves as
cornerstone solutions [8]. RFID, leveraging radio frequency
waves, excels in inventory locating and asset management,
known for its wide coverage and ease of deployment [9].
UWB technology, characterized by its use of extremely short
radio waves, stands out for its high precision in indoor posi-
tioning, proving invaluable in complex environments [10].
Bluetooth, commonly used for short-range communication,
has been adapted for localization with notable success in
consumer applications, offering a balance between range
and accuracy [11]. ZigBee, operating on low-power digital
radio, is renowned for its efficiency and network flexibility,
making it ideal for smart home and industrial applica-
tions [12]. However, the efficacy of these technologies
diminishes significantly in SMCS with obstructed environ-
ments. RFID, while cost-effective, often struggles with signal
interference and limited range in dense environments [13].
UWB, despite its accuracy, faces challenges in terms of
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high cost and power consumption, limiting its widespread
adoption [14]. Bluetooth, commonly affected by signal atten-
uation and physical obstructions, can suffer in precision.
ZigBee, although efficient, is constrained by its low data
rate and susceptibility to interference in crowded radio fre-
quency environments [15]. In contrast, this paper leverages
advanced computer vision techniques to effectively overcome
these limitations. By tracking workers for indirect vaccine
box localization, the method bypasses traditional IoT issues
like signal interference. This approach not only improves
localization accuracy in obstructed cold storages but also
minimizes hardware reliance, offering a more scalable and
cost-effective solution.

B. VISION-BASED LOCALIZATION TECHNIQUES
Vision-based localization techniques, particularly those
within the YOLO (You Only Look Once) series, have gained
substantial attention in recent years. The YOLO architec-
ture, renowned for its high-speed real-time object detection,
leverages deep convolutional neural networks to classify and
localize objects in a single forward pass [16]. This foun-
dational work has spurred a series of developments and
enhancements in the YOLO series [17], [18], [19], each
aiming to improve aspects like detection accuracy, speed, and
robustness in varied environments. Moreover, advancements
in vision-based techniques against occlusions have furthered
the scope of applications in complex environments [20].
A notable example is the use of part-based models, as dis-
cussed in the paper by Wang et al. [21], which are effective
in localizing objects even when they are partially obscured.
These models operate by recognizing and combining differ-
ent parts of an object, a strategy that proves advantageous in
maintaining localization continuity in the presence of occlu-
sion. However, despite these advancements, such techniques
still encounter significant challenges in environments with
high-density obstructions, like SMCS. In these environments,
the common issue of similar objects overlapping, combined
with limited space, presents a substantial hurdle for con-
ventional vision-based localization methods. These methods
often struggle to distinguish between closely stacked items,
which leads to inaccuracies in both object localization and
identification. In response to these challenges, this paper
takes a novel direction compared to traditional vision-based
localization techniques. It leverages the correlation between
the movement of cold storage workers and the position
of vaccine boxes, introducing an indirect locating method.
By focusing on the less obstructed and more distinguishable
features of workers, this method, supported by the tailored
VCS-YOLOVS model, effectively overcomes the limitations
posed by dense stacking and occlusions.

C. MULTI-OBJECT TRACKING TECHNIQUES

Multi-object tracking (MOT) techniques have seen substan-
tial advancements, evolving to address increasingly complex
tracking environments. The prevalent approach in this field
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FIGURE 1. The overall framework of the vaccine box localization.

is the Tracking by Detecting methodology, which fundamen-
tally consists of two components: Detection and Embedding.
Based on the implementation of these components, algo-
rithms can be categorized into two series: Separate Detection
and Embedding (SDE) and Joint Detection and Embedding
(JDE). In SDE algorithms, the detection and embedding pro-
cesses are distinct, allowing for more focused optimizations
in each step. This separation often leads to more efficient
and accurate tracking, making SDE methods widely pre-
ferred in practical applications. DeepSORT [22] is a prime
example of an SDE-based algorithm, known for its enhanced
tracking accuracy through deep learning features. However,
while SDE methods have shown significant progress, they
heavily rely on the precision of the detector. In complex
and confined environments like vaccine cold storages, where
obstructions are prevalent, the accuracy of the detector can
considerably diminish. This paper addresses this challenge by
employing the VCS-YOLOvS5 model, which has been specif-
ically optimized for the unique conditions of vaccine cold
storage environments. The enhanced detection capabilities of
VCS-YOLOVS ensure more accurate and reliable tracking
in these challenging environments, thereby overcoming the
limitations typically encountered by standard SDE methods.

lll. METHODOLOGY

This study focuses on the task of accurately locating
each unique vaccine box in RGB-D images. Given an
RGB-D image, the objective is to identify and return the
three-dimensional coordinates of every vaccine box, each
distinguished by its own traceability code. This chapter intro-
duces a framework encompassing four key parts: traceability
code recognition module, object tracking module, behavior
recognition module, and vaccine box localization module.
These form the subsections of this chapter. A significant
aspect of this work involves enhancing the YOLOvS5 model,
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producing the specialized VCS-YOLOVS5 for vaccine cold
storage environments.

A. OVERALL FRAMEWORK DESCRIPTION

This study proposes a novel framework to localize vac-
cine boxes in small to medium cold storages (SMCS) with
dense stacking and obstructions. Recognizing the challenges
of direct locating in such environments, this study shifts
focus to the correlation between workers and vaccine boxes.
This method tracks fewer, less-obstructed cold storage work-
ers, using their locations as proxies for the vaccine boxes.
This indirect approach significantly improves the localiza-
tion accuracy in obstructed environments. To ascertain the
final location of the vaccine boxes, this study defines two
distinct states for the workers: ‘transporting’ and ‘non-
transporting’. During the ‘transporting’ state, the vaccine box
and the worker are regarded as a unified entity, allowing for
real-time updates of the vaccine box’s location. This state
is identified by a behavior recognition model, which detects
when a worker is handling the box. Conversely, the ‘non-
transporting’ state is recognized when the worker’s hands are
no longer in contact with the vaccine box, indicating that the
box has been placed at a location. In conclusion, this frame-
work provides a practical and accurate solution for locating
vaccine boxes in obstructed cold storage environments.

The overall framework proposed in this paper is illus-
trated in Figure 1. Firstly, an industrial camera automatically
captures and recognizes the trace code on the vaccine box
entering the cold storage, obtaining the information of the
trace code and its relative position on the box surface.
Next, a depth camera is used to continuously capture video
sequences with depth information. The video sequence is
then inputted into the VCS-YOLOVS algorithm to obtain the
detection box of the workers. The DeepSORT algorithm is
then employed for real-time tracking of workers, retrieving
the workers’ ID information and three-dimensional position
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data. Subsequently, the workers are cropped from the original
video sequence, and the ResNet algorithm is employed to
classify and recognize the workers’ actions. If the current
worker is identified as being in a transporting state, the
traceability code information is matched and associated with
the worker’s ID information. The three-dimensional position
data of the worker is used to represent the three-dimensional
location of the vaccine batch being transported, realizing a
preliminary location of the vaccine box in the vaccine cold
storage. Using the relative position information of the trace
code, the three-dimensional location data of each vaccine box
is then restored, achieving precise location of the vaccine box
in the cold storage. If it’s recognized that the current worker
transitions from a transporting state to a non-transporting
state, the update of the vaccine box’s location is stopped, and
the information is recorded in the database.

B. TRACEABILITY CODE RECOGNITION MODULE

An industrial camera is placed behind the cold storage door.
When workers transport vaccine boxes into the cold storage,
the industrial camera automatically recognizes the traceabil-
ity code on the vaccine box. It returns the information of the
traceability code as well as its relative position on the box,
which is used for subsequent locating of each vaccine box.

C. OBJECT TRACKING MODULE

1) VCS-YOLOV5 MODEL

Using YOLOVS as an object detector in the vaccine cold
storage, and directly locating the vaccine box based on the
DeepSORT model, there are problems like difficulty in dis-
tinguishing vaccine boxes with similar appearances, inability
to locating the same vaccine box in the video stream, and
challenges in handling occlusion. By leveraging the high cor-
relation between the vaccine box and the workers, this paper
transforms the vaccine box locating problem into worker
tracking problem, indirectly achieving vaccine box position-
ing. However, when YOLOVS is used as an object detector to
track worker in the vaccine cold storage, there are still some
shortcomings:

First, YOLOVS is an anchor-based algorithm, relying on
manually designed hyperparameters, such as the aspect ratio,
area, and number of anchor boxes. This mechanism doesn’t
adapt well to the complex and changing dataset of vaccine
cold storage environments. Second, due to the intricate envi-
ronment in the vaccine cold storage, workers will still be
partially obscured, resulting in decreased algorithm detection
accuracy. Lastly, due to the low color contrast between the
workers and the surrounding environment, and significant
noise interference, false negatives and false positives are
likely.

To address the above issues and further improve the detec-
tion accuracy of the YOLOVS algorithm in the vaccine
cold storage, this paper proposes the VCS-YOLOvVS model
tailored for small and medium-sized vaccine cold storage
occlusion environments:
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Input Backbone Neck Head

CBL
640%640%3
C3RS
T
{ | eBL | = concat | c3rs !
" i
| CBL I | CBL I Concatl
] l i ’ !
i | cms | i | cms C3RS
Ea—
[ ] F{cam]
M s
i | seer | [opsample

C3RS —H—>

Anchor-free Detection Mechanism: To enhance the
model’s generalization capability on the vaccine cold storage
environment dataset, the concept of the anchor-free model,
FCOS [23], is borrowed. The VCS-YOLOvVS model adopts
an anchor-free detection mechanism.

Optimized Network Structure: The overall network struc-
ture is depicted in Figure 2. Initially, this paper designs
a C3RS module, a combination of C3, RepResBlock, and
SE. The C3RS module introduces the RepResBlock struc-
ture to replace the Res-Unit structure of the C3 module
in YOLOvVS. By integrating multi-scale feature fusion, the
model not only enhances its feature extraction capability
but also maintains the inference speed of the original net-
work structure. Furthermore, after the Concat connection, the
C3RS module incorporates the channel attention SE mod-
ule, further strengthening the model’s feature representation
capability. Subsequently, the paper substitutes the network’s
activation function with the Mish activation function, enhanc-
ing the model’s non-linear representation capability. Finally,
the coupled detection head (Coupled Head) is replaced by
a decoupled detection head (Decoupled Head), allowing
classification and regression tasks to learn independently,
facilitating the enhancement of the model’s feature represen-
tation capability.

Optimized Matching Strategy: This paper refers to and
draws inspiration from the dynamic matching strategy of
Task Align Assigner in the TOOD detector. This strategy
strengthens the alignment and interaction of classification
and regression tasks, enabling simultaneous acquisition of the
highest classification scores and the most precise bounding
boxes.

Optimized Loss Function: To improve the model’s detec-
tion precision under occlusion environment, this paper intro-
duces the Distribution Focal Loss (DFL) loss function, further
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amplifying the model’s capability to model bounding boxes
in the intricate environment of the vaccine cold storage.

2) ANCHOR-FREE DETECTION MECHANISM

In the intricate environment of a vaccine cold storage, factors
such as the camera installation position, the distance between
the camera and the workers, and the posture of the work-
ers can influence the proportion of workers present in the
images. Conventional anchor-based object detection methods
require manual design of anchor box aspect ratios, areas, and
quantities to better meet the detection needs of various-sized
workers members in the vaccine cold storage environment.
However, in practical applications, given that the environ-
ment of the vaccine cold storage frequently changes, these
manually designed parameter settings might not be accurate,
leading to a decline in object detection performance and
affecting the model’s generalization capability.

To address the above issues, drawing inspiration from
the anchor-free model FCOS, the VCS-YOLOVS5 model
proposed in this paper adopts an anchor-free detection mech-
anism, granting the model greater flexibility and adaptability
to swiftly respond to changes in the vaccine cold storage
environment.

Initially, every grid location inside the ground truth bound-
ing box is considered as a positive sample in this paper. For
each of these locations, the distances to the top, bottom, left,
and right sides of the real bounding box are predicted, denoted
as [, b, [, r]. As illustrated in Figure 3, assuming a location
inside the actual bounding box is (x, ¥), with the top-left
corner of the actual box being (x;, y;) and the bottom-right
corner being (x,, y,), the regression targets [I«, t«, r+, b«] for
this location can be represented as:

Ik =x—x
k=Yy—)i
s = Xp—X
be = yr—y )

Furthermore, this study employs the last three feature maps
[P3, P4, Ps] of the YOLOVS network for prediction and
sets four thresholds [my, m3, m4, ms]. Subsequently, every
positive sample location on the feature map P; is traversed.
For a positive sample (x, y) on feature map P;, the distances [,
b, I, r] from the current location to the real bounding box are
first computed. The maximum value among them, denoted as
m, is then determined, i.e., m = max(¢, b, [, r). The range of
threshold values into which m falls is ascertained to verify if
m satisfies the conditions. If it meets the criteria, the location
is designated as a positive sample; otherwise, it’s labelled as
a negative sample.

Through the above steps, objects of different scales are
assigned to different feature layers for detection. Given that
many overlaps occur between objects of disparate sizes, the
VCS-YOLOVS5 model not only possesses the capability for
multi-scale prediction but also addresses the issue of object
overlap.
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FIGURE 3. Model prediction principle.
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3) OPTIMIZED NETWORK STRUCTURE

a: C3RS MODULE

In the environment of vaccine cold storage, many vaccine
boxes are stacked together densely. Workers inevitably face
obstructions from the boxes they are carrying or from their
surroundings during the transportation process, increasing the
difficulty of model recognition. Moreover, the cold storage
itself is a relatively enclosed space. The lighting conditions
are usually weak, and the color contrast between the target
to be tested and its surroundings is not obvious. Coupled
with the presence of noise interference, it is easy for the
model to miss or misidentify objects. To further improve
the detection accuracy of the YOLOvV5 model in the vaccine
cold storage environment, this paper has improved the C3
module in the YOLOVS model and designed a C3RS module
that combines C3, RepResBlock, and SE modules. With the
introduction of only a small number of parameters, the model
possesses stronger feature extraction capabilities, allowing
it to effectively deal with the strong obstructions and weak
contrast in the vaccine cold storage environment.

The C3 module is an essential component of the YOLOVS
network. Its main function is to increase the depth and recep-
tive field of the network, enhancing the capability of feature
extraction. The structure is divided into two branches. One
branch passes through a standard convolutional module and
multiple residual modules, while the other branch only passes
through a standard convolutional module. Finally, a Concat
operation is performed on the two branches, as shown in
Figure 4.
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The overall structure of the C3RS module is shown in
Figure 5. Firstly, this paper introduces the RepResBlock [24]
structure to replace the Res-Unit structure in the C3 module.
The structures of RepResBlock during training and inference
are shown in Figures 6 and 7, respectively. During model
training, the RepResBlock structure introduces a standard
convolutional branch based on the Res-Unit structure, which
expands the receptive field of the model. After computation,
the two branches are merged to complete the fusion of multi-
scale features. With these improvements, the model can learn
multi-scale feature information, further enhancing its feature
extraction capability. However, introducing a new branch
inevitably introduces additional parameters, leading to an
increase in the model’s computational cost and a decrease in
inference speed. To avoid the adverse effects brought by the
new branch, during the inference phase of the model, RepRes-
Block undergoes structural reparameterization. Specifically,
the standard convolutional branch is padded as a convolution,
and it is weight-fused with the convolution on the other
branch, further optimizing the network structure, as shown
in Figure 6. Through these improvements, the model can
enhance its representational capability during training, and
it will not introduce extra computational costs during
deployment.

Furthermore, to emphasize the inter-channel relationships
in the fused feature maps and enhance the contribution of
crucial information to feature representation, this study inte-
grates the SE [25] attention mechanism module after the
C3 module. This mechanism explicitly models the interde-
pendencies between feature channels. Through a learning
approach, it automatically determines the importance of
each feature channel. Consequently, it amplifies features
with high contributions while suppressing less significant
ones. The SE attention mechanism module is depicted
in Figure 8.
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b: DECOUPLED HEAD STRUCTURE
In object detection tasks, classification and regression are
two relatively independent tasks. During the training process
of the model, each focuses on different content and exhibits
distinct preferences. Specifically, classification tasks empha-
size the differences between individual objects, focusing on
the texture features of the target, while regression tasks pay
more attention to the contour and boundary features of the
object. The original YOLOVS algorithm employs a coupled
prediction head that simultaneously handles classification
and regression tasks. This not only reduces the detection
accuracy of the model but also affects its convergence speed.
Inspired by the decoupled prediction head proposed by
YOLOX [18], this study replaces the coupled prediction head
of YOLOVS5 with a decoupled one, allowing the classification
(Cls) and regression (Reg) tasks to learn independently. This
lets different sub-tasks focus on distinct features, as shown in
Figure 9. Compared to the original YOLOVS, the improved
decoupled prediction head enhances detection accuracy while
accelerating the model’s convergence speed.

¢: MISH ACTIVATION FUNCTION

To further enhance the non-linear expressive capability of the
YOLOVS5 model, this paper adopts the Mish activation func-
tion [26] to replace the Silu activation function within the
network. Introduced by MISRA in 2019, the Mish activation
function is novel, as shown in equation (2).

Mish = x x tanh(In(1 + ¢*)) 2)

While the Mish function establishes a lower boundary,
it does not possess an upper one. As the values edge towards
the extremes in either direction, its gradient approximates
1. This characteristic efficiently prevents the issue of slow
convergence during network training caused by zero gradi-
ents. When benchmarked against activation functions like
SiLu and Relu, Mish showcases a more refined and smoother
transition, introducing heightened non-linear representation.
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FIGURE 10. TAL dynamic matching strategy.

This leads to a commendable enhancement in the model’s
generalization and precision metrics.

4) OPTIMIZED MATCHING STRATEGY

The VCS-YOLOVS5 model employs a geometry-based alloca-
tion strategy, considering every grid location (anchor point)
within the real annotation box as a positive sample. It then
allocates these to different feature layers for classification
and regression based on the size scale of the detected object.
However, the best anchor points for classification and local-
ization are typically inconsistent. They can vary significantly
based on the shape and features of the detected object.
Since the geometry-based sample allocation strategy is task-
independent, the chosen anchor points may struggle to make
accurate and consistent predictions for both classification and
regression tasks simultaneously.

Addressing the issues of the anchor-less YOLOVS detector,
this paper references and draws from the Task Align Learning
(TAL) dynamic matching strategy found in the TOOD [27]
detector. This strategy enhances the alignment and interaction
of the detector’s classification and regression tasks, obtain-
ing boundary boxes with the highest classification scores
and the most precise localization. Firstly, the decoupled
prediction heads in the VCS-YOLOvVS model compute the
classification score s and the location precision score u of
the current prediction box separately for classification and
regression tasks. Subsequently, the TAL dynamic matching
strategy employs a high-order combination of the classifi-
cation score and the location precision score to represent
the comprehensive score ¢ of the prediction box, expressed
as t = s+ uP. Here, o and B can control the influence
degree of the classification score and location precision score
on the comprehensive score, respectively. Finally, the top K
prediction boxes with high comprehensive scores and central
points within the real annotation boxes are selected as positive
samples, with the remaining detection boxes being negative
samples. The principle of the TAL dynamic matching strategy
is illustrated in Figure 10.
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5) OPTIMIZED LOSS FUNCTION

During the process of workers transporting vaccine boxes
inside the vaccine cold storage, due to the obstruction by the
vaccine boxes held in their hands, the images captured by the
camera cannot clearly indicate the boundaries of the workers.
The annotated true boundary boxes have strong uncertainty,
as shown in Figure 11. Current mainstream object detec-
tors like YOLOvS fundamentally model the object boundary
boxes with a single Dirac distribution, that is, they directly
predict the coordinates of the boundary boxes. They do not
consider situations where the boundaries of the objects are not
clear or complete due to obstructions, shadows, blurriness,
etc. As a result, the flexibility and generalization capabilities
of the detector are insufficient.

To address the issues in the YOLOVS regression task, this
study does not directly predict the absolute coordinates of
bounding boxes. Instead, it predicts the probability distri-
bution of bounding box coordinates. The Distribution Focal
Loss (DFL) loss function [28] is introduced to optimize the
probability distribution of bounding box coordinates, enhanc-
ing YOLOVS’s ability to model bounding boxes in complex
environment s such as vaccine cold storage. Specifically,
an interval [0, k] is first selected. After dividing the object
positioning label [/, ¢, b] by the down sampling multiple
(stride) of the detection layer, the positioning label will fall
into a sub-interval [, i+1] of the integer interval [0, k]. The
SoftMax function is then used to discretize the interval [0,
k], achieving any form of discrete distribution. The network
outputs k+1 values as the probability of falling on positioning
interval nodes. When the positioning label falls in the interval
[, i+1], the predicted bounding box coordinate distribution
probabilities p(i), p(i + 1) should theoretically be relatively
large. Therefore, the DFL loss function is introduced to
allow the network distribution to quickly focus near the label
value. The formula for the DFL loss function is shown in
Equation (3).

DFL(Pj, Piy1) = —(it1 — »)og(Pi) — (y — yplog(Pi+1)
(3)
Finally, after integrating the predicted probability distri-

bution of the bounding box over the interval, this paper can
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obtain the predicted value y* of the bounding box. y* can be
considered as the expected value of the bounding box. Since
discrete points of the interval are used in its definition, y* can
be expressed as:

k
Y= pl)-i )
i=0

6) OBJECT TRACKING IMPLEMENTATION

The VCS-YOLOVS algorithm can accurately detect workers
inside the cold storage. By inputting the detection boxes
obtained from the VCS-YOLOVS5 algorithm into the Deep-
SORT algorithm, it ultimately achieves tracking of the
workers. The DeepSORT algorithm returns the ID informa-
tion of the workers as well as their three-dimensional location
information.

D. BEHAVIOR RECOGNITION MODULE

To determine the final position of the vaccine box, this
paper introduces a behavior recognition model to identify
the actions of the workers. It needs to distinguish between
transporting actions and non-transporting actions. When the
worker is in the act of transporting, the vaccine box and the
worker are treated as one entity, updating the position of the
vaccine box in real time. When the worker transitions from
transporting to non-transporting status, the current location of
the worker is considered as the final position of the vaccine
box, completing the locating of the vaccine box. Since trans-
porting actions and non-transporting actions are relatively
easy to distinguish, this paper adopts a behavior recognition
scheme based on image classification. Firstly, the locating of
the workers in the video stream is obtained through the object
tracking algorithm. Then, each image is analyzed, and the
corresponding area of the worker in the image is cropped and
sent to the ResNet image classification network for behavior
recognition. Specifically, the transporting state is defined by
direct contact between the worker’s hands and the vaccine
box, accompanied by a noticeable lifting or moving action.
Conversely, the non-transporting state is characterized by
the absence of contact between the worker’s hands and the
vaccine box. When the category of the image corresponds to
the specific action, it is believed that the person is in that state
of action within a certain period.

E. VACCINE BOX LOCALIZATION MODULE
The RGB-D depth camera, using the VCS-YOLOVS5 model,
has obtained the position O(u, v, d) of the worker’s cen-
ter point in the pixel coordinate system O. Here, u and v
represent the pixel coordinates of the worker in the image,
and z indicates the distance from that pixel coordinate to
the worker. Once the worker’s position is determined, the
location of the vaccine box being transported in that batch
is also ascertained.

To better understand and analyze the location information
of the vaccine box in the vaccine cold storage environment,
the pixel coordinate system is transformed into the camera
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coordinate system to obtain the three-dimensional spatial
coordinates of the vaccine box in the vaccine cold storage.
Firstly, the Zhang calibration method [29] is employed to
calibrate the RGB-D depth camera and obtain the intrinsic
matrix K of the camera. The intrinsic matrix is shown as
follows:

fi 0 cx
K=10 f, o (@)
0O 0 1

where f, and f, are the focal lengths of the camera along
the x-axis and y-axis respectively, cx and cy represent the
origin position of the pixel coordinate system. Next, this
paper computes the three-dimensional spatial coordinates (x,
¥, 7) of the target center pixel (u, v) in the camera coordinate
system. The conversion formula is as follows:

X = (u—cx)"d/fx
Y =@ —cy)d/fy
Z=d ©)

After converting the three-dimensional spatial position
of this batch of vaccine boxes into the three-dimensional
coordinates under the camera coordinate system, the
three-dimensional position information of each vaccine box
is restored based on the relative position information of the
traceability code. This achieves precise locating of the vac-
cine boxes inside the vaccine cold storage.

IV. EXPERIMENTAL ANALYSIS

A. DATASETS

1) OBJECT DETECTION DATASET

This paper employs the widely used COCO dataset for object
detection tasks to verify the efficacy and generalization capa-
bilities of the VCS-YOLOv5 model. The COCO [30] dataset
is a benchmark in the field of object detection, with over 330K
images, 220K annotated images, and 1.5 million objects,
spanning 80 object categories. The train2017 and val2017 sets
from this dataset serve as training and validation datasets,
with the former containing 118,287 images and the latter
comprising 5,000 images.

2) OBJECT TRACKING DATASET

For the object tracking model’s training and validation, this
paper chose the MOT17 [31] pedestrian tracking dataset and
a dataset collected from the SMCS environment. MOT17 is
designed to evaluate the performance of multi-object tracking
algorithms. It includes 21 high-definition videos from varied
environments, split into training (7 videos) and testing sets
(7 videos). These videos encapsulate various challenging
scenes, such as dense crowds, occlusions, and changing per-
spectives. The dataset provides annotations including object
IDs and locations. While each sequence varies in frame
numbers, they range between 150 to 1,500 frames. Each
sequence features multiple pedestrian objects, amassing a
total of 7,251 instances, with 4,432 belonging to the training
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set and 2,849 to the testing set. Additionally, to enhance the
model’s tracking capability in the SMCS environment, this
paper has gathered 14 video clips, with 7 chosen randomly for
training and the remaining 7 for testing. Each video averages
300 frames, presenting approximately 3 targets per frame.

3) BEHAVIOR RECOGNITION DATASET

This paper has chosen the UAV-Human [32] dataset and
another dataset from the SMCS to train and validate the
behavior recognition model. The UAV-Human is a large-
scale human behavior understanding dataset featuring 67,428
multimodal video sequences and 119 action recognition enti-
ties. Furthermore, to boost the model’s behavior recognition
capability in the SMCS, this paper has expanded the dataset
with 14 video clips. This research focuses on identifying
personnel behaviors and categorizing them into carrying and
non-carrying actions. Firstly, the UAV-Human dataset was
processed using an object tracking model to isolate and
capture individuals in the videos, producing the required
training images. Positive samples were carrying actions,
with the negatives being other actions. Given the potential
redundancy in video-to-image conversion, this paper sampled
every 8 frames for positives. For negative samples, this paper
selected based on a 1:4 positive-negative ratio, especially
emphasizing actions prone to misidentification, such as pick-
ing up objects, rubbing hands, and squatting.

B. EXPERIMENTAL ENVIRONMENT

The experiments were conducted on a computer equipped
with an Intel(R) Xeon(R) Platinum 8255C CPU @
2.50GHz (344G RAM) and 8 RTX 3070 GPUs, running
Ubuntu 20.04. The software environment includes Cudall.3,
PyTorchl.11.0, Python3.8, and TensorRT 8.0.3.4. A single
RTX 3070 GPU was utilized during testing with a batch size
setto 1.

C. EVALUATION METRICS

For the object detection model, this paper evaluated detection
outcomes using four metrics: mean average precision (mAP),
model parameter count, model size, and detection speed. For
the object tracking model, this paper employed the Multiple
Object Tracking Accuracy (MOTA), the harmonic means of
identification precision and recall (IDF1), and frames pro-
cessed per second (FPS) to gauge tracking performance. For
behavior recognition, the accuracy (Acc) and FPS were the
chosen metrics.

D. OBJECT DETECTION EXPERIMENT

1) COMPARATIVE EXPERIMENT

To verify the effectiveness of the algorithm presented in
this paper, this paper conducted comparative experiments
between the VCS-YOLOVS model and other mainstream
object detection algorithms, including the original YOLOVS,
YOLOX, and YOLOvV7. These algorithms were tested on the
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TABLE 1. Comparison of algorithm experiments.

Dataset Model mAP Parameters GFLOPs FPS
(%) M)
coco YOLOVS-L 49.0 46.5 109.3 98.9
coco YOLOX-L 50.1 54.2 155.6 75.3
coco YOLOv7-L 51.0 37.62 106.08 94.6
Ccoco VCS-YOLOvVS 51.3 48.2 118.7 80.2
MOT17 & SMCS YOLOVS5-L 46.7 46.5 109.3 98.9
MOT17 & SMCS YOLOX-L 483 54.2 155.6 75.3
MOT17 & SMCS YOLOv7-L 49.4 37.62 106.08 94.6
MOT17 & SMCS VCS-YOLOvVS 52.9 48.2 118.7 80.2

COCO dataset and a combined dataset of MOT17 and the
SMCS scene. The experimental results are shown in Table 1.

From Table 1, the VCS-YOLOVS5 model achieved the best
detection accuracy on both the COCO dataset and the fused
dataset of MOT17 and SMCS. On the COCO dataset, the
mAP value of the proposed method in this paper is 51.3%,
which is 2.3%, 1.2%, and 0.3% higher than that of YOLOVS,
YOLOX, and YOLOV7, respectively. On the fused dataset
of MOT17 and vaccine cold storage, the mAP value of this
method is 52.9%, which is 6.2%, 4.6%, and 3.5% higher than
YOLOvVS5, YOLOX, and YOLOV7, respectively. Compared
with YOLOX, the model parameters of this method decreased
by 11%, and the computational complexity decreased by
23%. Compared with YOLOvVS and YOLOvV7, there was a
slight increase in the number of parameters and computa-
tional complexity, which is due to the introduction of the SE
module and the decoupled detection head. In terms of model
inference speed, this method achieves real-time detection, but
it is slightly slower than the detection speed of YOLOVS5 and
YOLOV7.

Through comparison, while ensuring real-time detection,
this method only increased a small number of parameters
and computational complexity and achieved the best detec-
tion accuracy on multiple datasets. This further verifies the
universality and effectiveness of the method proposed in this
paper.

Visual Analysis of object detection Results:

For a more intuitive comparison of the detection effects
of different algorithms, using the real annotation boxes as a
benchmark, this paper contrasted the detection performance
of the original YOLOvVS algorithm with that of the VCS-
YOLOVS algorithm. The detection results are displayed in
Figure 12. In each row of images, the sequence is as follows:
original image, annotated image, YOLOVS5 detection results,
and VCS-YOLOVS detection results.

In environments where the workers are highly occluded,
have unclear contours, or are of a smaller scale (as shown
in rows 1 and 2), the original YOLOVS5 algorithm may miss
some detections. In contrast, the method proposed in this
paper can effectively distinguish overlapping targets.

When the workers are not facing the camera directly (as
seen in row 3), the original YOLOvVS algorithm exhibits
notable misses. The method proposed in this paper can detect
targets from different angles.

In situations where the workers are only slightly occluded
(as shown in row 4), neither the original YOLOVS5 algorithm
nor the method from this paper misses any detections.
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FIGURE 12. Visual analysis of object detection results.

TABLE 2. Comparison of ablation experiment results.

Model mAP (%) Parameters(M) GFLOPs FPS
YOLOVS-L 49.0 46.5 109.3 98.9
+Anchor-free 49.3(+0.3) 46.2 108.4 99.8
+C3RS 49.9(+0.6) 46.4 108.6 95.2
+Decouple Head 50.3(+0.4) 47.3 118.7 82.4
+Mish 50.6(+0.3) 48.2 118.7 80.6
+TAL 51.1(+0.5) 48.2 118.7 80.2
+DFL 51.3(+0.2) 48.2 118.7 80.2

However, the accuracy and confidence levels of the method
proposed in this paper are notably higher.

2) ABLATION STUDY

To verify the effectiveness of the improvements introduced
in this paper, we conducted ablation experiments on the
COCO dataset to explore the enhancement effect of each
improvement on the overall model. Since each improvement
is not entirely independent and there are too many com-
binations of improvements, it is challenging to conduct a
comprehensive analysis. Therefore, this paper demonstrates
the effectiveness of each improvement incrementally. Using
the original YOLOVS network as the baseline, five sets of
ablation experiments were conducted on the COCO dataset.
The environment and parameter settings were kept consistent
across all experiments. The model inference speed (FPS) was
tested under TensorRT-FP16, excluding the time for data pre-
processing and post-processing (NMS) after model output.
The experimental results are shown in Table 2.

Firstly, this paper selects the YOLOvVS5 model as the
baseline for comparison in the subsequent five sets of exper-
iments. The detection mAP value is 49.0%, with 46.5M
parameters, 109.3G GFLOPs, and an inference speed of
98.9 FPS. Experiment 1 transforms the YOLOv5 model into
an anchor-free detector. The model’s accuracy improved by
0.3 percentage points, with a slight reduction in parameters
and computational cost, and a minor increase in inference
speed. In Experiment 2, the C3 module is replaced with the
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TABLE 3. Comparison of ablation experiment results.

Model Kl mAP (%) MOTA IDF1 FPS
YOLOV5-DeepSORT 46.7 50.2 52.4 93.8
YOLOX-DeepSORT 483 51.8 55.8 70.4
YOLOV7-DeepSORT 49.4 56.7 60.5 89.5
VCS-YOLOV5-DeepSORT 52.9 58.4 64.6 76.3

C3RS module. The improved model’s accuracy increased by
0.6%. Due to the introduction of the SE module, the model’s
parameters and computational cost rose slightly, and the
inference speed decreased marginally. Experiment 3 replaced
the coupled prediction head with a decoupled prediction head,
resulting in a 0.4% increase in model accuracy. However, this
introduced new computational costs, increasing the model’s
parameters by 0.9M, GFLOPs by 10G, and decreasing the
inference speed to 82.4 FPS. Experiment 4 replaced the SiLu
activation function in the network with the Mish activation
function. Without changing the model’s parameters and com-
putational cost, the model’s accuracy improved by 0.3%,
proving the effectiveness of introducing the Mish activation
function. Experiment 5 introduced the TAL dynamic match-
ing strategy. Without changing the model’s parameters and
computational cost, the model’s accuracy improved by 0.5%,
and the inference speed remained almost unchanged. Exper-
iment 6 introduced the DFL loss function. Compared with
the improved model in Experiment 5, the model’s accuracy
increased by 0.2%. The model’s parameters, computational
cost, and inference speed remained virtually unchanged.

E. OBJECT TRACKING EXPERIMENT

The detection results of the object detection algorithm
need to be input into the DeepSORT algorithm to achieve
multi-object tracking. To verify the performance of the VCS-
YOLOVS algorithm in pedestrian multi-object tracking, the
tracking results of this algorithm are compared with those of
YOLOV5-DeepSORT, YOLOX-DeepSORT, and YOLOV7-
DeepSORT algorithms. Tests are conducted on the MOT17
and SMCS Fusion datasets, with results shown in Table 3.

From Table 3 compared with the three algorithms
YOLOV5-DeepSORT, YOLOX-DeepSORT, and YOLOV7-
DeepSORT, the algorithm presented in this paper has
improved the MOTA metric by 8.2%, 6.6%, and 1.7% respec-
tively. The IDF1 metric has also been improved by 12.2%,
8.8%, and 4.1% respectively. This method ensures real-time
tracking while achieving the best tracking accuracy.

Visual Analysis of object tracking Results:

For a clearer and more intuitive presentation and analysis
of the tracking effects of VCS-YOLOv5-DeepSORT, this
study visualizes the tracking results on the vaccine cold stor-
age dataset, as shown in Figure 13.

During the movement of the workers, the appearance infor-
mation of the workers changes continuously with the scene.
However, the prediction box can still be stably associated
with the detection box and maintain the ID information
unchanged. This indicates that the algorithm proposed in this
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FIGURE 13. Visual analysis of object tracking results.

TABLE 4. Behavior recognition experiment results.

Dataset Accuracy(%) FPS
UAV-Human dataset 92.6 72.5
Vaccine cold storage scene dataset 96.8 72.5

study achieves good tracking results in the complex environ-
ment of the vaccine cold storage.

F. BEHAVIOR RECOGNITION EXPERIMENT

The object tracking algorithm can obtain the coordinate posi-
tion of the pedestrian target in the image as well as the target’s
ID number. By using the coordinate position of the pedestrian
target, the corresponding area in the image is cropped and fed
into the ResNet image classification network to recognize the
behavior of the person and determine whether the person is
in a carrying state. To verify the performance of the behavior
recognition algorithm, this paper tests datasets collected from
the UAV-Human dataset and the vaccine cold storage scene
separately, with the results shown in Table 4.

From Table 4, it can be observed that the accuracy of the
algorithm presented in this study reached 92.6% on the UAV-
Human dataset. On the vaccine cold storage scene dataset, the
accuracy of this paper’s algorithm reached 96.8%. In terms of
model inference speed, even after adding behavior recogni-
tion, the algorithm can still meet the requirements of real-time
recognition.

Visual Analysis of behavior recognition Results:

For a clearer and more intuitive presentation and analysis
of the behavior recognition effect of the algorithm proposed
in this study, we have visualized the behavior recognition
results on the vaccine cold storage dataset, as illustrated
in Figure 14. From the behavior recognition results, it can
be observed that the algorithm of this paper can effectively
identify the behavior of the workers under high occlusion
environment, whether they are carrying or not, meeting the
application requirements.
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FIGURE 14. Visual analysis of behavior recognition results.

TABLE 5. Vaccine box location experiment.

Number Actual value(x,y,z)/cm Measurements (X,y,z)/cm Error/cm

1 (100,100,100) (99,106,102) 6.4
2 (200,100,100) (198,105,98) 57
3 (100,200,100) (101,207,99) 7.1
4 (100,100,200) (98,105,199) 5.4
5 (200,200,200) (199,206,198) 6.4

G. VACCINE BOX LOCATION EXPERIMENT

To validate the accuracy of the methodology introduced in
this article for the task of vaccine box locating, this paper
first chose five spots within the vaccine cold storage that
could represent the spatial distribution inside. Using a laser
distance meter, this paper acquired the precise coordinates
of each spot, which served as the actual values. Next, test
personnel simulated the behavior of cold storage workers
by standing at the previously marked spots. The proposed
method in this paper was then employed to locate the vaccine
box, and the outcomes from the algorithm were taken as
the measured values. Finally, for each spot, the Euclidean
distance between the measured value and the actual value was
computed, determining the overall error in coordinates. The
results can be seen in Table 5. Based on Table 5, it’s evident
that the maximum error amounted to 7.1 cm, the minimum
was 5.4 cm, and the average error stood at 6.2 cm. These
findings indicate that the method can meet the precision
requirements for locating vaccine boxes.

V. DISCUSSION

The experimental results of this paper indicate that the pro-
posed VCS-YOLOv5 model demonstrates significant perfor-
mance advantages in object detection and tracking tasks com-
pared to YOLOVS5, YOLOX, and YOLOvV7. Ablation experi-
ments further confirm the effectiveness of the improvements
in VCS-YOLOVS5. Additionally, the results of behavior recog-
nition experiments show that this method can effectively dis-
tinguish between transporting and non-transporting actions
of workers. Finally, the vaccine box localization experiment

VOLUME 12, 2024



C. Liang et al.: Indirect Vaccine Box Localization in Small to Medium Obstructed Cold Storages

IEEE Access

demonstrates that this method meets the precision require-
ments for locating vaccine boxes in medium and small cold
storages, offering a new solution for practical applications.

Compared to IoT technologies like RFID and UWB, this
solution effectively overcomes signal interference in clut-
tered environments and minimizes hardware dependence,
enhancing scalability and cost-effectiveness. Against tradi-
tional YOLO series vision-based localization, VCS-YOLOV5
shows significant advantages in handling dense obstacles and
occlusions in SMCS. Additionally, this solution offers more
precise tracking in confined spaces compared to multi-object
tracking technologies like DeepSORT.

However, it is essential to note that this paper did not
conduct experimental comparisons with IoT localization
technologies such as RFID and UWB due to limitations in
experimental conditions. Instead, discussions on their limita-
tions are based on descriptions in existing literature. This may
lead to some discrepancies between the conclusions drawn
and their actual application performance. Additionally, the
experimental datasets and results used in this study mainly
come from controlled environments, which may not fully
reflect the complexity and variability of the real world. For
example, if the traceability code of a vaccine box is obscured
upon entering the cold storage, it may lead to inaccurate
locating of the box. Besides, this study recorded the relative
position of vaccine boxes upon their entry into the cold
storage by scanning the traceability code, aiming for precise
subsequent localization. However, if these boxes are moved
during shelving, such as being placed on different levels, the
initial relative position information might become inaccurate,
thereby impacting the final localization accuracy. In future
work, it is necessary to further expand research to include
more real-world environment testing, especially in more com-
plex and unpredictable environments. This will help validate
and improve the applicability and robustness of the current
methods. Additionally, exploring the integration with other
technologies like RFID and UWB is needed to overcome the
limitations of a single technology in specific situations.

In summary, the new framework proposed in this paper can
meet the needs of accurate vaccine box localization in SMCS.
The VCS-YOLOVS5 model demonstrates significant perfor-
mance advantages in object detection and tracking tasks over
traditional methods, as effectively supported by experiments.
This work also shows unique strengths in handling complex
environments and occlusions, yet faces challenges related
to experimental conditions and dataset applicability. Future
research will focus on more comprehensive testing in com-
plex real-world environments and exploring integration with
other technologies to overcome current method limitations,
better adapting to practical application needs.

VI. CONCLUSION

This paper introduces an innovative solution for vaccine box
localization in obstructed environment within SMCS, lever-
aging computer vision technology. Specifically, to address
the challenge of accurately locating vaccine boxes in densely

VOLUME 12, 2024

stacked and heavily obstructed SMCS, this paper exploits the
strong correlation between the vaccine boxes and workers
during the storage process. The vaccine box is indirectly
located by focusing on the less numerous and less obstructed
cold storage workers. Furthermore, to enhance the tracking
accuracy of the workers, the YOLOv5 model was modified,
resulting in the development of the Vaccine Cold Storages
YOLOVS5 (VCS-YOLOvS5) model tailored for obstructed
environment in SMCS. Additionally, the final location of
the vaccine box is determined by a behavior recogni-
tion model, identifying instances where the workers’ hands
are not in contact with the vaccine box. To verify the
effectiveness of the algorithm proposed in this paper, compar-
ative experiments were conducted on multiple datasets. The
experimental results indicate that the VCS-YOLOvV5 model
demonstrates significant performance advantages in object
detection and tracking tasks compared to YOLOvS, YOLOX,
and YOLOV7. Specifically, in the vaccine box localization
task, the detection accuracy of VCS-YOLOvVS5 improved by
6.2% compared to the original YOLOVS; in the task of track-
ing cold storage workers, the tracking accuracy increased
by 8.2%; and in the task of recognizing worker behavior,
the accuracy reached 96.8%. The average error in vaccine
box localization was 6.2 cm, and the overall positioning
and tracking speed of the algorithm was 72 FPS, achieving
the requirements for real-time localization of vaccine boxes.
In future work, it is necessary to further expand the research to
include more real-world environment testing, particularly in
more complex and unpredictable environments. At the same
time, exploring the integration with other technologies like
RFID and UWB is also needed to overcome the limitations
of a single technology in specific situations.
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