
Received 9 January 2024, accepted 18 January 2024, date of publication 25 January 2024, date of current version 1 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3358678

Design, Implementation, and Evaluation of an
Embedded CoAP Proxy Server for 6LoWPAN
ISMAEL AMEZCUA VALDOVINOS 1,
PATRICIA ELIZABETH FIGUEROA MILLÁN 2, (Member, IEEE),
JUAN ANTONIO GUERRERO-IBÁÑEZ 1, AND
RAMONA EVELIA CHÁVEZ VALDEZ 2
1Facultad de Telemática, Universidad de Colima, Colima 28040, Mexico
2Tecnológico Nacional de México/I.T Colima, Colima 28976, Mexico

Corresponding author: Patricia Elizabeth Figueroa Millán (patricia.figueroa@colima.tecnm.mx)

This work was supported in part by Programa FRIDA LACNIC (Registro de Direcciones de Internet para América Latina y el Caribe)
under the Project Entitled ‘‘Implementación de un proxy CoAP en el sistema operativo Contiki-NG para redes 6LoWPAN.’’

ABSTRACT Proxy servers are widely used in many contexts since they can enhance performance, security,
and access control for production networks. The Constrained Application Protocol (CoAP), the de facto
standard of Internet of Things (IoT) communications, specifies mechanisms and semantics to applications
based on RESTful approach similar to HTTP. The CoAP standard defines an additional operation mode
for proxying request, which is supported by several programming languages and platforms. However, there
is no current implementation of a CoAP proxy for embedded systems, namely for devices supporting the
Contiki-NG operating system. This paper discusses the design, implementation, and evaluation of a forward
CoAP Proxy server for 6LoWPAN embedded systems with cache capabilities. We perform simulation and
experimental evaluations with topologies involving up to three hops from the proxy to study performance in
terms of response times and the number of exchanged packets. In simulation environments results show a
48.03%, 85.39%, and 134.21% in response time reduction at one, two, and three hops away. In experimental
environments, results show that the use of our embedded CoAP Proxy server reduces response times in
7.46%, 30.67%, and 37.43% when requests are targeted to servers at one, two, and three hops away from
the proxy respectively. In both scenarios, a reduction in the number of exchanged packets of 71.42%, 125%,
and 166.66% for requests at each hop is achieved.

INDEX TERMS Cache management, CoAP, embedded proxy, forward proxy, 6LoWPAN.

I. INTRODUCTION
The IoT is considered an important technological paradigm
in this last century because of its influence on the shape of
the future world. It enables an interconnection of physical
devices to the Internet in order to collect, process, and
exchange data in a semi-autonomous or fully autonomous
manner. Consequently, it also enables many applications
for three major fields: society, industry and the environ-
ment. For society, IoT applications are focused on health
care [1], [2], entertainment [3], building automation [4],
[5], transportation systems [6], [7], and security and

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

surveillance [8], [9]. Meanwhile, in the industry field these
applications are oriented towards supply chain manage-
ment [10], [11], aerospace [12], aviation [13], transportation
and logistics [14], smart metering [15], [16], warehouse and
storage [17]. Lastly, environmental applications are being
deployed to achieve smart and precision agriculture [18],
[19], [20], natural disaster management [21], pollution
control [22], [23], and smart power plants [24].

Wireless sensor networks (WSN) are a key technology
in IoT because they provide the basis to sense and collect
data from their environment, and wirelessly transmit data
to a central location for analysis and processing. Moreover,
WSN not only collect data but also respond to changes in
the environment by performing actions based on that data,

15594

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-2661-513X
https://orcid.org/0000-0001-7562-7578
https://orcid.org/0000-0001-6517-4421
https://orcid.org/0000-0002-5697-6825


I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

enabling a closed-loop system where sensor gather data to be
analyzed and actuators respond to the analyzed data.

WSNs primarily use IEEE 802.15.4 technology to enable
communication between devices in low-rate wireless per-
sonal area networks. The IEEE 802.15.4 standard defines
the specifications for the physical layer (PHY) and medium
access control (MAC) sub-layers to enable low-data-rate
wireless communications for fixed or mobile devices with
limited energy consumption [25]. For higher layer functions,
the Internet Engineering Task Force (IETF) completed two
recommendations for the use of IPv6 technology in conjunc-
tionwith IEEE 802.15.4 radios, namely RFC 4944: Transmis-
sion of IPv6 Packets over IEEE 802.15.4 Networks [26] and
RFC 6282: Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks (6LoWPAN) [27]. 6LoW-
PAN defines an adaptation layer with mechanisms for header
compression, packet fragmentation, and packet reassembly
for networks based on the IEEE 802.15.4 standard. The
6LoWPAN adaptation layer uses three main elements: a
header compression mechanism, packet fragmentation and
reassembly, and layer-two forwarding. Header compression
allows fitting IPv6 datagrams into the 127-byte long IEEE
802.15.4 frame. Whenever large data needs to be segmented
into multiple datagrams, packet fragmentation and reassem-
bly are employed. Lastly, layer-two forwarding deals with
link-layer and IEEE 802.15.4 header fields to reach the
destination address [28].

6LoWPAN is already implemented in several open-source
operating systems designed for resource constrained devices
to realize the IoT. Contiki-NG is one of such operating
systems, which is in compliance with RFC 4944 for
enabling connectivity between such constrained devices with
6LoWPAN.

The Constrained Application Protocol (CoAP) is a special-
ized transfer protocol for resource constrained devices. CoAP
is a protocol that sits on top of 6LoWPAN and is based on
a similar request/response interaction model as HTTP. The
implementation of CoAP [29] in Contiki-NG is based on
Erbium. Although the current implementation supports most
basic CoAP functions such as options for Max-Age, E-Tags,
block-wise transfers and observe functionality, it does not
support the CoAP proxy mode for its use inside constrained
environments, specially inside a border router or in an
embedded proxy server.

As a consequence and accordingly with Washizaki et al.
[30], 57% of the design patterns and architectures used in
IoT systems are not domain-specific, which suggests that
most systems are designed using conventional architectures.
Due to the vast number and variety of problems IoT systems
can solve, their architectures tend to be domain-specific.
Some of the problems that such systems can face when using
conventional architecture are the difficulty to support device
heterogeneity present in most IoT deployments, the low
coupling of the different communication technologies, and
the support to use technology-bound application protocols.

Layer-based architectures with gateways allow inclusion and
support of heterogeneity embedded in IoT systems. The latter
facilitates the deployment and allows for the design of highly
scalable generic systems. The use of network proxies in layer-
based architectures play an important role since they can
provide adaptation layers to support specific protocols and
communication technologies.

As a result, this paper describes the design, implementa-
tion, and evaluation of an open-source embedded forward
CoAP proxy server with cache management capabilities
for the Contiki-NG operating system. Proxies provide an
additional layer that can be used to improve security, enable
scalability, increase performance, or support heterogeneous
protocols. Having a plethora of IoT applications deployed in
a variety of fields, the use of CoAP proxies contributes to the
reduction of complexity of architectural design. Furthermore,
to the best of our knowledge, there is no current implemen-
tation of a CoAP proxy for embedded operating systems
such as Contiki-NG. Having an embedded implementation
of a CoAP proxy allows to addition of such functionality
into border routers in the 6LoWPAN. This also reduces the
cost and number of devices inside the network. Moreover,
we also prove the feasibility of embedded CoAP proxies and
demonstrate their effectiveness by evaluating performance in
both experimental and simulated environments with different
scenarios. Finally, we describe and evaluate a CoAP cache
mechanism that enhances performance by reducing response
times and the number of exchanged packets.

The rest of the paper is organized as follows: Section II
depicts the current state of CoAP proxy implementations
for protocol translation, cache management, group message
notification optimization, among others. Prior implemen-
tations were designed for full-feature operating systems.
Section III describes different types of proxies and how
CoAP forwarding proxies can be used to enable fast
cache responses. In Section IV we present the design and
implementation details of our embedded CoAP Proxy server.
Section V describes the characteristics and reasoning of our
simulated and experimental setups deployed to evaluate the
performance of our embedded proxy. And lastly, Section VI
discusses our findings and SectionVII draws our conclusions,
recommendations and future work.

II. RELATED WORK
There are a vast number of scenarios where CoAP proxy
servers are found to be useful: from reducing the number
of interactions by disseminating messages between CoAP
servers and clients to providing frameworks for secure
network bootstrapping, name resolution, and mobility man-
agement. This section provides a summarized view on
different proposals and use cases of CoAP proxy servers,
introducing first common implementations and later revising
implementations providing support for other technologies.

A common usage of CoAP proxies is to translate between
protocols, namely between HTTP and CoAP due to their

VOLUME 12, 2024 15595



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

similarity in syntax and semantics. Sulaeman et al. [31]
designed and implemented a cross-protocol reverse proxy
with cache support. However, cache is limited to store a
single integer value. Castellani et al. [32] define and evaluate
different mappings for enhancing HTTP to CoAP support in
cross proxies. Esquiagola et al. [33] also propose and evaluate
an interception cross proxy focusing on interoperability
that uses a broker architecture to translate HTTP to CoAP
requests. Mi and Wei [34] provide an architecture for using
smartphones as CoAP translation proxies in health care
environments as a mean of interaction between the patient’s
physical condition, remote clinicians, and hospitals. Ludovici
and Calveras [35] also propose the design of a cross-proxy
CoAP server for the interaction between a CoAP-based
sensor network and HTTP-based web applications. Authors
also explore observe communication pattern between the
server and the CoAP devices to reduce the number of
interactions. Mingozzi et al. in [36] propose a container-
based proxy hypervisor to interconnect the Web with a CoAP
network by translating HTTP requests to CoAP. Authors
in these papers do not consider the impact of a multi-hop
architecture when measuring performance of their proxies.

A common approach to data dissemination in IP networks
is the use of multicast. However, current technologies
such as IEEE 802.15.4 and LoRaWAN typically do not
provide link-layer support for such mechanisms. There are
efforts to extend CoAP to allow one-to-many communication
using multicast IP address endpoints on the application
layer [37], [38]. However, responses are always carried over
unicast, which may introduce high loads to constrained
links and reduce the lifetime of battery-powered nodes as
well. Gündoğan et al. [39], [40] propose a data-centric
approach to aggregate content request and replicate responses
by extending existing CoAP components. Individual hops
maintain an on-path cache storage to be used for matching
requests along the path.

Lai et al. [41] define a group-based message management
(GMM) framework that uses a proxy as a means to regulate
transmission notifications. A cache mechanism is used to
preserve the data as long as the Max-Age parameter on
the observed data is not fresh. The GMM uses a scheduling
module to optimally minimize the number of interactions by
setting an observation period selection [42].

Mišic and Mišic [43] investigated the multicast CoAP
extension [29] for domain-based data dissemination and
its use in CoAP proxies with cache capabilities to ensure
data freshness. Authors also developed an analytical model
to study the impact of different parameters for cache
management and maintenance. The experimental scenario
only considers a single hop cluster. Results show that
by adjusting the leisure period, which is a time duration
that a CoAP server is willing to spend before sending a
response, small latency is achieved at the expense of energy
consumption. Experimental and simulated results show that
content aggregation and notification optimization can reduce
response latency whilst increasing success ratios.

In addition to common CoAP proxy implementations
described before, proxies can also be considered to further
extend or support the integration with other technologies.
Banaie et al. [44] propose the use of an intermediary
CoAP proxy server between constrained and unconstrained
networks to manage client queries and support requests with
different levels of Quality of Service (QoS). An analytical
model is defined to determine the appropriate data caching
interval for reducing response times, optimizing bandwidth
utilization and energy consumption. Garcia-Carrillo and
Marin-Lopez [45] propose the use of a CoAP proxy server
to aid the bootstrapping process of authentication nodes in a
secure network using the Extended Authentication Protocol
(EAP). Lenders et al. [46] propose a CoAP proxy for secure
and privacy-friendly name resolution of constrained nodes.
The DNS over CoAP (DoC) involves a server acting as a
CoAP forward proxy with cache capabilities. Authors state
that name resolution performance is dependent on packet
sizes and that a more feasible method for DoC scenarios
is FETCH since it can obtain information specified by a
number of parameters (much like the SEARCH method from
HTTP) [47]. Choi andKoh [48] investigatemobility scenarios
for CoAP deployments. The authors propose the placement
of a CoAP proxy server for mobility management based on
Proxy Mobile IPv6 (PMIPv6).

III. CoAP PROXIES
TheCoAP standard defines threemodes for proxy operations:
reverse, cross and forward proxies [29]. In a reverse proxy,
the proxy offers server resources as if they were their own.
Different from forward proxies, in a reverse mode the CoAP
client is not aware that the resources are placed behind a
proxy and thus the client does not need to specify the proxy
URI in the request. In a cross proxy, the client makes a
request to the proxy with a different protocol, such as HTTP,
and the latter translates, if possible, the request to a CoAP
message. A cross proxy can also be used as a bridge between
two different physical technologies whilst maintaining the
same CoAP message. In a forward proxy, a CoAP client
explicitly indicates the use of a CoAP Proxy by using the
Proxy-Uri option defined in CoAP. In this operationmode,
the CoAP proxy server will communicate on the CoAP
client’s behalf with the CoAP server. A CoAP proxy can also
be implemented with cache capabilities to reduce the number
of messages by responding to a client request with a prior
message that satisfies the current request.

One of the main reasons to use a CoAP proxy is to
reduce the number of messages exchanged between CoAP
clients and servers. This can be achieved by providing
cache entries inside the proxy server for rapid response in
case a CoAP request has a cache hit with fresh data. The
RFC7252 defines a fresh response when the data is within a
Max-Age value indicated by the CoAP server in its response.
The default Max-Age value is 60 seconds, but the server
can specify any number of seconds depending on the type
of sensor and sampling rate. For example, an atmospheric

15596 VOLUME 12, 2024



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

pressure sensor can use longer Max-Age values since its
information rarely changes during the day. On the other hand,
a temperature sensor can use shorter Max-Age values since
its measurements can change in a matter of minutes. As stated
before, the CoAP proxy uses these values to determine the
freshness of each resource stored in its cache. Whenever a
new cache entry is issued, a timer is started in the CoAP proxy
with the Max-Age value as limit. When the timer expires,
it triggers a function that eliminates the entry from cache
immediately to ensure data freshness.

A. REVERSE PROXY OPERATION
A common reverse proxy is generally used to satisfy for
requests on behalf of one or more servers. This allows
to balance the load of the servers, to reply requests from
responses already store in cache, and to translate between
protocols or between incompatible protocol versions. Differ-
ently from forward proxies, reverse proxies are not explicitly
embedded in requests, thus they are transparent to clients.
Reverse proxies arewidely used in the context ofWeb servers,
databases, among others, to provide scalability to the system.
These proxies are generally placed right before the servers.

In CoAP networks however, it is uncommon to find
redundant CoAP servers that can benefit from a reverse proxy.
According to the CoAP specification, a reverse CoAP proxy
can be deployed in two of the following scenarios: 1) a
reverse proxy offering several resources as their own, after
having learned of their existence through the use of resource
discovery mechanisms; and 2) a reverse proxy can be used
to define a namespace to provide a specific configurations
for the request such as embedding host identifiers and port
numbers into the URI path o the resources offered. In the
latter case, the reverse proxy can process the given parameters
to create specific requests to a resource.

B. CROSS PROXY OPERATION
Cross proxies are more often used to translate requests from
one protocol to another or between incompatible protocol
versions in order to support a wide range of applications.
The most common cross proxy implementation deals with
the translation of HTTP requests to CoAP requests. The
translation is straightforward since both protocol share the
same semantics and verbs. However, the main challenge is
the embedding of a CoAP URI into a HTTP request and vice
versa.

C. FORWARD PROXY OPERATION
In a common forward CoAP proxy architecture, whenever a
client uses the Proxy-Uri option available in CoAP, the
request is directed to the proxy instead of the destination as
shown in Figure 1. This behavior is analog to using a Virtual
Private Network (VPN) in the sense that all traffic is rerouted
through the proxy for the latter to speak on the client’s behalf.

Figure 1 depicts the process of making a request to a
CoAP server by using a forward proxy. The client starts
by making a request to a known resource, in this case

to coap://[fd00::206:6:6:6]/temperature. When creating the
request, the client uses the Proxy Uri field to indicate it
should use a proxy (coap://[fd00::202:2:2:2]) to communi-
cate on the client’s behalf by appending the address into the
option. Depending on the CoAP client, different options can
be used to achieve this task.

Upon receiving the request, the proxy checks the contents
of the Proxy-Uri option since it uses the complete URI
as a unique identifier for searching its cache storage. Two
outcomes result from using the proxy: 1) if there is no
cache entry for the unique identifier, the proxy creates its
own request to the destination URI asking for the specified
resource.When the request reaches the server, the latter issues
a response to the proxy. The proxy then receives the message
and creates a cache entry in memory; 2) However, if there
is a cache entry for the identifier, the proxy retrieves the
content from memory and immediately issues a response to
the client. The first scenario requires two transactions: one
between client and proxy and one between proxy and server.
The second scenario requires only one transaction between
client and proxy. The mechanisms for storing, retrieving,
and managing content from cache is totally dependent of
the implementation. In the next section we discuss in detail
how we designed and implemented our embedded forward
CoAP proxy server in the Contiki-NG operating system
aimed at simplifying the deployment of networks and at
enhancing performance by implementing an embedded cache
mechanism.

IV. PROXY DESIGN AND IMPLEMENTATION
The CoAP proxy server implementation is organized into
three main elements: 1) the CoAP Proxy module, which
implements handling functions for requests and responses;
2) the CoAP Proxy Transactions module, used for storing
client and server connection information in memory; and 3)
the CoAP Proxy Cache module, which stores and manages
fresh responses in memory from CoAP servers. This section
describes implementation details by explaining how the
proxy processes requests and responses. Figure 2 shows how
the modules interact with each other.

According to the authors in [49], the CoAP engine used
in Contiki-NG is based on Erbium by Mattias Kovatsh.
The engine is responsible for managing CoAP requests and
responses. For it to be backwards compatible with the existing
implementation, we design our CoAP proxy server to be
as transparent as possible. The CoAP proxy only responds
whenever the ‘‘CoAP Proxy Option Processing’’ flag is
defined in a CoAP node as an option at compilation time.
This option indicates that no CoAP endpoints should be
installed into the node to avoid the activation of handlers
for CoAP resources and thus reducing the memory footprint
usage of the node. We purposely limited the capabilities of
the CoAP proxy to do only proxy-related tasks since our
implementation is deployed and executed in the OpenMote-
B development board, which is a resource-constrained
embedded device.

VOLUME 12, 2024 15597



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

FIGURE 1. CoAP forward proxy operation. The Proxy-Uri option in the request indicates that the messages must be
routed through the CoAP proxy instead of going directly to the destination server. When the proxy implements cache
management mechanisms, the proxy will immediately send a response with its cache entry if the requested resource is
stored in memory, thus reducing the number of exchanged messages between client and server.

Since efficiency is an important aspect for systems with
limited resources, we extracted information about RAM and
ROM usage from the OpenMote-B binary file. The CoAP
proxy has a ROM size of 56, 022 bytes. The initialized data
is 1, 680 bytes and the uninitialized data is 13, 858 bytes.
Both memory usage sizes were extracted by using the size
command. The OpenMote-B platform has 32KB in RAM and
512KB in flash. Therefore it is fully capable of running the
CoAP proxy binary.

A. HANDLING REQUESTS
Whenever the CoAP proxy receives an incoming message
through the CoAP engine, it checks whether theProxy-Uri
is present in the request. This is important since a CoAP proxy
can only act as regular node with forwarding capabilities
inside the network. If the option is present, the proxy first
searches for an entry for the desired address and endpoint
in cache. In our implementation, we use the Memory Blocks
library for static and dynamic memory allocations in Contiki-
NG to store cache entries in a Linked List, which is also
a library for manipulating linked lists in the operating
system. Both libraries are available as part of the Contiki-
NG development platform. To provide unique identifiers to
cache entries, we serialize the complete IPv6 address of the
target node along with its resource path. Such functionality is
implemented in the CoAP Proxy Cache module.

If a cache entry is available for a particular address and
resource, the CoAP proxy retrieves the content from cache
and sends a response through the same transaction the request
arrived. On the other hand, if there is no entry in cache, the
proxy performs a series of procedures. Initially, it creates
a new transaction that will be used to communicate with
the CoAP server. It is important to store the transactions
for incoming and outgoing messages since each transaction
carries information about message number ID, and tokens
that provide CoAP reliability capabilities. All tasks related
to storing and retrieving transactions are performed at the
CoAP Proxy Transactions module. Once the transaction is
created, the proxy extracts the information from the request
to create a new message with the target endpoint, which is
composed of the node’s IPv6 address and its request path.
When the message is already constructed, the proxy sends
this new request message to the target server.

B. HANDLING RESPONSES
When an incoming message in the proxy is a response to a
previous request from the server, the prior uses the CoAP
Proxy Transaction module to retrieve information about the
original transaction made by a client and the current trans-
action with the server. After extracting the proxy transaction
information, the proxy checks whether there is a cache entry
from the current server response. If there is no entry, the
proxy creates a CoAP Proxy Cache entry using the resource

15598 VOLUME 12, 2024



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

FIGURE 2. CoAP proxy server modules. The CoAP proxy module is responsible for business logic, the CoAP proxy
cache module is responsible for data allocation/deallocation and data freshness validation, and finally the CoAP
proxy transaction module is responsible for keeping records of the source and target transaction information for
requests and responses in the CoAP proxy. The modular design of the CoAP proxy allows faster development,
greater flexibility, easier debugging, and extensibility.

URI, themessage payload, and themessageMax-Age option
defined by the server. In our current implementation, the only
valid cache is text-based data since we commonly use JSON
to structure the data for the information exchange. Whenever
a cache entry is issued, the CoAP Proxy Cache module
initiates a callback timer (ctimer in Contiki-NG) that
executes a remove_timed_cache_entry() function
when expiring. Such function removes the cache entry from
the proxy cache memory to ensure data freshness at all times.

After checking and creating a cache entry if necessary, the
proxy uses the information extracted from the CoAP Proxy
transaction to use the same message ID and endpoint to issue
a response to the client. It then creates a new message with
code 2.05 Content that indicates a response from the
server to the originating client. The message payload is filled
with the payload from the incoming message issued from the
server. Finally, the proxy sends the message to the client and
cleans its buffer from the CoAP Proxy Transaction entry for
the corresponding connection.

V. EVALUATION SETUP
In 6LoWPANs, the depth of the network is a key factor to
determine performance and energy consumption since they
operate without infrastructure, this means that mechanisms
for message forwarding must be implemented in order to
reach all the nodes inside the network. The IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL) is
the recommended routing protocol for 6LoWPANs [50].
According to [51], a network with greater depth requires
longer space in the packet’s header to include source routing
header (SRH) information. Moreover, packets generated in
the leaf nodes imply the routing of more packets in their
parents since they have to forward the sum of all packets from
all its children.

We analyze the performance of our CoAP proxy in terms
of response time, and number of exchanged messages in

both simulated and experimental environments. We define
the response time as the elapsed time from the generation
of the CoAP request and until a response is received at the
client. The number of messages is the sum of all packages
generated at each hop of the network. Energy consumption
is an important key indicator for 6LoWPAN nodes because
maximizing the lifetime of the network is often an important
requirement when designing an architecture. Moreover,
energy consumption is completely dependent on the hardware
platform. According to the CC2538 data sheet [52], the Texas
Instrument platform consumes 13mA from CPU running at
32MHzwith flash access, 20mA from radio in RX (reception)
mode, −50 dBm input power, no peripherals active, CPU
idle, and 34mA from radio in TX (transmission) mode, 7dBm
output power, no peripherals active, CPU idle.

Sciancalepore et al. [53] measured the current drawn by
the OpenMote-B platform, which uses the CC2538, and
concluded that packet reception requires ≈ 35 mA (13mA
from the CPU, 2mA from the LEDs, and 20mA from the RX
mode for the radio) and packet transmission requires≈ 54mA
(13mA from the CPU, 4mA from the LEDs, 3mA from the
USB UART communication, and 34mA from the TX mode
for the radio). To evaluate the actual energy consumption,
authors removed all factors related to debugging components
such as LEDs and the USB UART at both the receiver
and transmitter. The RX process consumes approximately
38mA × 1 ms = 38 mJ for the radio preparation and
18mA × 3 ms = 54 mJ for the actual receiving processing,
resulting in 92mJ for reception. The transmission procedure
consumes 20mA × 2 ms = 40 mJ for radio preparation and
27mA × 3 ms = 81 mJ for the transmission, resulting in
121mJ . Overall, considering the remaining CPU cycles and
the duration of the slot, each TX slot consumes up to 186mJ
and each RX slot consumes up to 170mJ . The number of
exchanged messages between nodes is directly related to the
energy consumption. However, it is out of the scope of this

VOLUME 12, 2024 15599



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

paper since many factors need to be taken into account to
accurately measure energy consumption.

In both our simulated and experimental environments,
we placed a Border Router that interconnects a CoAP client
with our proxy server and thus with the inside of the
6LoWPAN. The client performs a total of 24 requests to each
node inside the 6LoWPAN within 10 second intervals. The
number of requests and time interval values were chosen
so that the Max-Age values at the cache expire at least
three times to study its behavior. The client records the
time of the departure and arrival of every request. The
Max-Age parameter for resources at each CoAP server is
set to 60 seconds as the default value recommended by
CoAP. This means that every 60 seconds the content of
cache entries at the proxy expire and a new transaction
for new cache entries is issued. As mentioned before, the
value of the Max-Age parameter is specified according
to the type of sensor and the needs of the network.
To generate CoAP requests to the inside of the 6LoWPAN
we used the well-known coap-client application from
libcoap.1

Due to the limited number of hardware nodes, we also
conducted a series of simulations to further study the behavior
of the proxy when several more nodes are deployed in the
6LoWPAN.

This section describes two important key performance
indicators for proxies, namely response time and number of
packets sent. It also depicts the simulation and experimental
environments in detail.

A. RESPONSE TIME
Response time measures the total time a transaction takes
to complete from the moment a CoAP request is generated
up to the moment its corresponding response is received.
Specifically in 6LoWPAN, response time may vary due
to factors such as node processing power, communication
channel bandwidth, current traffic network load, and network
depth [54], [55]. Nodes inside a 6LoWPAN may vary in
processing power and are generally associated with low
power capacity. The lower the processing power, the higher
delay is introduced into the response time of the transaction.
In addition, the current network link load also affects in the
delay of the response. By adding both the delay introduced
by the low processing power of the node and the delay
introduced by the current load of the network link we can
obtain the one-way response time of the transaction. This
response time calculation is computed for each hop the packet
must perform until it reaches its destination. Therefore,
network depth must be taken into the computation of the
response time since the more depth a node is deployed, the
more delay is introduced into the response time. Moreover,
the response time is composed by the time it takes for a
request to reach the server plus the time it takes for the
response to arrive at the client.

1https://libcoap.net

TABLE 1. Simulation environment parameters.

B. NUMBER OF PACKETS SENT
6LoWPANs are characterized by two fundamental elements:
embedded devices generally use low-power and lossy links
and networks can be formed without infrastructure. To cover
large areas, the IEEE 802.15.4 standard allows nodes to create
networks by using routing protocols such as RPL to maintain
and provide paths for packets to reach their destination. The
number of packets sent is closely related to depth of the
network. By using proxy cache mechanism we argue that we
can achieve a reduction in the number of exchangedmessages
between nodes inside the 6LoWPAN since the proxy can send
responses to requests when content is fresh and available in
cache. In both experimental and simulation environments,
we consider the number of packets or exchanged messages
traversing the 6LoWPAN from the Border Router and into
the 6LoWPAN. The number of hops outside the 6LoWPAN
are not considered.

C. SIMULATION ENVIRONMENT
The simulation environment is useful to perform evalua-
tions with several nodes. Moreover, simulations provide an
interference-free environment and other connection issues
associated with real-world deployments. This allows to
measure only the performance of our CoAP Proxy server in
terms of response time and number of packets exchanged.
Also, the number of nodes that can be deployed in a network
is virtually unlimited at low costs. Figure 3 shows the
topology of our simulation scenario.

Every leaf node in the topology has two endpoints: a
humidity and temperature sensor resourcea. The proxy uses
its cache management mechanism when the Proxy-Uri
option is present in the request message. Otherwise, it acts
as a simple RPL relay node when the option is not carried in
the message. The Border Router allows the interconnection
of the 6LoWPANwith the Internet. The client issues requests
to each server inside the IoT network and records response
times and the number of messages exchanged. Table 1 shows
the simulation parameters.

The CoAP client issues 24 requests every 10 seconds
to each server in the topology. A first run is performed
without the CoAP Proxy option enabled and a second run
is performed with the option enabled. This results in an
112 minute simulation time overall. There are 17 nodes in
total from which 14 are servers, one is a client that issues
requests to each server, one is a Border Router that creates
a bridge between the 6LoWPAN and the Internet, and one is
our proxy server. Each of the 6LoWPAN nodes are created

15600 VOLUME 12, 2024



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

FIGURE 3. Simulation environment topology. In the setup, the depth of a given node is defined as the number of hops a packet performs from the
CoAP proxy node to its target. Nodes 1 and 8 have a depth of 1. Nodes 2, 3, 9, and 10 have a depth of 2. And nodes 4, 5, 6, 7, 11, 12, 13, and
14 have a depth of 3.

as Cooja nodes and the distance between each CoAP server
is approximately 40 meters apart to create a hierarchical
topology.

We performed our simulations with the Cooja Simulator
included in the Contiki-NG operating system. One important
feature of this simulator is that it can emulate different
hardware platforms. Therefore, the same code developed
for the simulations were used in real hardware with the
OpenMote-B devices. The hardware components running the
simulator are a 12th Gen Intel Core i7-1255U CPU with
12 cores and 24 threads with 32GB of RAM and a 512GB
NVMe disk drive running Fedora Linux 37 (Workstation
Edition).

D. EXPERIMENTAL ENVIRONMENT
In our experimental environment we used the OpenMote-
B hardware platform which uses an ARM Cortex-M3
with an IEEE 802.15.4 radio. Since we are studying the
performance in terms of response time and the number of
packets exchanged between a CoAP client and a server in a
6LoWPAN, we defined a network topology with a network
depth of three hops between the CoAP proxy and the servers.
The topology is shown in Figure 4. The Border Router (BR)
is connected to a computer through the USB serial port to
route requests from the CoAP Client (CC). The client creates

TABLE 2. Experimental environment parameters.

requests to each of the servers (CS1, CS2, and CS3) in the
network and records the response times for each request. The
CoAP Proxy (CP) is located next to the BR and it is used to
route requests to the sever nodes. Every CoAP server in the
network is programmed with two endpoints: a humidity and
a temperature sensor resources.

To measure performance, we developed a script that issues
as records requests to each CoAP server in the network every
10 seconds. The same script is used for gathering results in
our experimental and simulation environments. A first set of
experiments only uses the CoAP Proxy as a routing node
since the CoAP Proxy Option is not present in the requests.
A second set of experiments uses the CoAP Proxy Option to
enable the cache functionality in the proxy.We then compared
the results of using the CoAP Proxy with and without the
cache functionality. Table 2 shows the experimental setup
parameters.

VOLUME 12, 2024 15601



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

FIGURE 4. Experimental environment topology. The CoAP Client (CC) makes requests to each of the CoAP Servers (CS1, CS2, and CS3
respectively). The border router (BR) is connected directly to a computer. The CoAP Proxy (CP) is located close to the BR and in front of the
CoAP Servers.

FIGURE 5. Simulation response time series for CoAP requests for (a) one hop, (b) two hops, and (c) three hops away from the CoAP Proxy
server for requests without cache (green lines) and with cache responses (blue lines). Response times when cache is available improves as
the number of hops between server and proxy increases.

The experimental setup allows realistic view of the proxy’s
performance since simulations are not affected mostly by
interference and path loss.

VI. RESULTS EVALUATION
This section shows our results and discusses our findings
and is organized into three subsections: time response results

15602 VOLUME 12, 2024



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

FIGURE 6. Response time statistics for CoAP requests for (a) one hop, (b) two hops, and (c) three hops away from the proxy server. The
outliers presented as red circles mostly represent an increase in response times whenever a CoAP resource is requested and no cache
entry is available at the proxy server.

for the simulation environment, time response results for the
experimental environment, and number of packets exchanged
results for both environments.

As mentioned in the previous section (Section V, we per-
formed a set of CoAP requests without using the CoAP
Proxy and another set using the proxy in both simulation
and experimental environments. When using the proxy,
the coap-client application uses the -p parameter to
configure the proxy IPv6 address.

The time to reach a node inside the 6LoWPAN is mostly
influenced by the number of hops a request experiences on its
way to the destination. Therefore, is important to differentiate
between performance measurements for one-hop, two hops,
and three-hops depth nodes.

A. RESPONSE TIME RESULTS FOR THE SIMULATION
ENVIRONMENT
Response times in our simulated environment are depicted in
Figure 5 for requests at (a) one hop, (b) two hops, and (c) three
hops away from the proxy. The associated delay introduced

by the proxy when there is no cache entry available in
memory to create a response is smaller compared to the
experimental results as will be discussed later. This is because
simulated Cooja nodes have no memory and processing
restrictions since the node is compiled as a native process
in the operating system. However, there is still a small delay
introduced due to the new transaction that is triggered when
no cache entry is found in memory.

From Figure 5, we observe the response time delay
increase when there is no cache entry in the proxy’s memory
at requests 1, 7, 13, and 19. However, consequent requests
for the same node and resource are quickly dispatched at the
CoAP Proxy server as requests between that timeframe are
lower than responses without using the proxy. The pattern
becomes more evident as the network depth and number of
nodes increase in Figure 5 (b) and (c) sections. Moreover, the
difference in response times from when using the proxy also
become more prominent as network node depth increases.

At one-hop depth, results show an average response time
of 106.08 ms without using the proxy server and an average
of 71.66 ms using the proxy server’s cache mechanism. This

VOLUME 12, 2024 15603



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

FIGURE 7. Experimental response time series for CoAP requests for (a) one hop, (b) two hops, and (c) three hops away from the CoAP
proxy server. Green-colored lines in the graph are the requests made without the use of cache at the CoAP proxy server. Blue-colored lines
are the requests made with the use of the CoAP proxy server. Red lines indicate when the proxy performs a request to populate its cache.
Response times decrease when the number of hops between proxy and servers increases.

is plausible since the distance between the CoAP client and
the CoAP server is just one hop away from the proxy. The
median is placed at 106.71 ms and 57.29 ms for requests
without and with cache responses respectively. There is a
time reduction of 48.03% whenever the CoAP client used
our CoAP Proxy server and a difference of 34.42ms between
averages. Figure 6 (a) shows detailed statistics for response
times.

At two-hop depth, results shown an average response
time of 150.05 ms without using the CoAP server and an
average of 80.93 ms when using the proxy server as shown
in Figure 6 (b). This represents a response time reduction of
85.39% and a difference of 69.12 ms between averages.

At three-hop depth, results show an average response
time of 215.2 ms when proxy server does not employ
cache management, and an average of 91.88 ms whenever
the proxy with cache is being used. This imposes a
response time reduction of 134.21% and a time difference of

123.32 ms between averages. Figure 6 (c) shows a detailed
representation of such results.

B. RESPONSE TIME RESULTS FOR THE EXPERIMENTAL
ENVIRONMENT
The response time indicator allows to quantify the perfor-
mance of our 6LoWPAN when using the CoAP proxy server
with cache management enabled and without cache. Figure 7
shows the results for (a) requests to a CoAP server at one-
hop depth, (b) two-hop depth, and (c) three-hop depth in the
network. In the graph, the green-colored lines correspond
to the requests performed without cache management at
the proxy. The blue-colored lines correspond to requests
performed with the CoAP Proxy Option enabled to use cache
management at the proxy.

The default Max-Age option for cache management as
defined in CoAP is 60 seconds. To avoid adding complexity
to the environment, each CoAP resource located at the

15604 VOLUME 12, 2024



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

FIGURE 8. Experimental response time statistics for CoAP requests for (a) one hop, (b) two hops, and (c) three hops away
from the CoAP proxy server. The outliers presented as red circles represent an increase in response times whenever a CoAP
resource is requested and no cache entry is available at the CoAP proxy server. Response times are lower depending on the
number of hops when cache at the proxy is employed.

FIGURE 9. Number of messages exchanged at (a) one hop, (b) two hops and (c) three hops away from the CoAP
Proxy Server.

server nodes is configured with the default Max-Age value.
Therefore, our proxy server parses this value from the
response and initiates a timer to flush the entry from the cache
whenever the timer expires.

From Figure 7 (a), (b), and (c) we can observe that the
proxy introduces a significant delay when there is no cache
entry available in memory to create a response. This is mainly
because the proxy has to create a new transaction request
to the server in order to recollect the data to store it in
cache memory. In Figure 7 (a) we also observe that response
times when there is a cache entry in the proxy and when no
proxy is used are very similar. Therefore, using a proxy with
cache capabilities in networks with one hop topology does
not provide performance gains in terms of response times
since the overall average is 261.59 ms when using the cache
compared to 208.14 ms not using the cache. However, when
we compare the average times for server at two and three
hops away from the proxy, we observe a decrease in response
times: 261.77mswith cache and 273.15mswithout cache for
two hops, and 286.30 ms with cache and 332.22 ms without
cache for three hops.

If we pay close attention to the requests in between the ones
made when a new cache entry is required (which are values
close to themedian), we find that the response times are lower
for servers at every hop. In Figure 8we observe such behavior.
The average times for requests at one, two, and three hops
are: 192.01 ms, 184.98 ms, and 208.93 ms when using the
cache respectively compared to 207.49 ms, 266.82 ms, and
333.93mswhen not using the cache. This results in a decrease
in time responses of 7.46%, 30.67%, and 37.43% for requests
at one, two, and three hops respectively. We can infer that,
once the CoAP proxy has a cache entry in memory, better
performance can be expected if we increase the number of
hops in the network.

C. NUMBER OF EXCHANGED PACKETS
Energy consumption in 6LoWPANs is a key component
when designing and deploying a network. Every time a
node uses its IEEE 802.15.4 radio its consumes energy from
its source. After energy depletion of the first node, the
performance of the network degrades [56]. One approach

VOLUME 12, 2024 15605



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

to energy saving is the use of cache inside the network to
alleviate load in battery-powered nodes since the number
of packets or exchanged messages between nodes can be
reduced significantly. Figure 6 shows the number ofmessages
exchanged with each hop.

In Figure 9 we can see the number of exchanged messages
between nodes in our simulation results. The difference
between using and not using our CoAP Proxy at one
hop away is 40 packets with, resulting in a 71.42% of
packet exchange decrease. At two hops, the difference is
80 packets with a 125% packet exchange decrease. Finally,
at three hop the difference is 120 fewer packets exchanged
and a 166.66% packet exchange decrease. Increasing the
Max-Age parameter will also decrease the number of
exchanged packets since cache entries stay fresh for longer
periods of time.

VII. CONCLUSION
The use of CoAP proxies with cache capabilities in 6LoW-
PANs can increase performance with respect of response
times and energy consumption. We designed, implemented,
and evaluated an embedded CoAP proxy for the Contiki-
NG operating system. The design is based on a modular
architecture to allow fast integration and testing of new fea-
tures. Moreover, the implementation followed recommended
coding conventions and best practices provided by the
Contiki-NG project. We performed a simulation evaluation
using the Cooja simulator included with Contiki-NG anbd
an experimental evaluation using the OpenMote-B hardware
platform. We defined network topologies with a three-hop
network depth. We studied the effect of using a CoAP Proxy
cache management in terms of response time and the number
of packets exchanged at different depths. We performed tests
by sending 24 CoAP requests every 10 seconds from a client
to each server in the network. The definition of the number
of requests and sending interval is directly related to the
Max-Age parameter of the CoAP resources which indicates
the number of seconds a cache entry should be valid since we
want entries to expire in order to study its impact in response
times. Simulation results show a reduction in response times
of 48.03%, 85.39%, and 134.21% for requests to servers at
one, two, and three hops away respectively. The nodes in
the simulation environment have no memory and processing
restrictions since the node is compiled as a native process in
the operating system. Experimental results further confirm
our simulation results showing a reduction in response times
of 7.46%, 30.67%, and 37.43% for requests to servers at one,
two, and three hops away from the proxy server respectively
when using cache. These results could vary depending on
the hardware platform due to memory and CPU capabilities.
In both experimental and simulation environments, results
show a packet exchange reduction of 71.42%, 125%, and
166.66% for requests at one, two, and three hops respectively.

In this paper we proved the feasibility and evaluated
the performance in both simulation and experimental envi-
ronments of an embedded CoAP proxy server. To the

best of our knowledge, this is the first embedded CoAP
Proxy server implemented for the Contiki-NG operating
system. We recommend to carefully select the Max-Age
parameter according to the requests intervals to further
optimize response times. Future work is planned to evaluate
and study of optimization mechanisms for observable CoAP
requests to reduce response time in managing cache entries,
to broadening the scenarios to include different network
setups, varying device densities, different cache expiration
periods, and device mobility to provide more comprehensive
results. Also the study of cooperative cache algorithms to
further improve performance in large-scale IoT networks is
desirable.

REFERENCES
[1] M. N. Bhuiyan, M. M. Rahman, M. M. Billah, and D. Saha,

‘‘Internet of Things (IoT): A review of its enabling technologies
in healthcare applications, standards protocols, security, and market
opportunities,’’ IEEE Internet Things J., vol. 8, no. 13, pp. 10474–10498,
Jul. 2021.

[2] S. M. R. Islam, D. Kwak, M. D. H. Kabir, M. Hossain, and K. S. Kwak,
‘‘The Internet of Things for health care: A comprehensive survey,’’ IEEE
Access, vol. 3, pp. 678–708, 2015.

[3] D.-K. Choi, J.-H. Jung, S.-J. Koh, J.-I. Kim, and J. Park, ‘‘In-vehicle
infotainment management system in Internet-of-Things networks,’’ in
Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2019, pp. 88–92.

[4] D. Minoli, K. Sohraby, and B. Occhiogrosso, ‘‘IoT considerations,
requirements, and architectures for smart buildings—Energy optimization
and next-generation building management systems,’’ IEEE Internet Things
J., vol. 4, no. 1, pp. 269–283, Feb. 2017.

[5] A. Verma, S. Prakash, V. Srivastava, A. Kumar, and S. C. Mukhopadhyay,
‘‘Sensing, controlling, and IoT infrastructure in smart building: A review,’’
IEEE Sensors J., vol. 19, no. 20, pp. 9036–9046, Oct. 2019.

[6] M. B. Mollah, J. Zhao, D. Niyato, Y. L. Guan, C. Yuen, S. Sun, K.-Y. Lam,
and L. H. Koh, ‘‘Blockchain for the Internet of Vehicles towards intelligent
transportation systems: A survey,’’ IEEE Internet Things J., vol. 8, no. 6,
pp. 4157–4185, Mar. 2021.

[7] F. Zhu, Y. Lv, Y. Chen, X. Wang, G. Xiong, and F.-Y. Wang, ‘‘Parallel
transportation systems: Toward IoT-enabled smart urban traffic control
and management,’’ IEEE Trans. Intell. Transp. Syst., vol. 21, no. 10,
pp. 4063–4071, Oct. 2020.

[8] L. Hu and Q. Ni, ‘‘IoT-driven automated object detection algorithm for
urban surveillance systems in smart cities,’’ IEEE Internet Things J., vol. 5,
no. 2, pp. 747–754, Apr. 2018.

[9] K. Muhammad, R. Hamza, J. Ahmad, J. Lloret, H. Wang, and S. W. Baik,
‘‘Secure surveillance framework for IoT systems using probabilistic image
encryption,’’ IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3679–3689,
Aug. 2018.

[10] F. M. Bencic, P. Skocir, and I. P. Žarko, ‘‘DL-tags: DLT and smart
tags for decentralized, privacy-preserving, and verifiable supply chain
management,’’ IEEE Access, vol. 7, pp. 46198–46209, 2019.

[11] S. Mondal, K. P. Wijewardena, S. Karuppuswami, N. Kriti, D. Kumar, and
P. Chahal, ‘‘Blockchain inspired RFID-based information architecture for
food supply chain,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 5803–5813,
Jun. 2019.

[12] Z. Qu, G. Zhang, H. Cao, and J. Xie, ‘‘LEO satellite constella-
tion for Internet of Things,’’ IEEE Access, vol. 5, pp. 18391–18401,
2017.

[13] N. Hossein Motlagh, T. Taleb, and O. Arouk, ‘‘Low-altitude unmanned
aerial vehicles-based Internet of Things services: Comprehensive survey
and future perspectives,’’ IEEE Internet Things J., vol. 3, no. 6,
pp. 899–922, Dec. 2016.

[14] Y. Song, F. R. Yu, L. Zhou, X. Yang, and Z. He, ‘‘Applications of the
Internet of Things (IoT) in smart logistics: A comprehensive survey,’’ IEEE
Internet Things J., vol. 8, no. 6, pp. 4250–4274, Mar. 2021.

[15] D. Alahakoon and X. Yu, ‘‘Smart electricity meter data intelligence for
future energy systems: A survey,’’ IEEE Trans. Ind. Informat., vol. 12,
no. 1, pp. 425–436, Feb. 2016.

15606 VOLUME 12, 2024



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

[16] R. Morello, C. De Capua, G. Fulco, and S. C. Mukhopadhyay, ‘‘A smart
power meter to monitor energy flow in smart grids: The role of advanced
sensing and IoT in the electric grid of the future,’’ IEEE Sensors J., vol. 17,
no. 23, pp. 7828–7837, Dec. 2017.

[17] K. Zhao, M. Zhu, B. Xiao, X. Yang, C. Gong, and J. Wu, ‘‘Joint RFID and
UWB technologies in intelligent warehousing management system,’’ IEEE
Internet Things J., vol. 7, no. 12, pp. 11640–11655, Dec. 2020.

[18] N. Ahmed, D. De, and I. Hussain, ‘‘Internet of Things (IoT) for smart
precision agriculture and farming in rural areas,’’ IEEE Internet Things J.,
vol. 5, no. 6, pp. 4890–4899, Dec. 2018.

[19] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. M. Aggoune,
‘‘Internet-of-Things (IoT)-based smart agriculture: Toward making the
fields talk,’’ IEEE Access, vol. 7, pp. 129551–129583, 2019.

[20] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, ‘‘A survey
on the role of IoT in agriculture for the implementation of smart farming,’’
IEEE Access, vol. 7, pp. 156237–156271, 2019.

[21] S. A. Shah, D. Z. Seker, S. Hameed, and D. Draheim, ‘‘The rising role
of big data analytics and IoT in disaster management: Recent advances,
taxonomy and prospects,’’ IEEE Access, vol. 7, pp. 54595–54614,
2019.

[22] S. Dhingra, R. B. Madda, A. H. Gandomi, R. Patan, and
M. Daneshmand, ‘‘Internet of Things mobile–air pollution monitoring
system (IoT-mobair),’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 5577–5584, Jun. 2019.

[23] F. K. Shaikh, S. Zeadally, and E. Exposito, ‘‘Enabling technologies for
green Internet of Things,’’ IEEE Syst. J., vol. 11, no. 2, pp. 983–994,
Jun. 2017.

[24] S. Pattar, R. Buyya, K. R. Venugopal, S. S. Iyengar, and L. M. Patnaik,
‘‘Searching for the IoT resources: Fundamentals, requirements, compre-
hensive review, and future directions,’’ IEEE Commun. Surveys Tuts.,
vol. 20, no. 3, pp. 2101–2132, 3rd Quart., 2018.

[25] IEEE Standard for Low-Rate Wireless Networks, IEEE Standard 802.15.4-
2020 (Revision of IEEE Standard 802.15.4-2015), 2020, pp. 1–800.

[26] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmission
of IPv6 Packets Over IEEE 802.15.4 Networks, document RFC 4944,
Sep. 2007.

[27] J. Hui and P. Thubert,Compression Format for IPv6DatagramsOver IEEE
802.15.4-Based Networks, document RFC 6282, Sep. 2011.

[28] J. W. Hui and D. E. Culler, ‘‘Extending IP to low-power, wireless
personal area networks,’’ IEEE Internet Comput., vol. 12, no. 4, pp. 37–45,
Jul./Aug. 2008.

[29] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application
Protocol (CoAP), document RFC 7252, Jun. 2014.

[30] H. Washizaki, S. Ogata, A. Hazeyama, T. Okubo, E. B. Fernandez, and
N. Yoshioka, ‘‘Landscape of architecture and design patterns for IoT
systems,’’ IEEE Internet Things J., vol. 7, no. 10, pp. 10091–10101,
Oct. 2020.

[31] A. B. Sulaeman, F. A. Ekadiyanto, and R. F. Sari, ‘‘Performance evaluation
of HTTP-CoAP proxy for wireless sensor and actuator networks,’’ in
Proc. IEEE Asia–Pacific Conf. Wireless Mobile (APWiMob), Sep. 2016,
pp. 68–73.

[32] A. P. Castellani, T. Fossati, and S. Loreto, ‘‘HTTP-CoAP cross protocol
proxy: An implementation viewpoint,’’ in Proc. IEEE 9th Int. Conf. Mobile
Ad-Hoc Sensor Syst. (MASS), Oct. 2012, pp. 1–6.

[33] J. Esquiagola, L. Costa, P. Calcina, and M. Zuffo, ‘‘Enabling CoAP into
the swarm: A transparent interception CoAP-HTTP proxy for the Internet
of Things,’’ in Proc. Global Internet Things Summit (GIoTS), Jun. 2017,
pp. 1–6.

[34] Z. Mi and G. Wei, ‘‘A CoAP-based smartphone proxy for healthcare with
IoT technologies,’’ in Proc. IEEE 9th Int. Conf. Softw. Eng. Service Sci.
(ICSESS), Nov. 2018, pp. 271–278.

[35] A. Ludovici and A. Calveras, ‘‘A proxy design to leverage the interconnec-
tion of CoAP wireless sensor networks with Web applications,’’ Sensors,
vol. 15, no. 1, pp. 1217–1244, Jan. 2015.

[36] E. Mingozzi, G. Tanganelli, and C. Vallati, ‘‘CoAP proxy virtualization for
the web of things,’’ in Proc. IEEE 6th Int. Conf. Cloud Comput. Technol.
Sci., Dec. 2014, pp. 577–582.

[37] A. Rahman and E. Dijk, Group Communication for the Constrained
Application Protocol (CoAP), document RFC 7390, Oct. 2014.

[38] M. Tiloca and E. Dijk, ‘‘Proxy operations for CoAP group commu-
nication,’’ Internet-Draft Draft-Tiloca-Core-Groupcomm-Proxy-07, IETF
Secretariat, Tech. Rep., Sep. 2022. [Online]. Available: https://datatracker.
ietf.org/doc/draft-ietf-core-groupcomm-proxy/00/bibtex/

[39] C. Gündoğan, C. Amsüss, T. C. Schmidt, and M. Wählisch, ‘‘Toward
a RESTful information-centric web of things: A deeper look at data
orientation in CoAP,’’ in Proc. 7th ACM Conf. Inf.-Centric Netw. (ICN),
New York, NY, USA, 2020, pp. 77–88.

[40] C. Gündoğan, C. Amsüss, T. C. Schmidt, and M. Wählisch, ‘‘Group
communication with OSCORE: RESTful multiparty access to a data-
centric web of things,’’ in Proc. IEEE 46th Conf. Local Comput. Netw.
(LCN), Oct. 2021, pp. 399–402.

[41] W.-K. Lai, Y.-C. Wang, and S.-Y. Lin, ‘‘Efficient scheduling, caching,
and merging of notifications to save message costs in IoT networks using
CoAP,’’ IEEE Internet Things J., vol. 8, no. 2, pp. 1016–1029, Jan. 2021.

[42] G. Tanganelli, C. Vallati, E. Mingozzi, and M. Kovatsch, ‘‘Efficient
proxying of CoAP observe with quality of service support,’’ in Proc. IEEE
3rd World Forum Internet Things (WF-IoT), Dec. 2016, pp. 401–406.

[43] J. Mišic and V. B. Mišic, ‘‘Proxy cache maintenance using multicasting in
CoAP IoT domains,’’ IEEE Internet Things J., vol. 5, no. 3, pp. 1967–1976,
Jun. 2018.

[44] F. Banaie, J. Misic, V. B. Misic, M. H. Yaghmaee Moghaddam, and
S. A. Hosseini Seno, ‘‘Performance analysis of multithreaded IoT
gateway,’’ IEEE Internet Things J., vol. 6, no. 2, pp. 3143–3155, Apr. 2019.

[45] D. Garcia-Carrillo and R. Marin-Lopez, ‘‘Multihop bootstrapping with
EAP through CoAP intermediaries for IoT,’’ IEEE Internet Things J.,
vol. 5, no. 5, pp. 4003–4017, Oct. 2018.

[46] M. S. Lenders, C. Amsüss, C. Gündoğan, T. C. Schmidt, and M. Wählisch,
‘‘Securing name resolution in the IoT: DNS over CoAP,’’ in Proc. CoNEXT
Student Workshop (CoNEXT-SW), New York, NY, USA, 2021, pp. 11–12.

[47] P. Van der Stok, C. Bormann, and A. Sehgal, PATCH and FETCHMethods
for the Constrained Application Protocol (CoAP), document RFC 8132,
Apr. 2017.

[48] S.-I. Choi and S.-J. Koh, ‘‘Use of proxy mobile IPv6 for mobility manage-
ment in CoAP-based Internet-of-Things networks,’’ IEEE Commun. Lett.,
vol. 20, no. 11, pp. 2284–2287, Nov. 2016.

[49] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, ‘‘The Contiki-NG open source operating system for next
generation IoT devices,’’ SoftwareX, vol. 18, Jun. 2022, Art. no. 101089.

[50] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks, document RFC 6550, Mar. 2012.

[51] Y.-S. Yu, C.-C. Huang, and C.-H. Ke, ‘‘Analysis of maximum depth of
wireless sensor network based on RPL and IEEE 802.15.4,’’ in IoT as
a Service, Y.-B. Lin, D.-J. Deng, I. You, and C.-C. Lin, Eds. Cham,
Switzerland: Springer, 2018, pp. 234–239.

[52] CC2538 Powerful Wireless Microcontroller System-on-Chip for 2.4-GHz
IEEE 802.15.4, 6LoWPAN, and ZigBee Applications datasheet, Texas
Instruments, Dallas, TX, USA, Dec. 2012.

[53] S. Sciancalepore, G. Oligeri, andR. Di Pietro, ‘‘Strength of crowd (SOC)—
Defeating a reactive jammer in IoTwith decoymessages,’’ Sensors, vol. 18,
no. 10, p. 3492, 2018.

[54] P. Pinto, A. Pinto, and M. Ricardo, ‘‘End-to-end delay estimation using
RPL metrics in WSN,’’ in Proc. IFIP Wireless Days (WD), Nov. 2013,
pp. 1–6.

[55] P. Pinto, A. Pinto, and M. Ricardo, ‘‘RPL modifications to improve the
end-to-end delay estimation in WSN,’’ in Proc. 11th Int. Symp. Wireless
Commun. Syst. (ISWCS), Aug. 2014, pp. 868–872.

[56] S. M. M. H. Daneshvar, P. Alikhah Ahari Mohajer, and S. M. Mazinani,
‘‘Energy-efficient routing in WSN: A centralized cluster-based approach
via grey wolf optimizer,’’ IEEE Access, vol. 7, pp. 170019–170031, 2019.

ISMAEL AMEZCUA VALDOVINOS received the
B.S. degree in computer science from Universidad
de Colima, Mexico, in 2007, and the M.S.
and Ph.D. degrees in computer science from
Tecnológico de Monterrey, Mexico, in 2009 and
2013, respectively. He is currently a Professor
and a Researcher with Facultad de Telemática,
Universidad de Colima. His research interests
include wireless sensor networks (WSN), the
industrial Internet of Things (IIoT), vehicular

networks, and software-defined networks (SDN).

VOLUME 12, 2024 15607



I. Amezcua Valdovinos et al.: Design, Implementation, and Evaluation of an Embedded CoAP Proxy Server

PATRICIA ELIZABETH FIGUEROA MILLÁN
(Member, IEEE) received the B.Sc. degree in
computer science from Universidad de Colima,
Mexico, in 2007, and the Ph.D. degree from
Tecnológico de Monterrey, Campus Estado de
México, in 2017. She was involved in develop-
ing application protocols for 6LoWPAN wireless
sensor networks with Tecnológico de Monterrey,
Campus Estado de México. She is currently a
Professor with Tecnológico Nacional de México,

Campus Colima, Mexico, at graduate and undergraduate levels. Her research
interests include wireless sensor networks, the Internet of Things, emerging
technologies, and software engineering.

JUAN ANTONIO GUERRERO-IBÁÑEZ received
the Ph.D. degree from the Polytechnic University
of Catalonia, Barcelona, Spain, in 2008. He is
currently a Tenured Professor with the Faculty
of Telematics, University of Colima, Colima,
Mexico. He is also the Leader of the Networks
and Telecommunications Research Group, Fac-
ulty of Telematics. His research interests include
autonomous cars, vehicular communication, the
Internet of Things, networking and quality of

service provision, and wireless sensor networks.

RAMONA EVELIA CHÁVEZ VALDEZ received
the degree in computer science and the master’s
degree in information technology management
fromUniversidad Tecmilenio, Monterrey, Mexico.
From August 2009 to April 2022, she held
compatible administrative positions with Instituto
Tecnológico de Colima, including a Career Coor-
dinator, the Head of the Department of Systems
and Computing, and the Division of the Graduate
Studies and Research. Since 2017, she has been

recognized as a Desirable Profile, and since November 2019, she has been
a part of the ‘‘Emerging Technologies’’ Academic Group. She is currently a
Professor with TecnológicoNacional deMéxico, CampusColima. She is also
a Professor at graduate and undergraduate levels. She has published articles
in refereed and indexed journals and participated in the development of
computer systems and technological prototypes. She has published scientific
technical articles in peer-reviewed journals and conferences. Her research
interests include software engineering and web development.

15608 VOLUME 12, 2024


