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ABSTRACT A DC microgrid’s tightly regulated DC/DC converter encounters significant challenges in
voltage stability, primarily due to the negative incremental resistance of constant power loads (CPLs).
Conventional controllers often struggle with load variations and changes in system parameters. Therefore,
there has been growing interest in adaptive machine learning algorithms, such as Deep Reinforcement
Learning (DRL), to improve voltage regulation. This paper presents an end-to-end DRL framework based on
a modified Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. The framework is designed
to directly control power switches for regulating the voltage of a DC/DC buck converter that supplies power
to CPLs. Real-time experiments were conducted using OPAL-RT to validate the approach under diverse load
cycles and converter parameter changes.Comparative analysis against other DRL-based control strategies,
including Deep Q-learning (DQN) and Deep Deterministic Policy Gradient (DDPG), demonstrated the
superior static and dynamic voltage response of the proposed modified TD3 DRL controller, particularly
in scenarios involving load and parametric variations.

INDEX TERMS Voltage stability, micro grid, constant power loads, dc-dc buck converter, deep Q-learning,
deep deterministic policy gradient, twin delayed deep deterministic policy gradient.

I. INTRODUCTION
Dc Microgrids have gained significant attention in the past
decade, driven by factors such as the integration of renewable
energy sources and the rise in DC loads. DC microgrids
offer numerous advantages, including enhanced efficiency,
improved power quality, and increased flexibility. By lever-
aging the benefits of DC microgrids, developing countries
can effectively address energy crises, enhance energy access,
promote sustainability, and stimulate economic growth [1].
A typical DC microgrid, as depicted in Figure 1, represents
a standard configuration for a DC microgrid involves the
interconnection of distributed renewable energy sources and
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various electrical loads. These energy sources encompass
renewable systems like solar panels or wind turbines,
as well as conventional sources such as batteries and diesel
generators. The loads in DC microgrids span residential,
commercial, and industrial facilities, encompassing lighting,
machinery, and other electrical devices. However, DC micro-
grids supplying CPLs face voltage-related challenges [2].
When CPLs are connected to a DC microgrid, they exhibit
negative impedance characteristics, leading to a voltage
droop phenomenon [3]. This phenomenon introduces rapid
and significant voltage fluctuations, causing issues with volt-
age instability [4]. To tackle these challenges, various passive
and active damping approaches have been proposed [5].

Passive damping techniques offer inherent stability without
the need for active control or external energy sources.
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FIGURE 1. A standard configuration for a DC microgrid involves the
interconnection of distributed renewable energy sources and various
electrical loads.

However, these techniques may have limitations when
dealing with rapid and significant load changes or variations
in CPL characteristics [6], [7]. Furthermore, careful design
and tuning are essential to ensure the effectiveness of passive
damping techniques in addressing voltage challenges unique
to DC microgrids supplying CPLs [8].

Active damping approaches encompass small signal-based
and eigenvalue methods, commonly employed in the analysis
and design of control systems for voltage regulation in
DC-DC Buck converters supplying CPLs [9], [10], [11].
Although these methods offer valuable insights and initial
design guidelines, it is crucial to validate their results through
simulations and, if possible, experimental testing to ensure
accuracy and applicability in practical systems. While these
methods serve as valuable tools for analyzing and designing
control systems, they do have certain limitations and potential
drawbacks, such as the linearity assumption and design
iterations [12], [13], [14]. It is important to be mindful of
these constraints and drawbacks in order to make informed
decisions during the analysis and design phases.

On the other hand, large signal-based methods, also known
as time-domain or nonlinear analysis methods, offer alterna-
tive approaches to analyzing and designing control systems,
addressing certain limitations of small signal-based and
eigenvalue methods [15], [16]. These methods specifically
focus on the dynamic behavior of the system in response to
significant variations and nonlinearities.

Similar to small signal-based methods, large signal-based
methods may involve iterative design processes to optimize
control parameters and achieve the desired system perfor-
mance. Fine-tuning the control strategy often requires mul-
tiple simulations and iterations. Large signal-based analysis
heavily relies on simulation tools and models, necessitating
accurate modeling of nonlinear components and control
strategies using appropriate techniques and detailed system
models. The accuracy of the analysis results depends on the
reliability of the models used, leading to the emergence of

model-free techniques [17]. It is crucial to employ precise
modeling techniques to enhance the reliability of large
signal-based analysis results.

Feedback control techniques utilize information about the
system output and compare it to a desired setpoint to generate
a control signal that adjusts the system inputs. For example,
PID control continuously monitors the error between the
setpoint and the actual output, adjusting the control signal
based on proportional, integral, and derivative terms to
regulate system behavior. Although PID control requires
careful tuning to achieve optimal performance, it may not
suffice for addressing complex control requirements or
compensating for significant parameter variations.

Prediction methods play a crucial role in the voltage
regulation of DC-DC Buck converters supplying constant
power loads (CPLs), providing insights into load transients,
system dynamics, control horizons, constraint handling, and
disturbance rejection. These methods empower the control
system to anticipate future behavior, optimize control actions,
and maintain stable and accurate voltage regulation in the
presence of varying load conditions and system dynamics.

Model Predictive Control (MPC) finds common use in
various applications, particularly in the voltage regulation of
DC-DC Buck converters supplying CPLs. MPC offers sev-
eral advantages, including predictive capabilities, constraint
handling, adaptability, andmultivariable control [18]. Among
different variants, Finite Control Set MPC stands out due to
its computational efficiency and implementation simplicity.
Nonlinear MPC enables more precise voltage regulation and
control over a broader operating range. Distributed MPC
is applicable when the control system involves multiple
interconnected DC-DC Buck converters or when CPLs
are distributed across different locations. Stochastic MPC
enhances control robustness by considering the probabilistic
nature of disturbances and incorporating risk measures into
the optimization problem [19].
However, the successful implementation of MPC requires

careful consideration of computational requirements, model-
ing accuracy, and tuning complexity. Adequate implementa-
tion, modeling, and parameter tuning are crucial elements for
achieving effective and reliable voltage regulation in DC-DC
Buck converters supplying CPLs using MPC.

Unlike linear control techniques, such as PID control,
sliding mode control (SMC) is specifically designed to
handle nonlinearities in system dynamics and uncertainties in
system parameters [20], [21]. SMC serves as a potent control
technique for voltage regulation in DC-DC Buck converters
supplying CPLs, offering robustness against uncertainties,
disturbances, and nonlinearities, while ensuring a fast
and accurate system response [22]. Various variations of
sliding mode control, including higher-order sliding mode
control, adaptive sliding mode control, and fuzzy sliding
mode control, can be employed to address challenges
associated with CPLs and nonlinear load characteristics.
For example, adaptive sliding mode control is effective in
handling parameter variations and uncertainties common in
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DC-DC converters operatingwith CPLs. Higher-order sliding
mode control provides improved accuracy and robustness,
whereas fuzzy sliding mode control offers a flexible and
adaptive control approach in the presence of imprecise or
uncertain information. Integral sliding mode control can
be employed to eliminate steady-state errors and enhance
voltage regulation accuracy, which is particularly crucial in
systems supplying CPLs with varying power demands [23].
However, it is crucial to carefully address the chattering
phenomenon and design complexity associated with sliding
mode control to ensure effective implementation and satis-
factory control performance [24]. Proper attention to these
aspects is essential for achieving successful and reliable
control outcomes with sliding mode control in DC-DC Buck
converters supplying CPLs.

Fuzzy Logic Control (FLC) finds wide application in
various control systems, including the voltage regulation
of DC-DC Buck converters supplying CPLs. FLC proves
to be a versatile control technique capable of handling
imprecise information, adapting to changing conditions, and
providing interpretable control strategies. Adaptive FLC is
particularly useful in scenarios where CPL characteristics or
operating conditions vary over time [25]. Fuzzy SlidingMode
Control combines the concepts of FLC and sliding mode
control, wherein sliding mode control ensures robustness
against parameter variations and disturbances, while FLC
provides linguistic rules and fuzzy logic-based decision-
making. By combining these approaches, Fuzzy Sliding
Mode Control achieves enhanced robustness and improved
tracking performance for voltage regulation in the presence
of CPLs. Fuzzy Gain Scheduling involves utilizing FLC to
adjust the control gains or parameters of the DC-DC Buck
converter based on the operating conditions. A hierarchical
fuzzy control structure can be implemented in DC-DC Buck
converters supplying CPLs, where the higher-level controller
sets the desired output voltage, and the lower-level fuzzy
controller adjusts the converter’s duty cycle to regulate the
output voltage [26]. However, the successful implementation
of FLC requires the appropriate selection of linguistic
variables, membership functions, rule bases, and defuzzi-
fication methods to ensure accurate and effective control
performance [27]. Careful consideration of these elements is
crucial for achieving successful and reliable control outcomes
with FLC in DC-DC Buck converters supplying CPLs.

Artificial Neural Network (ANN) techniques, specifically
within the neural networks or deep learning subfield, are
integral components of the machine learning and AI toolbox.
ANNs are trained using data, enabling them to learn patterns,
relationships, and mappings between input and output vari-
ables. In the context of voltage regulation for DC-DC Buck
converters supplying constant power loads (CPLs), ANN
techniques find applications in modeling, control system
design, adaptive control, and fault detection. ANNs have the
potential to enhance voltage regulation performance by lever-
aging their ability to learn from data and make predictions or

control decisions based on learned patterns and relationships.
However, the successful application of ANN techniques
necessitates careful data collection, pre-processing, network
architecture design, and training [28]. Adequate training
data, representing various operating conditions and possible
scenarios, is crucial for achieving accurate and reliable
results. Additionally, the complexity and interpretability of
ANNs should be considered, as they may require substantial
computational resources and may not offer intuitive insight
into the control decision-making process [29]. It is essential
to balance the potential advantages of ANN techniques
with the practical considerations of data complexity and
computational resources during their application in voltage
regulation systems.

DRL is a machine learning technique employed to develop
control strategies by interacting with an environment and
receiving feedback in the form of rewards or punishments.
In the context of voltage regulation for DC-DC Buck convert-
ers supplying CPLs, DRL can be applied to develop control
strategies that optimize voltage regulation performance. The
DRL agent interacts with the converter system, taking actions
such as adjusting control parameters or duty cycle to regulate
the output voltage. It receives rewards or penalties based
on how effectively it achieves the desired voltage regulation
objective [30]. DRL serves as a powerful tool for enhancing
control strategies in voltage regulation systems, allowing
for adaptive and optimized performance based on real-time
interactions with the converter system. The DRL agent
interacts with the converter system, taking actions such as
adjusting control parameters or duty cycle to regulate the
output voltage. It receives rewards or penalties based on
how effectively it achieves the desired voltage regulation
objective [30]. DRL serves as a powerful tool for enhancing
control strategies in voltage regulation systems, allowing
for adaptive and optimized performance based on real-time
interactions with the converter system.

The literature explores several methods regarding the
utilization of the DRL approach in DC/DC converters.
A recent study introduced a self-adaptive system [31]
employing a proximal policy optimization algorithm (PPO)
for parameter tuning, aiming to mitigate the destructive
effects of Constant Power Loads (CPLs). In contrast, another
study [32] adapts a DDPG algorithm to generate a duty ratio
compensation signal capable of controlling the output voltage
of a DC/DC buck-boost converter feeding CPLs. However,
these DRL management strategies are partially dependent on
the mathematical model, the accuracy of which is influenced
by efficiency.

A novel approach involves the design of an auxiliary
DDPG controller fused with an intelligent Proportional-
Integral (PI) controller and sliding mode observer [32].
This design aims to reduce observer estimation errors
and further enhance the dynamic characteristics of the
DC/DC buck converter feeding CPLs. While the DDPG
algorithm has found widespread implementation in robotics
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and autonomous driving, particularly for continuous control
problems, its remarkable performance is accompanied by
challenges. The overestimation of Q-values in the critic
network and the dependence on hyperparameter tuning can
lead to unstable operation. Addressing these issues is crucial
for ensuring the stability and reliability of the implemented
DDPG-based controller.

To enhance the bus voltage regulation performance of
DC/DC buck converters feeding CPLs, an implementation
of a model-free DRL-based DQN algorithm has been
introduced [33]. This algorithm is primarily designed to
address stabilization issues and ensure the required system
performance. Additionally, it significantly reduces settling
time in the event of a disturbance. The method employs
a discrete action space in the continuous-time domain to
match the switching speed of the switch element. However,
the practical implementation of digital controllers demands a
discrete-timemodel [34], [35]. Consideration of these aspects
is essential for the successful and effective implementation of
digital controllers in real-world scenarios.

This paper introduces a modified Twin Delayed Deep
Deterministic Policy Gradient (TD3) control algorithm
designed for DC microgrids supplying CPLs. The goal is to
address instability issues arising from negative impedance
characteristics. The TD3 algorithm not only mitigates
instability but also enhances the dynamic characteristics of
the system. In contrast to the DQN algorithm, which is suited
for discrete control tasks, the TD3 algorithm is effective for
continuous control tasks. Moreover, TD3 differs from the
DDPG algorithm in three key ways: i) it incorporates double
Q-learning without clipping the action signal, ii) it introduces
delays in the updates of the actor for stable training, and iii) it
provides better action noise regularization. These distinctions
contribute to the improved performance and stability of the
TD3 algorithm in regulating DC microgrids supplying CPLs.

The main contributions of this work are outlined below:

• Introduction of an end-to-end continuous action space-
based TD3 DRL algorithm modified for practical
deployment. This algorithm aims to enhance voltage
regulation in DC microgrids with constant power loads.

• Conducted real-time validations of the proposed TD3
controller using OPAL-RT in the context of microgrid
control applications. This step ensures the practical
applicability and effectiveness of the algorithm.

• Conducted static, dynamic, and robust performance
analyses of the modified TD3 DRL controller. The
analysis focused on voltage response in the presence of
load power variations and parameter changes. Compar-
ative assessments were made against other state-of-the-
art DRL-based control algorithms, including DQN and
DDPG.

The remainder of the paper is organized as follows: the
mathematical modeling of the system and control statement
are discussed in Section-II. The details of the DRL elements
and the workflow of the controller methodology are described

FIGURE 2. In a typical DC microgrid configuration, there is a DC/DC buck
converter integrated to supply power to CPLs.

in Section-III. The real-time validation, simulation results
and comparative analysis of different DRL control algorithms
for voltage regulation are presented in Section-IV. Finally,
Section-V summarises of the work.

II. MATHEMATICAL DISSEMINATION OF DC/DC BUCK
CONVERTER FEEDING CPL
The DC microgrid serves as a common interface for
various distributed energy resources (DERs), energy storage
elements, and diverse electrical loads. Within DCmicrogrids,
DC-DC converters play a crucial role, facilitating voltage
conversion and regulation to align with the requirements of
different sources and loads. Figure 2 illustrates a typical
onboard microgrid configuration, where a DC/DC buck
converter feeds CPLs. In this representation, the lumped CPL
is depicted as a controlled current source, while the lumped
resistive load is denoted as R. DC microgrids are capable
of accommodating a range of loads that operate on DC
power. CPLs, a specific load type commonly encountered in
DC microgrids, find applications in various fields. Examples
include motor drives, data centers, telecommunications
equipment, industrial processes, and medical devices. CPLs
maintain a constant power demand irrespective of changes
in voltage or current. They are designed to consume a fixed
amount of power, ensuring stability in power consumption
even when input voltage or current fluctuates.

The V-I characteristics of the constant power loads is given
by equation (1)

icpl =
pcpl
vcpl

(1)

where, pcpl is CPL load power, vcpl is CPL voltage, icpl is CPL
current.

The state-space representation of the dynamic model based
on the average switching scheme is given by equation (2)-(4)
[32]

diL
dt
=

1
L
[ vin.d − vc] (2)

dvc
dt
=

1
C

[ iL −
vc
R1
−

P
vc
] (3)

y = vout (4)
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FIGURE 3. The V-I characteristics of CPLs demonstrate negative
incremental impedance behavior, causing voltage fluctuations in DC
microgrids.

Here, vc – capacitor voltage, iL – inductor current, L –
inductance, C – capacitance, P – constant power, d – duty
ratio, vin– input voltage, vout – output voltage.
DC-DC Buck converters are widely utilized in power

electronics to step down the voltage from a higher input
voltage to a lower output voltage. These converters play
a crucial role in providing stable and regulated voltage
output to power loads, including constant power loads.
Voltage regulation in a buck converter entails adjusting the
duty cycle of the switching mosfet to maintain the desired
output voltage. CPLs typically adapt their impedance to
sustain a constant power draw. However, abrupt changes
or fluctuations in the load can lead to voltage fluctuations.
If the load demands more power, the converter may struggle
to meet the increased power requirement, resulting in a
temporary drop in voltage. Conversely, if the load abruptly
reduces its power demand, the converter may overshoot
the voltage output. In cases of sudden voltage drops or
rises, constant power loads exhibit a negative incremental
impedance characteristic, as illustrated in Figure. 3. This
characteristic introduces instability issues into the microgrid
supplying CPLs [9].

The primary objective is to design a controller for the
tightly regulated output voltage of the converter, ensuring sys-
tem stability even under significant variations in load power
and system parameters. The employed control mechanisms
can impact crucial factors such as response time, accuracy,
and the load’s capability to handle transient conditions. Con-
sequently, the entire system is characterized by nonlinearity
and switching dynamics, with its components, especially the
converter load, exhibiting notable uncertainties. Therefore,
the application of modern and intelligent controllers becomes
essential to effectively manage and regulate the system.

III. DRL CONTROLLER METHODOLOGY
DRL comprises an environment and an agent. The interaction
between the environment (a DC/DC converter feeding CPLs)
and the agent (TD3) is illustrated in Figure. 4. The agent
makes decisions (actions) by retrieving observations from

FIGURE 4. The DRL methodology for agent training illustrates the
dynamic interaction between the agent and the environment as the agent
learns to optimize microgrid performance.

the environment and receives a reward for the action taken.
The agent’s objective is to maximize the cumulative reward
by providing the most suitable action signals to satisfy the
control objective. The agent’s decisions (control actions)
progressively improve through a rigorous learning process,
as explained in Section III-E. The various elements of the
DRL methodology are discussed as follows:

A. OBSERVATION SPACE
The measurable parameters and state variables within the
environment can serve as observations for training the agent.
In this context, observations for the agent include the voltage
error signal (represented as the difference between desired
and actual output voltage, denoted as e(t)), the derivative of
the error signal, the integration signals of the error signal, the
output voltage (vout), the derivative of the output voltage, and
the integral signals of the output voltage. The observation set
is defined by Equation (5).

Ot =
{
e (t) ,

de(t)
dt

,

∫
e (t) , vout (t) ,

dvout(t)
dt

,

∫
vout(t)

}
(5)

B. ACTION SPACE
The controller regulates the duty ratio of gate pulses
to the MOSFET switch. A continuous control signal is
preferred, as it offers a suitable range of duty ratios for
various operating conditions, thereby enhancing dynamic
performance. In contrast to conventional end-to-end DRL
algorithms used for controlling DC/DC buck converters,
which have a discrete action space with a limited number
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of action sets to reduce training complexity, the proposed
method is an end-to-end DRL-based controller. This method
operates without a conventional controller and necessitates a
continuous action space, accommodating different values of
duty ratio.

C. AGENT
The TD3 algorithm represents an advanced reinforcement
learning technique utilized for training agents in continuous
action spaces. Serving as an extension of the original DDPG
algorithm, TD3 incorporates several improvements aimed
at enhancing stability and learning efficiency. Specifically
designed for scenarios where an agent must learn to
execute continuous actions in an environment to maximize a
reward signal, TD3 has demonstrated successful applications
across various tasks. These tasks include robotic control,
autonomous driving, and simulated physics environments.
The structure of the TD3 algorithm can be segmented into
several components, as depicted in Figure. 4, each fulfilling
a specific role in the learning process.

• Actor Network: The actor network is responsible for
mapping states to actions. It takes the current state
as input and generates a continuous action based on
a learned policy. The goal of the actor network is to
maximize the expected cumulative reward over time.
The actor network parameters are represented with θ .

• Critic Networks: TD3 utilizes two critic networks, often
referred to as twin critics. The critic networks estimate
the value or quality of a given state-action pair. They take
both the current state and the action as inputs and output
a value estimate. By having two separate critics, TD3
reduces the overestimation bias that can occur in value-
based methods. The twin critic networks parameters are
represented with φ1, φ2.

• Target Networks: TD3 employs target networks for both
the critics and the actor. These target networks are
periodically updated to slowly track the learned values.
The critic target networks are used to estimate the target
Q-values for the actor’s policy updates, while the actor
target network is used to estimate the gradient of the
value function with respect to the actions. The target
actor, twin critic network parameters are represented
with θtarget , φtarget1, φtarget2 respectively.

• Replay Buffer: The replay buffer is a memory structure
that stores past experiences of state-action-reward-next
state transitions. It allows the algorithm to break the
sequential correlation in the data, mitigating issues
associated with temporally correlated samples. During
training, samples are randomly sampled from the replay
buffer to create training batches.

• Exploration: To address the exploration-exploitation
trade-off, TD3 typically employs noise perturbations
during action selection. This noise can be added directly
to the actions or incorporated into the policy function

TABLE 1. DQN, DDPG and TD3 neural network configurations.

to encourage exploration of different actions in the
environment.

• Policy and Value Updates: TD3 utilizes a variant of
the deterministic policy gradient algorithm to update
the actor network. The updates are performed less
frequently than the critic updates, as a delayed policy
update helps stabilize learning and prevent policy
oscillations.

The overall training structure of TD3 involves an iterative
process that includes collecting experiences, updating the
critic networks, updating the actor network, and periodically
updating the target networks. This process continues until the
agent learns an optimal policy that maximizes the expected
cumulative reward in the continuous action space. The
parameters of the actor and critic network for the DQN,
DDPG, and TD3 methods are presented in Table 1.

D. REWARD MODEL
The reward signal is designed based on the error signal
because the control objective depends on the line tracking
performance. A discrete reward signal, suitable for the given
task, is provided by Equation (6)

r(t) =


L1 − |e(t)|, e(t) < 0.1
L2 − |e(t)|, 0.1 < e(t) < 1
L3 |e(t)|, 1 < e(t)

(6)

where, L1, L2, and L3, are constant. In this work L1, L2, and
L3 have been taken by trial and error method and chosen as
5,1,-5 respectively, guided by insights derived from relevant
literature [36].

E. LEARNING PROCESS OF AGENT
The TD3 algorithm represents a recent breakthrough in
artificial intelligence, particularly excelling in solving prob-
lems characterized by a continuous action space within
the environment. The flow chart depicting the operation
of the TD3 algorithm, involving various sequential steps,
is presented in Figure 5.
The agent is initially initialized with random policy

parameters and Q-function parameters, and a replay memory
with a capacity of 106 transitions is established. Target
network parameters are set to the same values as the main
network parameters. The agent then observes the current
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FIGURE 5. The flowchart of DRL training methodology involves sequential
steps of initialisation of actor & critic network, action selection, policy
optimization and actor & critic network updates for agent learning for
performance improvement.

environment state (s) and selects an action (a) within
predefined limits (alow, ahigh) by following the policy µ

and introducing a normal distribution noise. This action is
executed in the environment, yielding the next state (s′) and
a corresponding reward (r).

The observation, action, reward, next state, and done status
(d) are stored as a tuple (transition) in the experience replay
memory. Subsequently, the networks undergo a learning
process. The agent samples a batch of transitions randomly
from the memory and computes the target action (a′),
incorporating truncated ((−c, c ), c > 0) normally
distributed noise (N (0, σ ), where c is a constant) for each
action to prevent overfitting.

For the critic network, target Q-values are calculated using
Bellman’s equation, as expressed in Equation (7). The mean
squared error (MSE) is then computed based on the target and
actual Q-values. As the two Q-networks are initialized with
random values, consideration is given toQ1 andQ2. The critic
network parameters are updated through gradient descent by
back-propagating the MSE.

y(r, s′, d) = r + γ (1− d)
2min∑
i=1

Qφtarget,i(s
′, a′(s′)) (7)

∇φi

1
|B|

∑
(s,a,r,s′,d)∈B

(Qφi (s, a)− y(r, s
′, d))2for i = 1, 2

(8)

Given the absence of an explicit mathematical function
for the calculation of the expected return for the actor-
network, the expectation of Q-values from the critic network
is regarded as the expected return. Q-function values are
updated using Equation (8), and actor-network parameters are
updated using the gradient ascent method by maximizing the
expected return, as expressed in Equation (9).

∇θ

1
|B|

∑
s∈B

((s, a)− y(r, s′, d))2Qφi (s, µθ (s)) (9)

Finally, target network parameters are updated through
the moving average principle, with the critic network being
updated less frequently than the actor-network. This process
continues until the maximum number of episodes (J ), after
which the network converges to the desired values, and the
actor-network is saved as the optimal policy. Equations (10)
and (11) illustrate the updating of target networks using the
smoothing factor ρ in the moving average principle.

φtarget,i← ρφtarget,i + (1− ρ) φi, i ∈ {1, 2} (10)

θtarget← ρθtarget + (1− ρ) θ (11)

IV. RESULTS AND DISCUSSION
In this section, three main cases are presented. In the first
case (Case-I), the results of the output voltage regulation of
the DC/DC buck converter feeding CPLs using the DRL-
based TD3 method are showcased under both training and
testing conditions. In the second case (Case-II), the proposed
method, along with other DRL-based methods (DQN and
DDPG)) found in the literature, is validated in real-time using
the OPAL-RT experimental setup. The agent is trained with
DRL-based modified DQN and modified DDPG methods,
exhibiting suitable dynamic performance as detailed in [32]
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FIGURE 6. Real-time hardware implementation setup.

FIGURE 7. Assessing the response with the TD3 method under training
conditions for (a) load power variations, (b) output voltage, and
(c) inductor current.

and [36]. Moving to the next case (Case-III), the dynamic
response of the system is compared among three DRL
methods to determine superiority.

The DC/DC Buck converter parameters, as specified
in [36], are considered in the experimentation for repro-
ducible and effective comparison. The parameters of the
DC/DC buck converter feeding CPLs are as follows: Input
voltage (VInput) = 200 V , Output voltage (VOutput) = 100 V ,
Inductance (L) = 2 mH , Capacitance (C) = 150 µF ,
and Switching frequency (f ) = 10 kHz. The simulations
are conducted in the MATLAB 2021b environment on a
Dell Precision 5820 workstation with 32GB RAM and a
16GB NVIDIA RTX A4000 GPU. Real-Time validation
is performed on the OPAL-RT OP4512 target simulator.
The complete Real-Time implemented hardware setup is
illustrated in Figure. 6.
Case-I: The agent is trained with TD3 algorithm on

DC/DC buck converter for load power variations given by
equation (12).

P(t) =


250W 0 ≤ t ≤ 0.3
150W 0.3 ≤ t ≤ 0.7
350W 0.7 ≤ t ≤ 1

(12)

After successful training, the agent is tested with other set
of load power variations (not covered in the training) given

FIGURE 8. Evaluating the response with the TD3 method under testing
conditions for (a) load power variations, (b) output voltage, and
(c) inductor current.

by equation (13).

P(t) =


850W 0 ≤ t ≤ 0.3
150W 0.3 ≤ t ≤ 0.7
950W 0.7 ≤ t ≤ 1

(13)

The waveforms depicting CPL power variations, output
voltage, and the CPL current of the DC/DC buck converter
feeding CPLs are presented in Figure. 7(a)-Figure. 7(c) under
training conditions and also in Figure. 8(a)-Figure. 8(c) under
testing conditions. From these graphs, it is evident that the
agent has successfully learned the underlying patterns and
relationships in the training data and can generalize that
knowledge to unseen data. For the small-signal stability
evaluation, 5% parameter variations are applied to the
inductor and capacitor, i.e., (L= 2.1 mH, C=157.5 µF). The
results of small-signal stability for load power variations,
output voltage, and inductor current under the same load
power variations are illustrated in Figure. 9(a)-Figure. 9(c).
To analyze the robustness of the proposed method, large load
variations are applied as disturbances (load power transients),
as given by equation (14).

P(t) =


200 W 0 ≤ t ≤ 0.14
1600 W 0.14 ≤ t ≤ 0.2
200 W 0.2 ≤ t ≤ 0.4

(14)

The large power variations, output voltage, and inductor
current are depicted in Figure. 10(a)-Figure. 10(c). These
figures show that the controller has achieved satisfactory
results with good dynamic performance (lesser overshoot)
and steady-state performance (steady-state error below 2%,
considered from a power engineering aspect [32]).
Case-II: For Real-Time validation, the three DRL algo-

rithms are implemented as controllers and simulated on the
OPAL-RT platform. The output voltage regulation, inductor
current, and load power variations with the TD3 method
are depicted in Figure. 11. The results corresponding to
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FIGURE 9. Assessing the response with the TD3 method under small
signal conditions for (a) load power variations, (b) output voltage, and
(c) inductor current.

FIGURE 10. Evaluating the response with the TD3 method under large
signal conditions for (a) load power variations, (b) output voltage, and
(c) inductor current.

the DDPG method and the DQN method are illustrated in
Figure. 12 and Figure. 13, respectively. The OPAL-RT target
simulator (OP4512) has analog output pins with a maximum
voltage of 16V. Therefore, the experimental results are scaled
down to 16V, and the corresponding scaling factor is shown
in the waveforms. While all three controllers demonstrate
appropriate steady-state and dynamic performance under
normal operating conditions, their effective training and
robustness in performance are compared in the next case.
Case-III: Here, the proposed TD3 method is compared

with similar state-of-the-art DRL methods in the literature,
focusing on aspects of robustness, effectiveness in static,
dynamic, and robust performance. The output voltage
regulation with DQN, DDPG, and the TD3 method, along
with their comparison under normal conditions, is shown in
Figure. 14. Small-signal stability is explored under parameter
variations for these methods, and the corresponding results
are presented in Figure. 15. These figures indicate that under

FIGURE 11. Real-time validation of the TD3 method under typical
conditions involves assessing variations in output voltage, inductor
current, and load power.

FIGURE 12. Real-time validation of the DDPG method under normal
conditions includes assessing variations in output voltage, inductor
current, and load power.

FIGURE 13. Real-time validation of the DQN method under typical
conditions involves assessing variations in output voltage, inductor
current, and load power.

normal conditions and in the context of small-signal stability,
the TD3 method stands out with its relatively improved
steady-state and transient performance.

The robustness of the controller is also studied under
external disturbances such as large load power variations for
these methods, and their results are illustrated in Figure. 16.
From Figure. 16, it is indicated that the percentage overshoot
in output voltage exceeds the limits under large-signal
stability with the DQN method compared to DDPG & TD3.
Additionally, there are small oscillations sustained in the
DDPG method. The dynamic and steady-state performance
parameters, i.e., peak overshoot, settling time, and steady-
state error, are listed in Table 2 for all three methods under
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FIGURE 14. Under typical conditions, the voltage response to CPL
variations is examined for the DQN, DDPG, and TD3 methods.

FIGURE 15. Assessing voltage response under small-signal stability
(parameter variation) conditions for the DQN, DDPG, and TD3 methods.

FIGURE 16. Evaluating voltage response to CPL variations under large
signal stability conditions (load transients) for the DQN, DDPG, and TD3
methods.

three conditions (normal, parameter variation, & external
disturbances). It is evident from Table 2 that the TD3 method
performs well compared to the DQN and DDPG methods.

The action signal selection of the three control algorithms
is shown in Figure. 17. The duty ratio plot between the
two control techniques infers that a wider duty ratio range
indicates higher flexibility in adjusting the converter’s output
voltage. It allows for better adaptation to varying load
conditions and greater control over the converter’s operation.
A stable control technique will maintain a consistent duty
ratio around the desired value without excessive variations or
instability. From Figure. 17, it is clear that the DQN method

FIGURE 17. Duty ratio comparison among the DQN, DDPG, and TD3
methods.

FIGURE 18. Training statistics for the DQN, DDPG, and TD3 methods,
illustrating the learning curves.

& TD3 have a wider range of duty ratios which hold on
the switch for a long duration to limit the transient current.
It is also evident that the TD3 method maintains a consistent
duty ratio about the operating point, whereas DDPG shows
irregular behavior. Furthermore, it is understood from the
literature [37] that the training complexity of the DQN
algorithm escalates with a large action space. So, the values
of the action space are curtailed based on domain experts
for faster convergence and effectiveness in agent learning.
Additionally, the identification of limits on the action space is
not practical for various tasks. For continuous action space,
the DDPG and TD3 performances are acceptable under all
operating conditions. However, the TD3 method is preferable
to DDPG for the following reasons.

The training statistics of the three algorithms are illustrated
in Figure. 18, presenting the learning curve (Average reward
vs. Episode number) of the algorithm. It is observed from
Figure. 18 that the sample efficiency, defined as achieving
a higher average reward using a minimal number of
interactions, is higher for the TD3 algorithm compared to the
other two algorithms. This indicates that TD3 can learn more
from each interaction. The figure. 18 serves as evidence that
DDPG exhibits unstable training due to the overestimation
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TABLE 2. Analyzing transient and steady-state performance
characteristics of the DQN, DDPG, and TD3 control algorithms.

TABLE 3. Error performance metrics of the DQN, DDPG, and TD3
algorithms.

FIGURE 19. Performance metrics, including IAE, ISE, ITAE, and ITSE, for
the DQN, DDPG, and TD3 algorithms.

of its Q-function value during training, a challenge overcome
by TD3 with its twin critic networks, resulting in a smoother
training curve. Error performance indices such as Integral
Time Square Error (ITSE), Integral Time Absolute Error
(ITAE), Integral Square Error (ISE), and Integral Absolute
Error (IAE) for all three methods are provided in Table 3. It is
evident from Figure. 19 that TD3 outperforms all the other
methods.

V. CONCLUSION
A DRL-based modified Twin Delayed Deep Deterministic
Policy Gradient (TD3) algorithm has been employed as an
end-to-end controller for voltage regulation of a DC/DC buck
converter feeding Constant Power Loads (CPLs). The TD3
method has demonstrated improved dynamic and steady-state
results under untrained data of load power variations and
parameter fluctuations. The OPAL-RT results indicate that
the recommended method has achieved superior performance

compared to other DRL controllers, particularly in scenarios
with large CPL variations and model uncertainty in real-
time. The dynamic and steady-state performance of the
TD3 method is smoother, and the training complexity is
lower compared to DQN and DDPG. Future work could
involve exploring reward shaping using a non-heuristic
approach. Additionally, the agent could be investigated with
other neural network architectures such as Recurrent Neural
Networks (RNN), Long Short Term Memory (LSTM), etc.
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