
Received 14 December 2023, accepted 22 January 2024, date of publication 25 January 2024, date of current version 14 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3358620

Block-Wise Separable Convolutions: An
Alternative Way to Factorize
Standard Convolutions
YAN-JEN HUANG , HSIN-LUNG WU , AND CHING-CHEN
Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan

Corresponding author: Hsin-Lung Wu (hsinlung@mail.ntpu.edu.tw)

This work was supported in part by the National Science and Technology Council, Taiwan, under Grant NSTC-112-2221-E-305-004; and
in part by National Taipei University under Grant 2023-NTPU-HHMS-01.

ABSTRACT In this paper, we introduce block-wise separable convolutions (BlkSConv) to replace
the standard convolutions for compressing deep CNN models. First, BlkSConv expresses the standard
convolutional kernel as an ordered set of block vectors each of which is a linear combination of fixed
basis block vectors. Then it eliminates most basis block vectors and their corresponding coefficients to
obtain an approximated convolutional kernel. Moreover, the proposed BlkSConv operation can be efficiently
realized via a combination of pointwise and group-wise convolutions. Thus the constructed networks have
smaller model size and fewer multiply-adds operations while keeping comparable prediction accuracy.
We also develop a hyperparameter search framework based on principal component analysis (PCA) to
determine a qualified hyperparameter setting of the block depth and number of basis block vectors. By this
search framework, we construct networks which achieve nice prediction performance while simultaneously
satisfying the constraints of model size and model efficiency. Our code, data, and models are available at
https://github.com/yanjenhuang/blksconv.

INDEX TERMS Convolutional neural network, block-wise separable convolution, network architecture
search.

I. INTRODUCTION
Deep Learning (DL) has been the basis of many successes
in artificial intelligence, including a variety of applications
in computer vision, reinforcement learning, and natural
language processing. One of the most popular deep neural
networks is Convolutional Neural Network (CNN). With
the help of various techniques such as residual connections
and batch normalization, it is easy to train deep CNNs
with many layers on powerful GPUs. While large-scale
CNN models have achieved great successes, they require
huge computational complexity and massive storage. For
example, VGG16 [1] has 138million parameters and requires
154700millionmultiply-adds operations (MAdds) to classify
an image. It is a great challenge to deploy them in real-time

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif .

applications, especially on devices with limited resources
such as mobile phones and embedded systems. Thus, the
prediction models are required to be compact and fast
while keeping acceptable accuracy. The main approach to be
compact is the model compression which aims at establishing
a tradeoff between model efficiency and accuracy. In the
area of model compression, methods to construct efficient
and compact CNNs are mainly divided into two approaches:
one approach is to compress trained CNNs and the other
approach is to design new compact CNNs and train them
from scratch. Many works based on the first approach
suggested several techniques such as quantization [2], model
pruning [3], [4], [5], [6], [7], Huffman coding [3], and low
rank factorization [8].

Studies in the second approach explored many ways for
factorizing convolutions. For instance, Szegedy et al. [9]
improved GoogLeNet [10] through factorizing convolutions

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

21559

https://orcid.org/0009-0009-4659-8670
https://orcid.org/0000-0002-1129-3668
https://orcid.org/0000-0003-1839-2527


Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

FIGURE 1. The proposed block-wise separable convolution and its enhanced version. (a) Basic block-wise Separable convolution layer. (b) Enhanced
block-wise separable convolution layer.

with larger spatial filters by a two-layer convolutional
architecture with smaller spatial filters. At present, most
factorizing methods are usually performed via a combi-
nation of depthwise convolution, pointwise convolution,
and groupwise convolution. For example, in [11], the
depth-wise separable convolutions (DSCs) were proposed
where the standard convolution is decomposed into a
depth-wise convolution and a pointwise convolution. The
ShuffleNets [12], [13] utilized pointwise group convolution
with channel shuffle to decompose the standard convolution.
Moreover, many lightweight models based on DSCs or
groupwise convolutions such as MobileNets [14], [15], [16]
and ShuffleNets [12], [13] were proposed to greatly reduce
computation cost while maintaining accuracy.

In this paper, we follow the research path of the second
approach and propose block-wise separable convolutions
(BlkSConv) to replace standard convolutions. BlkSConv
approximates a standard convolution as follows. A standard
k × k × M convolutional kernel can be represented as
an ordered set of block vectors of size k × k × t . Since
each block vector can be written as a linear combination
of k2t basis vectors of size k × k × t , this standard
convolutional kernel can be viewed as an ordered set of
block vectors each of which is a linear combination of k2t
basis block vectors. Then BlkSConv eliminates most basis
block vectors and their corresponding coefficients to obtain
an approximated convolutional kernel. As shown on the left
of Figure 1, the extreme version of BlkSConv is called the
basic BlkSConv where only one basis block vector is used.
When carefully setting the depth of the block vector, that
is the parameter t , an approximated convolution of fewer
parameters can be obtained and the corresponding compact
CNN has acceptable prediction performance compared to the
standard convolutions. To increase the prediction accuracy
of the basic BlkSConv, an enhanced version is proposed by

increasing the number of basis block vectors, that is the
parameter s, as shown on the right of Figure 1. However,
adding too many basis block vectors will significantly
increase the model size and computational cost. Thus there
is a tradeoff between model efficiency/size and accuracy.
To realize the full potential of the enhanced BlkSConv in
trading-off model efficiency/size and accuracy, we propose
a framework based on the principal component analysis to
search for the hyperparameters t and s of each BlkSConv
layer for the given standard convolutional network. The
proposed search framework suggests a possible setting of
parameters t and s such that the constructed model based on
these selected hyperparameters may achieve high prediction
accuracy while simultaneously satisfying the constraints of
model size and model efficiency in terms of MAdds.

To summarize, our main contributions are as follows. First,
we develop a new convolutional layer called BlkSConv to
approximate the standard convolutional layer. To approx-
imate a standard convolutional kernel, BlkSConv divides
the kernel into blocks and approximates each block by
a linear combination of several fixed basis block vectors.
The constructed networks have small model size and fewer
multiply-adds operations while maintaining acceptable pre-
diction accuracy. Then, we also develop a search framework
to determine the block depth and the number of basis block
vectors such that the corresponding networks with selected
hyperparameters achieve comparable prediction performance
while simultaneously satisfying the constraints of model size
and model efficiency. We also present experimental results
to demonstrate the performance of selected BlkSConv-
based CNNs based on our proposed hyperparameter search
algorithm. Our results show that selected BlkSConv-based
CNNs achieve competitive performance compared with the
standard convolutional models for the datasets including Ima-
geNet, CIFAR-10/100, Stanford Dogs, and Oxford Flowers.

21560 VOLUME 12, 2024



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

For reader’s comprehension, the major contributions of the
present study are listed as follows:

• We develop BlkSConv which can approximate the
standard convolution with minimal loss of accuracy.

• BlkSConv can be implemented via a combination of
pointwise and group-wise convolutions.

• APCA-based hyperparameter search algorithm is devel-
oped to determine the block depth and the number
of basis block vectors when setting the BlkSConv
hyperparameters.

II. RELATED WORK
Many efforts have been devoted to improve efficiency of
CNNs which could be roughly divided into three categories.
First, model pruning is a popular method to improve
efficiency of CNNs. In [3] and [17], their methods remove
redundancy in the trained CNNmodel by pruning connection.
In [3], [18], [19], and [20], the calculation amount of
the trained model is compressed via quantization. In [5],
an accelerator-aware pruning algorithm is developed to
generate a more regular non-zero weight pattern that fits
accelerator architectures well. In [6], a saliency-adaptive
sparsity learning approach is proposed to optimize weight
pruning. In [7], the JointPruning method is designed for
compressing point cloud neural networks. In [21], [22], [23],
[24], and [25], model filters that have small contributions are
removed and the corresponding trained model is fine-tuned
to preserve the performance.

Second, many techniques are developed to factorize the
standard convolutions. In [9], convolutions with larger spatial
filters are factorized into two-layer convolutional architec-
tures with smaller spatial filters. Through different com-
binations of depthwise convolution, pointwise convolution,
and groupwise convolution, many well-known factorizing
frameworks were developed. In [11], the depth-wise separa-
ble convolutions (DSCs) were proposed where the standard
convolution is decomposed into a depth-wise convolution
and a pointwise convolution. The ShuffleNets [12], [13] use
pointwise group convolution with channel shuffle to decom-
pose the standard convolution. Moreover, many lightweight
models based on DSCs or groupwise convolutions such
as MobileNets [14], [15], [16] and ShuffleNets [12], [13]
were proposed to greatly reduce computation cost while
maintaining accuracy.

Recently, neural architecture search-based methods [26],
[27], [28], [29], [30] have been proposed to automatically
construct network architectures. These methods search over
a set of network hyperparameters including different types
of convolutional layers and kernel sizes in order to find a
network structure which satisfies optimization constraints
such as inference speed. Major search frameworks include
genetic-based methods [28] and reinforcement learning
based methods [29]. These techniques were used in state-
of-the-art CNN architectures such as MnasNet [26] and
MobileNetV3 [14].

Convolution weights of trained CNNs are also analyzed
in [31], [32], [33], and [34]. Following their analyses,
several approaches toward reducing redundant weights were
proposed. In [8], [35], and [36], the convolutional kernels are
approximated via low-rank factorization. In [33], the kernels
are analyzed via principal component analysis.

III. BLOCK-WISE SEPARABLE CONVOLUTIONS
For any natural number n, let [n] denote the set {1, 2, . . . , n}.
In a standard CNN, each convolutional layer converts an input
tensor I of size M × X × Y into an output tensor O of size
N × X × Y by applying the filter kernels F1,F2, . . . ,FN ,
each of sizeM × ℓ × ℓ with odd ℓ such that, for any x, y, j ∈
[X ] × [Y ] × [N ],

Ox,y,j =

∑
s1,s2∈S
s3∈[M ]

Ix+s1,y+s2,s3 · Fj(s1, s2, s3). (1)

where S = {z ∈ Z : −(l − 1)/2 ≤ z ≤ (l −

1)/2}. During training, the weights of each kernel Fj are
optimized via backpropagation. The total number of weight
parameters to be optimized in each kernel Fj is ℓ2 · M .
In the subsequent work, we propose a framework to reduce
the number of parameters of the standard convolutions while
preserving its prediction performance. Then, in order to
implement our new framework, we adopt a combination
of pointwise and group-wise convolutions to efficiently
realize the reduced convolutions. Combining these ideas,
we introduce block-wise separable convolutions, denoted by
BlkSConv. However, to generate a BlkSConv-based models,
many hyperparameters should be determined for keeping
prediction performance, model size, and model efficiency.
Thus, we also propose an efficient hyperparameter search
algorithm to select hyperparameters satisfying the given
model constraints.

A. EXPRESSING A STANDARD CONVOLUTION VIA A
LINEAR COMBINATION OF BLOCK VECTORS
In this section, we propose block-wise separable convo-
lutions. First, each convolutional kernel Fj of size M ×

ℓ × ℓ can be expressed as a concatenation of M/t blocks
Q(1)
j ,Q(2)

j , . . . ,Q(M/t)
j each of size ℓ × ℓ × t where

Q(k)
j (x, y, z) = Fj(x, y, z + (k − 1)t) for any x, y, z ∈ [X ] ×

[Y ] × [t]. We call t the block depth. Let {B1,B2, . . . ,Btℓ2}
be a set of basis block vectors. Each Q(k)

j can be expressed
uniquely as a linear combination of B1,B2, . . . ,Btℓ2 , that
is, there exist tℓ2 values P(k)j (i) ∈ R such that Q(k)

j =∑tℓ2
i=1 P

(k)
j (i) · Bi. In practice, tℓ2 may be large. In order

to reduce the model size, we require that the number
of basis block vectors is fewer than or equal to a fixed
number s with s < tℓ2. Now each Q(k)

j is replaced by the

following linear combination of B1, . . . ,Bs, that is Q̂
(k)
j =∑s

i=1 P
(k)
j (i)·Bi. The corresponding convolutional kernel F̂j is

the concatenation ofM/t blocks Q̂(1)
j , . . . , Q̂(M/t)

j . Therefore,

VOLUME 12, 2024 21561



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

FIGURE 2. Flowchart of the block-wise separable convolution where Gconv. means the group-wise convolution.

the corresponding output tensor is

Ôx,y,j =

∑
s1,s2∈S
s3∈[M ]

Ix+s1,y+s2,s3 · F̂j(s1, s2, s3). (2)

By Equation 2, the number of weight parameters in
BlkSConv is s · (t · ℓ2 +

M
t ). To significantly reduce model

size, we set s = 1. The left of Figure 1 illustrates the
operation of BlkSConv when s = 1. In order to achieve the
minimal model size, t can be set as

√
M/ℓ and the number of

parameters becomes 2ℓ
√
M while the parameter number of

the standard and 1×1 pointwise convolutions areMℓ2 andM ,
respectively. Thus, the constructed BlkSConv-based CNNs
have smaller model size than existing CNN models. Take
the ResNet34 [37] as an example where, in the last stage
of the ResNet-34, the convolutional kernel size is 3 × 3 and
the channel size is 512, that is ℓ = 3 and M = 512. In this
case, the ratio between the parameter size of the BlkSConv-
based convolutions and the parameter size of the standard
convolutions is approximately 0.0295.

However, the prediction performance of the BlkSConv-
based CNN with the smallest model size is usually worse
than that of the standard CNNs. To increase accuracy, the
number of basis block vectors should be increased, that is
s > 1. The right of Figure 1 illustrates the operation of
BlkSConv when s > 1. In this case, the number of parameters
becomes 2sℓ

√
M . Let us take convolutions in the last stage

of ResNet-34 as examples. We set t = 4 in the BlkSConv.
Now the ratio between the parameter size of the BlkSConv-
based convolutions and the parameter size of the standard
convolutions is approximately 0.0356. Thus we can add at
least 5 basis block vectors to increase prediction accuracy.
In this case, the ratio between the parameter size of the
BlkSConv-based convolutions with 5 basis block vectors and
the parameter size of the standard convolutions is approxi-
mately 0.178. In the experimental section, we demonstrate
that the BlkSConv-based convolutions with few basis block
vectors have prediction performance as well as the standard
convolutions on ImageNet or even outperform the standard

convolutions on several datasets when the backbone CNNs
are ResNets.

The next problem is the computational efficiency of
BlkSConv. If we compute the kernel F̂j first and perform
a regular convolution according to the kernel F̂j, then it is
obvious that the computational cost is larger than the cost for
just performing a standard convolution. We will address this
problem in the subsequent section.

B. IMPLEMENTATION OF BLKSCONV VIA A
COMBINATION OF POINTWISE AND GROUP-WISE
CONVOLUTIONS
In this section, we propose an efficient implementation
method to realize BlkSConv. The flowchart of the proposed
implementation is illustrated in Figure 2. To derive an
efficient implementation for BlkSConv operation, we rewrite
Equation 2 as follows.

Ôx,y,j =

∑
s1,s2∈S
z∈[t]

k∈[M/t]

Ix+s1,y+s2,z+(k−1)t · Q̂(k)
j (s1, s2, z)

=

∑
s1,s2∈S
z∈[t]

k∈[M/t]

Ix+s1,y+s2,z+(k−1)t ·

∑
i∈[s]

P(k)j (i) · Bi(s1, s2, z)

=

∑
i∈[s]

s1,s2∈S
z∈[t]

Bi(s1, s2, z)

×

∑
k∈[M/t]

P(k)j (i) ·

Ĩz(x+s1,y+s2,k)︷ ︸︸ ︷
Ix+s1,y+s2,z+(k−1)t︸ ︷︷ ︸

J (z)(x, y, i): a pointwise convolution of Ĩz

. (3)

Let Ĩz(x, y, k) be a tensor of size X × Y ×M/t defined by
Ĩz(x, y, k)

1
= I (x, y, z + (k − 1)t). We define J (z)(x, y, i) 1

=∑M/t
k=1 P

(k)
j (i) · Ĩz(x + s1, y + s2, k) which is a pointwise

convolution of Ĩz. Next, we define Ji(x, y, z)
1
= J (z)(x, y, i)

and let J be the reshaped tensor which is the concatenation

21562 VOLUME 12, 2024



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

of J1, . . . , Js, that is J (x, y, z + (i − 1)t) = Ji(x, y, z). Now
Equation 3 can be rewritten as

Ôx,y,j =

∑
i∈[s]

s1,s2∈S
z∈[t]

Bi(s1, s2, z)

× J (x + s1, y+ s2, z+ (i− 1)t). (4)

Finally, Equation 4 is just a group-wise convolution of the
tensor J with s groups.
Let us compute the computational cost (MAdds) of the

implementation for BlkSConv. By Equation 3 (Step a in
Figure 2), the computational cost of s pointwise convolutions
on the concatenation of Ĩ1, . . . , Ĩt is sXYM . In addition,
by Equation 4 (Step b in Figure 2), the computational cost of
the group-wise convolution on the tensor J is sXYtℓ2. Finally,
the computational cost of the pointwise summation in the last
step is sXY . The total MAdds of a BlkSConv operation is
sXY (M+ tℓ2+1) while the MAdds of a standard convolution
is XYMℓ2. Again, let us take convolutions in the last stage of
ResNet-34 as examples. We set s = 5 and t = 4 as the hyper-
parameters of the BlkSConv-based convolution. Now the
ratio between the MAdds of a BlkSConv-based convolution
and the Madds of a standard convolution is approximately
0.595. Thus the proposed BlkSConv operation is much
more efficient than the standard convolution in practical
cases.

C. HYPERPARAMETER SEARCH VIA PRINCIPAL
COMPONENT ANALYSIS
Designing aBlkSConv-basedCNN involves hyperparameters
including the block depth and the number of basis block vec-
tors in each convolutional layer that affect the performance
of the corresponding CNN model. To realize an efficient
BlkSConv-based CNN, we conduct a hyperparameter search
algorithm based on principal component analysis of trained
CNNs. Given a trained CNN, the algorithm generates the
block depth and the number of basis block vectors for
each standard convolutional layer of the trained CNN in the
following way. First, for each individual ℓ × ℓ × M kernel
K of the trained CNN where we assume that M = 2α

for some α ∈ N, the kernel K is partitioned into M/t
block vectors B1,B2, . . . ,BM/t each of size ℓ × ℓ × t
with t ∈ {1, 2, . . . , 2β

} for some integer β < α. Next,
we perform principal component analysis (PCA) on the set
{B1,B2, . . . ,BM/t }. Then, for a fixed integer γ and for each
q ∈ {1, 2, . . . , γ }, the algorithm computes the variance Vt,q
of the kernel K which is explained by the first q principal
components PC1,PC2,..,PCq. In addition, let CCt,q andMSt,q
denote the MAdds and the model size of the BlkSConv under
the setting that the block depth is t and the number of basis
block vectors is q, respectively. Note that the MAdds and
the model size of the standard convolution is exactly CCM ,1
andMSM ,1, respectively. After computing all Vt,q, CCt,q, and

MSt,q, the algorithm generates the feasible set:

Hαv,αc,αs = {(t, q) :

αv≤Vt,q,
CCt,q≤αcCCM ,1,
MSt,q≤αsMSM ,1

} (5)

for fixed positive constants αv, αc, αs ∈ (0, 1). Finally, the
algorithm chooses the hyperparameter (t, q) from Hαv,αc,αs

according to the computational cost or the model size.
On one hand, note that the goal of BlkSConv is to maintain

the prediction performance of the trained standard CNN.
In general, the prediction accuracy is proportional to the
model size of the constructed CNN. Therefore, in this sense,
we choose the hyperparameters (t̂, q̂) from Hαv,αc,αs such
that the constructed BlkSConv has the largest parameter size,
that is

(t̂, q̂) = arg max
(t,q)∈Hαv,αc,αs

MSt,q. (6)

One can expect that the generated BlkSConv-based CNN has
nice prediction performance compared to the original CNN
with standard convolutions.
On the other hand, one of the advantage of BlkSConv

operations is that BlkSConv can greatly reduce the model
size of the original standard CNN. Thus, in this sense, we can
select the hyperparameters (t̃, q̃) from Hαv,αc,αs such that the
constructed BlkSConv has the smallest parameter size, that is

(t̃, q̃) = arg min
(t,q)∈Hαv,αc,αs

MSt,q. (7)

However, the prediction performance may degrade when
the parameter size of the BlkSConv-based model decreases.
We will demonstrate in the experimental section that the
BlkSConv-based CNNs generated according to Equation 7
also have acceptable prediction accuracy compared to the
standard CNNs.
In summary, both Equation 6 and Equation 7 provide

ways to determine hyperparameters from the feasible set
Hαv,αc,αs such that corresponding BlkSConv-based CNNs
have smaller model size and fewer multiply-adds operations
than the original CNN with standard convolutions.
Finally, let us consider the extreme case that two constants

β and γ are set by β = 0 and γ = 1. Let us
further set the search parameter αv = 0. Under this
restricted search condition, the cardinality of the feasible set
H0,αc,αs is always 1. Thus the outputs of Equation 6 and
Equation 7 are the same. In fact, the resulting BlkSConv-
based CNN is exactly the same as the CNN where the
standard convolutions are replaced by the blueprint separable
convolutions previously developed in [33].

IV. EXPERIMENTS
In this section, we evaluate BlkSConv-based models and
the proposed hyperparameter architecture search algorithm
(HSA) on large-scale, small-scale, and fine-grained datasets.
The experimental algorithms are implemented on NVIDIA
Tesla V100 GPUs and in Pytorch and Scikit-learn.

VOLUME 12, 2024 21563



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

TABLE 1. ResNet architectures used in the high resolution images,
ImageNet, Stanford Dogs, and Oxford 102 Flowers. ResNet-10 (L=1),
ResNet-18 (L=2), ResNet-26 (L=3).

A. HYPERPARAMETER SEARCH DETAILS
First, we apply the PCA-based hyperparameter search
algorithm (HSA) developed in Section III-C on several
variants of ResNet models [37]. In the first part, we consider
the large-scale classification scenarios. Several standard
ResNets are trained on ImageNet [38] first and their
architectures are shown in Table 1. The HSA for searching
BlkSConv architectures is only applied to conv3_x, conv4_x,
conv5_x layers of these standard ResNets. Next, the search
hyperparameters αv, αc, αs are set as 0.5 or 0.75. It is possible
that the feasible set Hαv,αc,αs is empty. In this case, the
corresponding standard convolutional layer is not replaced.
Moreover, the proposed HSA has two selection strategies:
one is based on the largest parameter size, denoted by SS =

max, and the other is based on the smallest parameter size,
denoted by SS = min as shown in Table 2. We use sitj
to denote the architecture of the selected BlkSConv where
i means the number of basis block vectors and j is the
depth of the blocks. In the case that αv is large, it often
requires many principal components to accumulate enough
explained variance and thus this causes large numbers of
parameters or MAdds. Therefore, the feasible set Hαv,αc,αs

is probably empty when we further require small αc and αs.
On the other hand, the parameter αv cannot be too small
because the prediction performance of the network is highly
proportional to the amount of the accumulated variance as
discussed in Section III-C where we will demonstrate it in
the ablation study of this section. We present the results for
ResNet-18 and ResNet-26 on ImageNet under the setting that
αv = 0.5 which are shown in Table 2.
In the second part, we consider the small-scale classifi-

cation on CIFAR10/100 [39]. The standard ResNet-20 and
ResNet-56 are used as the experimental models where their
BlkSConv-based convoluational architectures are shown in
Table 3.

B. LARGE-SCALE CLASSIFICATION: IMAGENET
To evaluate the performance of BlkSConv-based models
in large-scale recognition, we conduct experiments on
ImageNet [38]. ImageNet contains nearly 1.3M training

TABLE 2. The standard ResNet-18 and ResNet-26 have 10.8M parameters/
1213.8M MAdds and 17.03M parameters / 1907.4M MAdds, respectively.
The P-rat. and M-rat. denote ratios of the parameter size and MAdds of
BlkSConvs compared with those of standard convolutions, respectively.

TABLE 3. ResNet architectures used in the smale-scale classification,
CIFAR10/100. ResNet-20 (L=3), ResNet-56 (L=9).

TABLE 4. Comparison among the BlkSConv-based and Standard ResNet
on ImageNet and CIFAR. For brief expression, we denote
(0.5, 0.5, 0.5, max / min) by (·, max / min).

images and 50,000 testing images. We augment the images
via random resized crop to 224px and random horizontal
flip with 50% probability. As suggested in [37], the initial
learning rate, the momentum, and the weight decay are set to
0.1, 0.9, and 10−4, respectively. The training takes 100 epochs
and the learning rate is scheduled to decay by a factor of 0.1 at
epochs 30, 60, and 90. We use SGD optimizer with batch size
256 to train ResNet-10, ResNet-18, and ResNet-26. Besides
ResNets, VGG and AlexNet are also used in our experiment.
We use SGD optimizer with batch size 128 to train VGG11-
BN, VGG13-BN, and AlexNet.

On one hand, let us focus the case that αv = 0.5 and SS =

max in Table 2. The prediction accuracies of the selected
BlkSConv-based models and the standard model are close
within 1%. It confirms our expectation that BlkSConv-based
models have smaller parameter sizes and fewer MAdds than
standard models while preserving prediction performance if
the proposed HSA adopts a selection strategy based on the
maximum parameter size.

On the other hand, let us consider the case that αv =

0.5 and SS = min in Table 2. The parameters and
MAdds of the BlkSConv-based models are only 12.6%

21564 VOLUME 12, 2024



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

TABLE 5. Comparison among ResNets, VGG, and AlexNet on ImageNet.

TABLE 6. Performance results for BlkSConv-based ResNet-56 on
CIFAR10/100. The standard ResNet-56 has 645K parameters and 41.28M
MAdds.

TABLE 7. Performance comparison among BlkSConv-based and the
standard ResNet-18 models.

and 29.8% of the standard model while the gap of their
prediction accuracies is about 3%. We adopt an interesting
way based on restricting the parameter size and MAdds to
interpret the advantage of the generated BlkSConv-based
models where the selection strategy SS is set as min.
We also compare the standard ResNet-10, the BlkSConv-
based ResNet-18, and the BlkSConv-based ResNet-26 in
Table 4 where the parameter sizes or MAdds of three
given models are similar. The BlkSConv-based ResNet-26
with parameter (0.5, 0.5, 0.5,min) and the BlkSConv-based
ResNet-18 with parameter (0.5, 0.5, 0.5,max) greatly out-
perform the standard ResNet-10 where both the BlkSConv-
based models lead to an accuracy gain of at least
6.5%. In addition, the BlkSConv-based ResNet-26 with
parameter (0.5, 0.5, 0.5,min) only has half the parameter
size of the BlkSConv-based ResNet-18 with parameter
(0.5, 0.5, 0.5,max).
Table 5 shows comparison results for ResNets, VGG

and AlexNet where their HSA parameters are all set as
(0.5, 0.5.0.5,max). For VGGs, the parameters and MAdds
of the BlkSConv-based models are 51% and 73% of the
standard model while the gap of their prediction accuracies
is about 5%. The large number of parameters and MAdds
are caused since many feasible sets H0.5,0.5,0.5 generated by
HSA are empty. For AlexNet, the parameters and MAdds
of the BlkSConv-based models are 53% and 70% of the

standard model while the BlkSConv-based AlexNet has a
great accuracy gain of 7%.

C. SMALL-SCALE CLASSIFICATION: CIFAR 10/100
Both CIFAR10 and CIFAR100 contain 50,000 training
images and 10,000 testing images. They are all 32 × 32
colored images. We conduct experiments with modified
ResNet-20 and ResNet-56 on small-scale image classifica-
tion. The training images are first augmented by random
horizontal flips and random shifts by up to 4px to pre-
vent overfitting. As suggested in [37], the training takes
200 epochs.We use SGD as the optimizer and the batch size is
128. The initial learning rate, the momentum, and the weight
decay are set to 0.1, 0.9, and 10−4, respectively. The learning
rate is scheduled to decay by a factor of 0.1 at epochs 100,
150, and 180.

The performance results on CIFAR 10/100 are shown in
Table 6. The BlkSConv-based models have much smaller
model sizes and fewer MAdds than the standard model
while all BlkSConv-based variants outperform the standard
model on CIFAR 10 and have comparable accuracy on
CIFAR 100. In the bottom of Table 4, the BlkSConv-
based ResNet-20 with (0.5, 0.5, 0.5,max) and the standard
ResNet-20 both have a comparable accuracy while the
BlkSConv-based ResNet-20 model is compressed 64% of the
parameter size and MAdds is decreased 61% compared to
the standard ResNet-20 model. Furthermore, the BlkSConv-
based ResNet-56 with (0.5, 0.5, 0.5,min) and the standard
ResNet-20 model both have similar parameter sizes and
MAdds while the BlkSConv-based ResNet-56 model has an
accuracy gain of 2%.

D. FINE-GRAINED CLASSIFICATION
We conduct experiments for fine-grained recognition on two
datasets Stanford Dogs [40] and Oxford 102 Flowers [41].

For the experimental setup, the standard ResNet-18
and its BlkSConv-variants are all trained from scratch by
augmenting data through random crops, horizontal flips, and
random gamma transform. We use SGD as the optimizer and
the initial learning rate, the momentum, and the weight decay
are set to 0.1, 0.9, and 10−4, respectively. The number of
epochs is 200, and the learning rate is scheduled to decay at
epochs 100, 150, and 200 by a factor of 0.1. The proposed
BlkSConv-based ResNet-18 models significantly outperform
the standard ResNet-18 model both on Stanford Dogs and
Oxford 102 Flowers as shown in Table 7.

E. ABLATION STUDY I: NECESSITY TO HAVE LARGE
EXPLAINED VARIANCE
Here, we demonstrate how the variance hyperparameter αv
affects the prediction accuracy of BlkSConv-based CNNs.
We use ResNet-18 as the experimental model. After training
the standard ResNet-18 on Stanford Dogs, the next goal is
to find several BlkSConv-variants of ResNet-18 all of which
have different explained variances such that their accuracies

VOLUME 12, 2024 21565



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

TABLE 8. Results on Stanford Dogs for different explained variances, αv
with αc = αs = 0.75 and SS = min.

TABLE 9. Performance comparison among BlkSConv-based and the
standard CNN models without using HSA. All models are trained from
scratch.

can be compared. Note that Ha,0.75,0.75 ⊆ Hb,0.75,0.75
for any a, b with a ≥ b. Based on this observation,
the model in Hb,0.75,0.75 which has the smallest parameter
size is likely to have a small explained variance as well.
Therefore, the selection strategy of the proposed HSA is set
by SS = min in order to select several BlkSConv-based
ResNet-18 models with different explained variances. Now
we apply the proposed HSA to the trained ResNet-18 under
six search hyperparameters {(αv, 0.75, 0.75,min) : αv =

0.0, 0.1, 0.2, . . . , 0.5}. The comparison result is shown in
Table 8. It can be seen that the accuracy of the BlkSConv-
based model is greater than that of the standard model only
when the variance hyperparameter αv is large enough, that is
αv ≥ 0.5.

F. ABLATION STUDY II: BLKSCONV-BASED MODELS
WITHOUT HSA
The proposed HSA framework has a limitation where it
has to start from acceptable pre-trained weights of standard
convolutional layers. When standard CNNmodels are trained
from scratch on a small dataset, the models with the trained
convolutional weights often have bad performance. This
makes the generated BlkSConv-based models have low
prediction accuracy as well. To overcome it, we suggest
to set each BlkSConv architecture by s4t1. This helps us
construct BlkSConv-based CNN architectures without using
HSA. Since both Stanford Dogs and Oxford 102 Flowers
are small datasets, we conduct experiments to compare
the prediction performance between the standard and the
BlkSConv-based models trained on these two datasets. The
results are shown in Table 9. After training from scratch, all
BlkSConv-based models have better prediction performance
than corresponding standard CNN models.

Next, we use three BlkSConv modules including s1t1,
s1t2, and s2t1 to replace the convolutional modules used
in MobileNetV2 where we denote the modified models

TABLE 10. Performance comparison among BlkNets and MobileNetV2 on
ImageNet.

FIGURE 3. The inverted residuals structures used in MobileNetV2 and
BlkNets. Modules of MobileNetV2 inside red-dashed box are replaced
with our BlkSConv modules. (a) The inverted residuals structure used in
MobileNetV2. (b) The BlkSConv-based inverted residuals structure used in
BLKNet.

as BlkNet-sitj. The inverted residuals structure is used
in MobileNetV2, which has three operators as shown in
Figure 3(a). We replace the modules inside red-dashed
box with our BlkSConv to construct our BlkNet-sitj. The
BlkSConv-based inverted residuals structure is shown in
Figure 3(b). We compare the generated BlkNets with
MobileNetV2 on ImageNet and the comparison results
are shown in Table 10. BlkNet-s1t1 slightly outperforms
MobileNetV2 while the parameter size of BlkNet-s1t1 is
slightly smaller than that of MobileNetV2. It can be seen that
BlkNet-s1t2 preserves prediction performance andMAdds of
BlkNet-s1t1 and has much less parameters than BlkNet-s1t1.
Finally, it satisfies the expectation that BlkNet-s2t1 has much
better prediction accuracy than other models but its parameter
size and MAdds are larger than other models.

V. DISCUSSION AND FUTURE WORK
As mentioned in Section I, the main purpose of our
proposed BlkSConv is to replace standard convolutions
without sacrificing prediction accuracy and then to reduce
model size and computational load of the standard CNNs
simultaneously. Thus, for a specific deep learning task, it is
possible to replace the network’s standard convolutions with
BlkSConvs when deploying a CNN with high task accuracy
on constrained hardware. It allows for substantial memory
savings with minimal loss of accuracy.

We take lightweight age estimation as an example. In [42],
several standard CNNs are proposed for the task of age
estimation. However, the model sizes of these standard
CNNs are too large to be lightweight. In [42], the authors
suggested to replace the standard convolutions of these
standard CNNs by the separable convolutions in order to

21566 VOLUME 12, 2024



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

significantly reduce the number of parameters. Nevertheless,
the prediction accuracy of their constructed lightweight CNN
based on separable convolutions is not preserved compared
to the standard CNN. Therefore, it is interesting to apply
our proposed BlkSConvs to the standard CNNs constructed
in [42] so as to preserve the prediction accuracy and reduce
model size simultaneously. We leave it as our future work.

In addition, there is an important issue on the application
of BlkSConv. As mentioned in Section IV-F, the PCA-
based HSA framework has to start from pre-trained weights
of standard convolutional layers. However, it is very time-
consuming to train a BlkSConv network via the PCA-
based HSA. This may restrict the application of BlkSConv.
To address this problem, we suggest to set each BlkSConv
architecture by several specific hyperparameters shown in
Section IV-F and then to train the network from the scratch.
This gives a practical solution for training a BlkSConv-based
network without HSA. It makes BlkSConv more applicable.

VI. CONCLUSION
In this paper, we introduce the block-wise separable
convolutions (BlkSConv) to replace standard convolutions.
An efficient implementation of the BlkSConv operation via
a combination of pointwise and group-wise convolutions is
also given. Moreover, we also propose an efficient hyper-
parameter search algorithm based on principal component
analysis in order to select an optimal BlkSConv-based
convolutional network under certain constraints on model
size and model efficiency. Finally, the experimental results
demonstrate the advantage of the BlkSConv-based CNN
models selected by the proposed hyperparameter search
algorithm.

REFERENCES
[1] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556.
[2] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘‘Quantized convolutional

neural networks for mobile devices,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2017, pp. 4820–4828.

[3] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[4] A. See,M.-T. Luong, and C. D.Manning, ‘‘Compression of neural machine
translation models via pruning,’’ 2016, arXiv:1606.09274.

[5] H.-J. Kang, ‘‘Accelerator-aware pruning for convolutional neural net-
works,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 7,
pp. 2093–2103, Jul. 2020.

[6] J. Shi, J. Xu, K. Tasaka, and Z. Chen, ‘‘SASL: Saliency-adaptive sparsity
learning for neural network acceleration,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 31, no. 5, pp. 2008–2019, May 2021.

[7] J. Guo, J. Liu, and D. Xu, ‘‘JointPruning: Pruning networks along multiple
dimensions for efficient point cloud processing,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 32, no. 6, pp. 3659–3672, Jun. 2021.

[8] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolutional
neural networks with low rank expansions,’’ 2014, arXiv:1405.3866.

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818–2826.

[10] C. Szegedy, W Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[11] L. Sifre and S. Mallat, ‘‘Rigid-motion scattering for texture classification,’’
Int. J. Comput. Vis., vol. 19, no. 3559, pp. 501–515, Mar. 2014.

[12] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, ‘‘ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), Oct. 2018, pp. 116–131.

[13] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6848–6856.

[14] A. Howard, M. Sandler, G. Chu, LC. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, and Q. V. Le, ‘‘Searching for
MobileNetV3,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct.
2019, pp. 1314–1324.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[17] L. Zhu, R. Deng, M. Maire, Z. Deng, G. Mori, and P. Tan, ‘‘Sparsely
aggregated convolutional networks,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 186–201.

[18] E. Park, S. Yoo, and P. Vajda, ‘‘Value-aware quantization for training and
inference of neural networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 580–595.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’ in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[20] D. Zhang, J. Yang, D. Ye, and G. Hua, ‘‘LQ-Nets: Learned quantization for
highly accurate and compact deep neural networks,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 365–382.

[21] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, ‘‘Soft filter pruning for accel-
erating deep convolutional neural networks,’’ 2018, arXiv:1808.06866.

[22] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very
deep neural networks,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017,
pp. 1389–1397.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ 2016, arXiv:1608.08710.

[24] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method for
deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5058–5066.

[25] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, ‘‘Leveraging filter
correlations for deep model compression,’’ in Proc. IEEE Winter Conf.
Appl. Comput. Vis. (WACV), Mar. 2020, pp. 824–833.

[26] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. Le, ‘‘MnasNet: Platform-aware neural architecture search for mobile,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 2820–2828.

[27] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, ‘‘FBNet: Hardware-aware efficient ConvNet design
via differentiable neural architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10734–10742.

[28] L. Xie and A. Yuille, ‘‘Genetic CNN,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1379–1388.

[29] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement
learning,’’ 2016, arXiv:1611.01578.

[30] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[31] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, ‘‘Predicting
parameters in deep learning,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 26, 2013, pp. 148–2156.

[32] J. Guo, Y. Li, W. Lin, Y. Chen, and J. Li, ‘‘Network decoupling: From
regular to depthwise separable convolutions,’’ 2018, arXiv:1808.05517.

[33] D. Haase and M. Amthor, ‘‘Rethinking depthwise separable convolutions:
How intra-kernel correlations lead to improved MobileNets,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 14600–14609.

[34] W. Shang, K. Sohn, D. Almeida, and H. Lee, ‘‘Understanding and
improving convolutional neural networks via concatenated rectified linear
units,’’ in Proc. Int. Conf. Mach. Learn., Jun. 2016, pp. 2217–2225.

[35] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploiting
linear structure within convolutional networks for efficient evaluation,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 1269–1277.

VOLUME 12, 2024 21567



Y.-J. Huang et al.: Block-Wise Separable Convolutions: An Alternative Way

[36] J. Jin, A. Dundar, and E. Culurciello, ‘‘Flattened convolutional neural
networks for feedforward acceleration,’’ 2014, arXiv:1412.5474.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis., vol.
115, no. 3, pp. 211–252, Dec. 2015.

[39] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep. TR-2009,
2009.

[40] A. Khosla, N. Jayadevaprakash, B. Yao, and F. Li, ‘‘Novel dataset for fine-
grained image categorization: Stanford dogs,’’ in Proc. CVPR Workshop
Fine-Grained Vis. Categorization (FGVC), vol. 2, 2011, pp. 806–813.

[41] M.-E. Nilsback and A. Zisserman, ‘‘Automated flower classification over
a large number of classes,’’ in Proc. 6th Indian Conf. Comput. Vis., Graph.
Image Process., Dec. 2008, pp. 722–729.

[42] Y.-J. Huang and H.-L. Wu, ‘‘New coarse-to-fine approaches for age
estimation based on separable convolutions,’’ IEEE Access, vol. 11,
pp. 130306–130318, 2023.

YAN-JEN HUANG received the M.S. degree in
computer science and information engineering
from National Taipei University, Taiwan, in 2018,
where he is currently pursuing the Ph.D. degree
in electrical engineering and computer science.
His research interests include algorithm design,
machine learning, and deep learning.

HSIN-LUNG WU received the Ph.D. degree in
computer science and information engineering
from National Chiao Tung University, Taiwan,
in 2008. He is currently a Professor with the
Department of Computer Science and Information
Engineering, National Taipei University, Taiwan.
His main research interests include the design and
analysis of algorithms, computational complexity,
theory of machine learning, and deep learning.

CHING-CHEN received the bachelor’s degree in
computer science and information engineering
from National Taipei University, Taiwan, in 2022,
where she is currently pursuing themaster’s degree
in computer science and information engineering.
Her research interests include machine learning
and deep learning.

21568 VOLUME 12, 2024


