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ABSTRACT Agriculture plays a significant role in meeting food needs and providing food security for
the increasingly growing global population, which has increased by 0.88% since 2022. Plant diseases can
reduce food production and affect food security. Worldwide crop loss due to plant disease is estimated to be
around 14.1%. The lack of proper identification of plant disease at the early stages of infection can result
in inappropriate disease control measures. Therefore, the automatic identification and diagnosis of plant
diseases are highly recommended. Lack of availability of large amounts of data that are not processed to a
large extent is one of the main challenges in plant disease diagnosis. In the current manuscript, we developed
datasets for food grains specifically for rice, wheat, and maize to address the identified challenges. The
developed datasets consider the common diseases (two bacterial diseases and two fungal diseases of rice,
four fungal diseases of maize, and four fungal diseases of wheat) that affect crop yields and cause damage
to the whole plant. The datasets developed were applied to eight fine-tuned deep learning models with the
same training hyperparameters. The experimental results based on eight fine-tuned deep learning models
show that, while recognizing maize leaf diseases, the models Xception and MobileNet performed best
with a testing accuracy of 0.9580 and 0.9464 respectively. Similarly, while recognizing the wheat leaf
diseases, the models MobileNetV2 and MobileNet performed best with a testing accuracy of 0.9632 and
0.9628 respectively. The Xception and Inception V3 models performed best, with a testing accuracy of
0.9728 and 0.9620, respectively, for recognizing rice leaf diseases. The research also proposes a new
convolutional neural network (CNN) model trained from scratch on all three food grain datasets developed.
The proposed model performs well and shows a testing accuracy of 0.9704, 0.9706, and 0.9808 respectively
on the maize, rice, and wheat datasets.

INDEX TERMS Deep learning, convolutional neural network, dataset development, plant disease
classification, transfer learning.

I. INTRODUCTION
Plant diseases are among the leading causes of crop loss in
many countries. Traditional disease analysis methods involve
visual assessment by experts [1], [2]. However, it takes longer
to diagnose the disease compared to automation techniques.
Experts may only be available in some countries [3]. So,

The associate editor coordinating the review of this manuscript and
approving it for publication was Miaohui Wang.

automatic recognition of plant diseases by image analysis is
essential to solving this problem. Estimating the disease’s
severity is equally important to predict yield and suggest
treatment [4].
Rice, wheat, and maize are important food grains with

many health benefits. They are grown in large quantities
and are energy giving food to the world. Food grains are
an inevitable source of food for the growing population
in many countries. These can be affected by a variety of
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diseases and pests. The diseases affecting them can further
prevent the growth of the crop or affect the yield. Among
the different food grains, the diseases affecting the rice,
wheat, and maize/corn plants are given importance in this
manuscript. Some common diseases affecting rice plants are
Rice Blast, Sheath Blight, Bacterial Leaf Streak, Bacterial
Leaf Blight, etc. [5]. The wheat plants’ diseases include
Powdery Mildew, Septoria Leaf Spot, Tanspot, Snowmold,
etc. [6]. Charcoal rot, Downey mildew, Commonrust, black
bundle disease, etc., are some diseases that commonly affect
maize plants.

CNN [7], [8], [9] is a popular method that has been widely
used in the field of plant disease detection [10], [11], [12]. The
dataset used by the CNN models should be of good quality,
and it has to be properly labeled. The performance of the CNN
models greatly depends on the quality and amount of data
used to train themodel. The deep learning based CNNmodels
require a large amount of data for training. It will not perform
well if the model is trained using less data.

A dataset is an important component in machine learning
or deep learning to learn and evaluate the performance of
any algorithm or model. A dataset helps to organize the
information collected from different sources and to arrive
at the desired outcome. Only a well-organized dataset used
for training a machine learning or deep learning model
will be able to reflect the quality of the model and its
effectiveness in arriving at the target outcome. One of the
main challenges in plant disease diagnosis is the lack of
availability of large and non-lab datasets. Some of the
disadvantages of the existing datasets are most of the datasets
available are laboratory processed; they include mostly
images taken under controlled settings, a single leaf is
mostly considered, they don’t include all the symptoms of
a particular disease, and complex backgrounds with varying
lighting conditions are not considered. These disadvantages
can limit the performance of disease detection by a CNN
model, as the images can have multiple leaves with different
complex backgrounds.

Our work focussed on these challenges, and three datasets
for three important food grains, rice, wheat, and maize,
were developed. The images in the datasets included all the
disease stages early, advancing, and severe of all the diseases
considered. The datasets includes processed images, images
under complex backgrounds and lighting conditions, and
images with multiple leaves under complex backgrounds.
The images in the datasets were collected from internet
sources and existing datasets. In the current work, the
detection and classification of the diseases considered in
the manuscript affecting rice, wheat, and maize were made
using CNN models. Pre-trained eight CNN models trained
on the ImageNet dataset were fine-tuned, trained, and tested
on the datasets developed. A CNN model, namely Maize,
Rice, Wheat-CNN model (MRW-CNN), is also proposed
in our work to evaluate the performance of the developed
datasets. Compared to the existing heavy state-of-the-art
models for plant disease diagnosis, theMRW-CNNmodel has

less number of layers, and the experimental results show that
it generalizes well on the datasets. As a future enhancement,
the model can be experimented with for disease diagnosis of
other plant leaf datasets.

The main contributions of the current research work are as
follows:

1) A real-time dataset for three important food grains,
rice, wheat, and maize, was developed. Four diseases
affecting each crop and a healthy class are present in
all three datasets.

2) Early, advancing, and severe stages of the diseases were
focused on while developing the datasets. Then, all
three stages of a particular disease were put together
in one class.

3) A hundred images were collected under each class for
all five classes in a dataset. The collected images are
pre-processed if needed and augmented to increase the
size of the dataset.

4) A hundred images under each class of the datasets col-
lected were annotated manually using the MakeSense
AI tool for use in object detection models like Mask
R-CNN.

5) Eight CNNmodels were fine-tuned, trained, and tested
on the datasets developed. The performance of the
fine-tuned CNN models and the proposed CNN model
on the developed real-time datasets was evaluated using
the accuracy and loss performance graphs, confusion
matrices, classification reports, etc., on the test data.

6) A CNN model, namely MRW-CNN, is proposed
for detecting maize, rice, and wheat leaf diseases.
The proposed model can identify the features of the
diseased and healthy maize, rice, and wheat leaves and
accurately detect the diseases.

7) As a future extension of the current work, the different
stages of the diseases included under a particular
disease can be separated into classes like early,
advancing, and severe, and predictions on disease
stages can be made.

In the current work during the recognition of the maize leaf
diseases, the models MobileNet, MobileNetV2, Inception
V3, InceptionResNetV2, and Xception performed well with
a testing accuracy of above 90%. For rice leaf disease recog-
nition, all the models except ResNet 50 and ResNet 101 gave
a testing accuracy above 90%. The models MobileNet,
MobileNetV2, Inception V3, and InceptionResNetV2 gave
a testing accuracy of above 90% on the wheat leaf dataset.
The experimental results demonstrate that when trained from
scratch on all the datasets developed, the proposed model
gave a testing accuracy above 95%. The proposed model
proved to generalize well on all three datasets considered in
our work.

The rest of the paper is organized into seven sections.
Section II deals with the related works in plant disease
diagnosis. It focuses on the literature review of the works
concentrating on dataset development for different plants and
CNN models used for plant disease diagnosis. Section III
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deals with the steps in data set development, like data
collection, pre-processing, augmentation, and annotation.
Section IV discusses the development of the fine-tuned
models, like how the CNNmodels selected are fine-tuned and
trained, the basic architecture used, etc. Section V deals with
the development of the proposed MRW model. Section VI
deals with the results of the experiments conducted on the
CNNmodels with the datasets developed for each food grain,
experimental setup, hyperparameters used, visualization of
activations, etc. Section VII discusses the case study of the
application of the proposed method. Finally, Section VIII
deals with the conclusion and future work.

II. RELATED WORKS
The review conducted in [13] mainly focuses on current
developments in plant disease diagnosis using techniques like
machine learning and deep learning and how these techniques
speed up the process of disease detection in plants. The study
elaborates on the importance of the detection of pests and
diseases in plants, the various datasets used in plant disease
detection, performance metrics used to evaluate the plant
disease detection models, the challenges in the field, and
future enhancements.

A 3DCNN is built to identify plant diseases in [14]; the
work focussed on lesion segmentation and plant survival
probability. The proposed model was evaluated on the
diseases affecting three plants, pepper, potato, and tomato,
from the Plant Village dataset. The model achieved a DICE
coefficient of 90% and classification accuracies of 91.11%,
93.01%, and 99.04% for pepper, potato, and tomato plants,
respectively.

A lightweight CNN model was developed in [15] based
on VGG19 for disease diagnosis in peach leaves. Bacteriosis
infection is mainly focussed on in the manuscript. The dataset
for conducting the experiments was obtained from Farm
of Agriculture University Peshawar, Pakistan. A total of
10,000 images were present in the dataset, and augmentation
techniques were used to increase its size. The images in the
dataset were also pre-processed.

The plant village dataset [16] contains 54,303 healthy
and unhealthy images of leaves. The images in the dataset
are laboratory processed. The plant village dataset is an
open-access repository of images that can help to detect
and classify plant diseases. The dataset is divided into
38 categories by species and diseases. Many studies in the
field of plant disease diagnosis have made use of the plant
village dataset [17], [18], [19], [20].
Temperature and carbon dioxide effect on maydis leaf

blight disease affecting maize was analyzed in [21]. The
results of the study showed that the severity of the disease can
increase with the increase in temperature. Tolerance attributes
were calculated for six disease stress based on diseased
and non-diseased according to the yield. Wheat disease
identification model based on EfficientNet architecture was
proposed in [22] for detecting wheat rusts. A dataset
consisting of 6556 images was prepared from natural field

conditions. Several experiments were conducted using the
CNN models VGG19, ResNet152, DenseNet169, Inception-
NetV3, MobileNetV2, and eight variants of EfficientNet
architecture; the results showed the fine-tuned EfficientNet
B4 model proposed in the study performed better with a
testing accuracy of 99.35% when compared to the other
models.

Leaf tip detection and the number of leaves in a rice
plant were determined by training a You Only Look Once
(YOLO) deep learning algorithm in [23]. The study in [24]
proposed a model that uses machine learning and deep
learning advantages. The proposed model includes forty
different hybrid deep learning models and five machine-
learning techniques. The hyperparameters of the classifiers
were optimized using the Optuna framework. A dataset
for tomato early blight disease was collected from the
Indian Agricultural Research Institute. The proposed model
performed well on the dataset (IARI-TomEBD) formed
and gave an accuracy of 87.55–100%. Validation of the
model was also performed on PlantVillage-TomEBD and
PlantVillage-BBLS.

A deep learning approach was proposed in [25] to identify
diseases affecting maize crops. A dataset was prepared
from fields of ICAR-IIMR, Ludhiana, India. Three different
architectures based on the Inception-v3 framework were
trained on the dataset prepared. The best performing model
obtained an accuracy of 95.99%. A comparison of the state-
of-the-art models with the model that performed best was
done.

Analysis of Rice Blast disease by deep learning based
model is done in [26] using remote sensing images. The
proposed model obtained a training accuracy of 90.02% and a
validation accuracy of 85.33%. Moderate resolution imaging
spectroradiometer is used to establish the spatial distribution
of leaf blasts. A deep learning based approach was used
in [27] to detect tomato plant diseases. Two state-of-the-art
semantic segmentation models, U-Net and Modified U-Net,
were used to detect and segment the disease affected regions.
Different U-Net versions were looked into for selecting the
optimum one. Different classification methods were used in
the study; both binary and multiclass classification of tomato
diseases were done.

A dataset was developed by collecting 500 images of
maize leaves from Google websites and the plant village
dataset in [28]. The different periods of occurrence of maize
diseases are included in the dataset. The size of the dataset
was increased to 3060 images by applying augmentation
techniques. There were eight categories of diseased leaves
in the dataset. The study proposed two improved GoogLeNet
and Cifar10 models for plant disease recognition. Eight kinds
of maize diseases were identified.

A dataset of maize leaves was developed with the help
of an Unmanned Aerial Vehicle (UAV) in [29]. The dataset
contains 6267 images, where 3741 images are with lesions
and 2526 are without lesions. The maize leaf images in the
dataset are field images of the disease Northern Leaf Blight.
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A CNN model ResNet-34 pre-trained on the ImageNet
dataset was used in the study for training. The CNN model
trained was used to generate heat maps that showed the
disease regions.

The NLB dataset is used in [30]. It has three different
parts. The first part is hand-held. The second part is the boom
set. The last data set is an unmanned drone set. The hand-held
part has more clarity; thus, the hand-held part of the dataset
is used in this study. The dataset contains 1019 images
with different angles and backgrounds and 7669 annotations.
Augmentation techniques were applied to the dataset, and the
size of the dataset was increased to 8152 images. A multi-
scale feature fusion instance detection method was proposed,
based on CNN (ResNet-101), to recognize the disease maize
leaf blight.

A dataset of maize leaves was formed in [31] by collecting
some images from the corn plantations in Raebareli and
Sultanpur district, the rest from the Plant Village dataset. The
dataset had three categories of images: Rust, Northern Leaf
Blight, and Healthy. An Agriculture Scientist from India was
consulted to label the images captured. A model was formed
based on DCNN to identify two diseases affecting the maize
plants.

The citrus dataset developed in [32] contains 759 images
of leaves and citrus fruits, which are healthy and diseased.
The diseases considered in the dataset are black spot, canker,
scab, greening, and melanose affecting the citrus plants. The
images in the dataset were manually captured using a DSLR
with the help of an expert.

A real-time dataset of wheat diseases was developed
in [33]. The dataset peers into most challenges for wheat
disease diagnosis, specifically complex backgrounds, differ-
ent capture conditions, etc. A model using deep learning
and multiple instances learning for the real-time detection of
wheat diseases was proposed in the study.

A dataset of wheat leaves was developed in [34] to detect
the Fusarium Head Blight disease (FHB). The images in
the dataset were collected from the field. Twelve images
were collected initially, and later, it was increased to
2829 by applying data augmentation techniques. In this study,
a method was proposed that uses Mask-RCNN along with
color images to detect FHB.

The rice diseases image database was created with
500 common rice disease images of leaves and stems
collected from the experimental field in [35]. This work trains
the CNNs to identify ten diseases affecting rice plants. A real-
time dataset of rice leaves was developed in [36]. The dataset
contains a total of 8911 images. The rice leaf images included
in the database contain both diseased and healthy images. The
diseases considered are Rice blast, Red blight, Stripe blight,
and Sheath blight. CNN was used for feature extraction, and
d support vector machine (SVM) was used for predicting
diseases.

PlantDoc, a Visual Plant Disease Detection dataset, was
developed in [37]. The dataset contains 2,598 data points
across 13 plant species. It includes 17 classes of diseases. The

images were annotated using 300 human hours. The images
in the dataset were downloaded from Google Images and
Ecosia. Three models were used in the study to show the
efficacy of the proposed dataset. An increase in classification
accuracy by 31% was reported in their work.

From the literature survey conducted, it can be concluded
that most of the datasets developed do not cover all of
the underlying challenges existing in the field of plant
disease diagnosis, like complex backgrounds, the variations
of disease symptoms according to climate, the occurrence
of multiple diseases on plants, etc. Only a few datasets
are publicly available for further research or study. Some
concentrate on the stages of the different diseases, but mainly,
it is limited to one or two plants. Therefore, there is a
need to develop a dataset that will address most of the
underlying challenges in the field. The current manuscript
mainly concentrates on developing a dataset of good quality
for food grains rice, wheat, and maize. The dataset’s primary
focus is on real-life leaf images of the food grains considered.
For example, Common Rust affecting the maize plants; for
this particular disease, real-life images of all the stages are
considered early, middle, and advancing and are included
under CommonRust disease class, and the same for all
diseases in the dataset developed.

III. PLANT DISEASE DATASET DEVELOPMENT
A real-time plant disease dataset for three important food
grains, rice, wheat, and maize, based on leaf images, was
developed in the current study. Diseases that cause great yield
loss and have similar symptoms, many samples available,
etc., were selected to form the dataset. Four diseases were
selected for each food grain. For the diseases considered
under each food grain, while collecting the images from
internet sources, the leaf images for different stages of a
particular disease, specifically early, advancing, and severe,
were collected and put under the same disease class. More
details on the dataset developed and the samples collected are
available in Table 1, Table 2, and Table 3. In the current work,
the diseased and healthy leaf images collected for each food
grain are pre-processed, augmented, and then applied to deep
learning based CNN models for detecting and classifying
diseases. The results obtained are discussed in Section VI.
Later, for the future extension of the work to be done, the
images were manually annotated after the data collection
and pre-processing steps for use in object detection models.
Around 1500 images were annotated for all three food grains.

The overall process involved in developing the plant
disease dataset for rice, wheat, and maize food grains in
the current work is shown in Fig. 1. In Fig. 1, the different
processes involved in developing the datasets are shown. The
figure mainly shows the food grains and their stages selected
in our work, the sources from which the datasets’ images
are collected, and the pre-processing and augmentation
techniques used for processing the collected images. The
different steps in developing the datasets are detailed in
Subsections A, B, C, and D.
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TABLE 1. Details of maize leaf disease dataset.

TABLE 2. Details of rice leaf disease dataset.

TABLE 3. Details of wheat leaf disease dataset.

A. DATA COLLECTION
The dataset includes real-time images collected from Google
websites, Ecosia, Bing images, Flickr, etc. The images were

manually selected and filtered. The dataset also comprises a
few processed images for the healthy maize, rice, and wheat
classes. Few images were taken from the plant village [16]
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FIGURE 1. Dataset development methodology.

dataset for the healthy class of maize, and the healthy class
of rice and wheat images were downloaded from the Kaggle
website [38], [39]. The dataset was created by downloading
images from the internet. A total of 5 classes were considered
for each plant, including the healthy class, a different class
from the diseased class. For all the diseased classes, images
for all the stages of the disease were attempted to be collected,
like images of early infection, advancing of the disease stage,
and finally, the severe stage.

CNN models trained on real-life images are believed
to perform better when compared to laboratory processed
images. Therefore real-life images were given more impor-
tance while developing the dataset when compared to
processed images. The crops considered for developing the
dataset are rice, wheat, and maize. Four diseases affecting
each of these plants were assessed for developing the dataset.
The diseases considered for rice plants are Rice Bacterial
Blight, Rice Bacterial Leaf Streak, Rice Blast, and Rice
Brown Spot.

Similarly, the diseases considered for the wheat plant are
Leaf Rust, Powdery Mildew, Stripe Rust, and Tan Spot. The
diseases looked into for maize plants are Common Rust, Grey
Leaf Spot, Northern Leaf Blight, and Southern Rust. Table 1,
Table 2, and Table 3 give detailed descriptions regarding
the type of disease, the number of images collected under
each class and the number of images collected for early,
advancing, and severe stages of the disease in each class, the
areas of the leaves affected, and the conditions favorable for
the disease to occur and advance; for the datasets developed

for maize, rice, and wheat plants. The whole process of data
collection is shown in Fig. 2. The samples of a few raw images
collected for each food grain rice, wheat, and maize for the
development of the datasets are shown in Fig. 3, Fig. 4, and
Fig. 5.

B. DATA PRE-PROCESSING
Data pre-processing helps enhance some features of the
image data required for processing. It can help in improving
the accuracy and reliability of a dataset. Some images down-
loaded from the internet for the datasets were pre-processed
before training the model. The software tools used for
pre-processing the images were ImageJ [67], [68], and
Python code. The purpose of pre-processing was to remove
foreign objects from the images. The pre-processing steps
applied to some images were resize, crop, sharpen, contrast
enhancement, brightness and contrast adjustment, gaussian
blur, etc. Python code was used to resize all the images in
the dataset. The images were resized to 224 × 224. Some
images were cropped using the ImageJ software and Python
code to select the diseased areas of the leaves other than the
background.

Some images in the dataset were manually selected and
sharpened to visually focus on the diseased areas of the leaves
more clearly. Similarly, other pre-processing techniques like
contrast enhancement of the images to increase or decrease
the contrast, brightness adjustments to increase or decrease
the brightness of specific images, and gaussian blur to
blur certain portions of the image were done using the
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FIGURE 2. Data collection.

FIGURE 3. Samples of a few raw diseased images used to form the rice leaf dataset [40], [41].

ImageJ software. Examples of a few pre-processed images
of Common Rust disease affecting the maize plant from the
datasets are shown in Fig. 6.

C. DATA AUGMENTATION
A total of hundred images were collected under each class
for the plants considered in this manuscript. The number
of images under each class was insufficient to train a deep
learning model. Therefore, data augmentation techniques
were applied to the dataset to increase the size of the dataset.

Python code was used to augment all the images in the
dataset. Offline augmentation was done to all the images and
saved to a folder. Then, the original images were combined
with the augmented images of each class to form the dataset.

The images in all three datasets collected were augmented
by applying specific augmentation techniques like horizontal
and vertical flipping of the images, rotating the images by
90 degrees, applying a height shift range of 0.2, applying
a width shift range of 0.2, zooming and shearing of the
images by a range of 0.2, a brightness range of 0.2 to 0.8 was
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FIGURE 4. Samples of a few raw diseased images used to form the wheat leaf dataset [42], [43], [44], [45], [47], [48], [49], [50], [51], [52], [53].

FIGURE 5. Samples of a few raw diseased images used to form the maize leaf dataset [54], [55], [56], [57], [59], [60], [61], [62], [63], [64], [65], [66].

applied to the images. Examples of a few augmented images
of Tanspot and Powdery Mildew diseases from the datasets
are shown in Fig. 6. Data augmentation techniques helped
increase the model’s ability to generalize and reduced the
problem of overfitting.

D. DATA ANNOTATION
Data annotation can help to understand the meaning of
data more precisely, increasing the performance of the deep
learning models. The Make Sense AI [69] Tool was used
in the current work to annotate the images in the dataset
under each class. The Make Sense AI is an open-source
and free to use annotation tool. It runs on a web browser.
The different stages of a particular disease in the dataset
were given importance during labeling. The whole process
of data annotation is shown in Fig. 7. In the figure, the
images of Common Rust disease affecting the maize plants
are loaded into the Make Sense AI Tools web browser. The

labels to be assigned to the images arementioned. Each image
uploaded is selected individually, and the polygon bounding
box is selected to annotate the images. After annotating
all the images uploaded to the web browser, the labels
can be exported in YOLO, VOC, XML, VGG, JSON, and
CSV formats. Since the polygon bounding box was used
for annotation, the labels were exported in VGG and JSON
formats.

IV. DEVELOPMENT OF FINE-TUNED MODELS
The collected, pre-processed, and augmented datasets for

each food grain are split 80% for training and 10% each
for validation and testing. The datasets for each food grain
had a total of around 5000 images under each class after
augmentation. The size of all three datasets was increased
from 1500 images to 25000 images after augmentation. After
splitting the dataset into training, validation, and testing,
each class contains 4000 images for training and 500 images
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FIGURE 6. Data pre-processing and data augmentation.

Algorithm 1 Fine-Tuning of CNN Models
Input: Pre-trained models with top layers removed
Output: A fine-tuned model for detection and classification

of diseases from the dataset developed
1: Load pre-trained models for fine-tuning
2: m← loadedmodel(pre− trained = True)
3: while m.toplayer = False do
4: Set layers.trainable = False
5: x ← dropout(0.2)(m.output)
6: x ← addBachNormalization(x) {x is output from

previous layer}
7: x ← addFlattenlayer(x)
8: x ← addDenselayer(x)
9: l2regulizer ← 0.01

10: x ← dropout(0.2)(x)
11: predictions← outputclasses(activation = softmax)
12: finetunedmodel ← (m.input, predictions)
13: end while

each for testing and validation. The number of images in
all classes was balanced in all three datasets. The dataset
developed for each plant was applied to various CNN based

deep learning models like VGG16, ResNet 50, ResNet
101, Inception V3, InceptionResNetV2, MobileNetV2, and
MobileNet. Pre-trained models trained on the ImageNet
dataset [70] were downloaded from Keras and used. The
concepts of transfer learning and fine-tuning were made use
of for the training. Algorithm 1 discusses how the pre-trained
models trained on the ImageNet dataset were fine-tuned.
The steps in the algorithm include the following: the models
were downloaded from Keras. The top layers from the eight
models downloaded were removed. The layers trainable
is set to False. After which, a few layers like Dropout,
BachNormalization, Flatten, Dense layer, and the Softmax
layer for the output classes were added.

A Dropout layer was added to nullify the effect of some
neurons on the next layer. The BachNormalization layer
works differently during training and inference. The layer can
help the model to generalize well by normalizing its inputs in
batches. The Bach Normalization layer can help smoothen
the loss function by optimizing the model parameters and
increasing the models’ training speed. A Flatten layer was
added to convert the inputs to one-dimensional. The Dense
layer was added after the Flatten layer with a kernel-
regularizer l2 of 0.01. Again, a Dropout of 0.2 was added.

16318 VOLUME 12, 2024



D. S. Joseph et al.: Real-Time Plant Disease Dataset Development and Detection of Plant Disease

FIGURE 7. Example of annotation of commonrust disease stages and healthy stage of maize using the
makesense AI tool.
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The Softmax layer was added to get the output classes.
Finally, a fine-tuned model was obtained where the input
is the model’s input, and the output is the predictions.
After conducting several experiments, a Dropout of 0.2 and
kernel-regularizer l2 and Bach Normalization layer, Early
stopping was decided to be added to the pre-trained models to
prevent over-fitting. Early Stopping automatically terminates
the training when a performance measure does not improve
further. The model architecture used is shown in Fig. 8.

Fig. 8 contains mainly two phases: the training and
testing phases. In the training phase, the input images
from either of the three datasets, which are pre-processed
and augmented, are given as input to the state-of-the-art
deep learning models. The datasets are split into 80% for
training, 10% for validation, and 10% for testing before being
given to the CNN models. The pre-trained models ResNet
50, ResNet 101, MobileNetV2, MobileNet, Inception V3,
InceptionResNetV2, VGG 16, and Xception, trained on the
ImageNet dataset, are selected in the current work for training
on the datasets developed. The pre-trained CNN models
selected are fine-tuned by removing the top layers and adding
certain layers, asmentioned inAlgorithm 2. TheCNNmodels
fine-tuned are trained on the training data and validated on the
validation data. Examples of feature maps from a few layers
of the InceptionResNetV2 model after training on the input
images are also shown in Fig. 8.

In the testing phase, the trained CNN models are tested
on the testing data, and predictions are made; the testing
data is the data the model has not seen before. Each dataset
developed for the food grains rice, wheat, and maize has five
classes each. Therefore, a total of 15 output classes are shown
in Fig. 8.

V. PROPOSED CNN MODEL OF MAIZE, RICE AND WHEAT
(MRW-CNN) LEAF DISEASES
Fig. 9 shows the architecture of the proposed CNNmodel that
has been used to classify the diseases affecting the food grains
considered in our manuscript. The model consists of five
Convolution layers, each followed by BatchNormalization
and Rectified Linear Unit (ReLU). After the convolution
layers, a Global Average Pooling layer is added, followed by a
Dense layer with a Softmax activation function that acts as the
output layer. The model is trained using Stochastic gradient
descent (SGD). In the proposed CNN model, the convolution
layers were used to extract the features from the training
images; batch normalization is used to normalize the outputs
from each layer during training for every batch. The layer
helps to address the internal covariate shift problem. The
activation function ReLU does not activate all the neurons at
the same time; this helps to make the computation easier.

The problem of overfitting can be reduced by using the
Global Average Pooling layer. The images can be down
sampled using average pooling. The Dense layer is used for
predicting the output class of the input image. The output of
the Dense layer is used to evaluate the performance of the
proposed model. The training and testing of the proposed

CNN model was done by splitting the dataset developed for
the three food grains into training, validation, and testing
datasets. The datasets were split into 80% for training and
10% each for validation and testing. In the training phase, the
input images from the training set that are pre-processed and
augmented are given to the proposed model for training. The
model is then validated on the validation dataset. In the testing
phase, the trained MRW-CNN model is tested on the testing
data which themodel has not seen during training, predictions
are then made. The training, validation, and testing datasets
contain samples from all classes in the dataset. A total of five
output classes are available for each of the datasets developed
in our work.

VI. RESULTS
A. EXPERIMENT SETUP
Eight pre-trained models trained on the Imagenet dataset
were downloaded from Keras and fine-tuned. GPU (NVIDIA
®Quadro ®P1000,4GB,4mDP) was used to train all fine-
tuned models. Tensorflow, Keras, CUDNN, etc., were used
for software implementation. The proposed MRW-CNN
model was trained using the T4 GPU available in Google
CoLab.

B. HYPERPARAMETERS
All the fine-tuned CNN based deep learning models are
optimized by the SGD algorithm. The learning rate for all
the models was set to 0.001, and a batch size 32 was chosen.
Dropout operation was added to all the pre-trained models
on the ImageNet dataset to prevent over-fitting and improve
the generalization of the models. The MRW-CNN model is
optimized by the SGD, a learning rate of 0.001 and batch size
of 32 were used.

C. CONFUSION MATRIX
A confusion matrix can greatly help in visually estimating the
performance of a model. The infected images of food grains
considered in the current manuscript can be easily confused
with multiple classes since most of the diseases selected for
the development of the dataset have similar symptoms. The
infected leaf images at different backgrounds can lead to
confusion and complexity, which can result in performance
deterioration.
The confusion matrix [71] is an m*m matrix that can be used
to measure the performance of the classification models. In a
confusion matrix, the X-axis contains the predicted values,
and Y-axis includes the actual values. The True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN) for each class in a multi-class classification
can be computed from the confusion matrix, and from
these, the values the precision, recall and F1-Score can
be calculated per-class. The precision measures out of all
predicted positives how many are actually positive. It can be
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FIGURE 8. Architecture of Fine-tuned CNN Models.
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FIGURE 9. Architecture of proposed CNN model MRW-CNN.

calculated per-class using the equation (1)

Precision =
TP

TP+ FP
(1)

Recall measures how many positive records are predicted
correctly. It can be calculated per-class using equation (2)

Recall =
TP

TP+ FN
(2)

F1-Score is the harmonic mean of precision and recall it can
be calculated per-class as expressed in equation (3)

F1− score =
2× Precision× Recall
Precision+ Recall

(3)

D. CLASSIFICATION REPORT
The classification report is a performance evaluation metric
that displays precision, recall,f1-score, accuracy, macro avg,
weighted avg, and support for each class. It is used tomeasure
the performance of the trained models on the test data. The
accuracy is calculated by dividing the correct predictions
by the total predictions from the confusion matrix obtained,
as expressed in equation (4)

Accuracy =
CorrectPredictions
TotalPredictions

(4)

Macro average recall scores are calculated by taking the
arithmetic mean of all the per-class recall scores [72] as
expressed in equation (5).

RecallMacroAvg =
n∑
i=1

Recalli
n

(5)

Macro average precision scores are calculated by taking
the arithmetic mean of all the per-class precision scores as

expressed in equation (6)

PrecisionMacroAvg =
n∑
i=1

Precisioni
n

(6)

Macro average F1 scores are calculated by taking the
arithmetic mean of all the per-class F1 scores as expressed
in equation (7)

F1− scoreMacroAvg =
n∑
i=1

F1− scorei
n

(7)

The weighted-averaged F1-score [73] is calculated using
equation (8) and equation (9) by taking the mean of all per-
class F1 scores for a N-class dataset, while considering each
class’s support.

Weighted F1− score =
N∑
i=1

Wi × F1− scorei (8)

where,Wi =
No of samples in each classi
Total number of samples

(9)

In a similar way, the weighted average scores for precision
and recall can also be computed.

E. VISUALIZATION OF ACTIVATIONS
In some cases, the models during training are trained on some
background or irrelevant features, which gives a satisfactory
model accuracy. Such situations can be checked by generating
activation maps. The activation maps can help determine if
the models focus on the right features. For example, the
output of the visualization of activations created by Grad-
cam [74] for the MobileNet model given three input images
from the maize leaf dataset is as shown in Fig.10. The figure
shows that the model focuses on the suitable feature for all the
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FIGURE 10. Activation maps generated by Grad-CAM given three input
images (a) input images (b) activation maps generated from last
convolutional layer.

FIGURE 11. Accuracy and loss performance of the model xception on the
maize leaf dataset.

input images from the maize leaf dataset, the images from
three different classes CommonRust, GreyLeafSpot, and sr
were given as input to the trained MobileNet model.

F. MAIZE
The performance of different models on the maize dataset
is shown in Table 4. The maize dataset includes five
classes, including the healthy class, for analysis. Xception,
MobileNet, MobileNetV2, Inception V3, and InceptionRes-
NetV2, models trained on the maize leaf dataset, showed
better performance when compared to the other fine-tuned
models. Xception showed a validation accuracy of 0.9608 and
a testing accuracy of 0.9580. The InceptionV3 model showed
a validation accuracy of 0.9468 and a testing accuracy
of 0.9448. MobileNet showed a validation accuracy of
0.9484 and a testing accuracy of 0.9464. The MobileNetV2
model showed a validation accuracy of 0.9412 and a testing
accuracy of 0.9404. The InceptionResNetV2 model showed

FIGURE 12. Accuracy and loss performance of the model MobileNet on
the maize leaf dataset.

FIGURE 13. Normalized confusion matrix of the model xception on the
maize leaf dataset.

a validation accuracy of 0.9336 and a testing accuracy of
0.9312. The fine-tuned Xeception model performed best
with a testing accuracy of 0.9580. The graphs showing the
accuracy and loss performance of the models Xception and
MobileNet showing better testing accuracy when compared
to other fine-tunedmodels on themaize leaf dataset are shown
in Fig. 11 and Fig. 12. The normalized confusionmatrix of the
models Xception and MobileNet on the maize leaf dataset is
shown in Fig. 13 and Fig. 14. The performance of the models
can be evaluated from the normalized confusion matrix by
observing the diagonal elements. By referring to the color bar,
the darker the color blue of the diagonal elements, the better
the performance of the model.

In Fig. 13, for the Xception model on the maize leaf
dataset, when observing the diagonal values, the Mhealthy
gives a better value when compared to all the other classes.
Confusion among classes can also be observed. For example,
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TABLE 4. Application of state-of-the-art models on the maize leaf dataset.

FIGURE 14. Normalized confusion matrix of the model MobileNet on the
maize leaf dataset.

TABLE 5. Classification report of xception model on the maize leaf
dataset.

CommonRust and sr, nlb and GreyLeafSpot, nlb, Mhealthy,
etc. In Fig. 14 for the MobileNet model on the maize leaf
dataset, it can be observed that the diagonal values for all
classes are nearly the same except for one. Therefore, it can be
assumed that all classes perform equally the same except for
the disease SouthernRust (sr). Some confusion among classes

TABLE 6. Classification report of mobilenet model on the maize leaf
dataset.

FIGURE 15. Normalized confusion matrix of the model MRW-CNN on the
maize leaf dataset.

can also be observed; for example, GreyLeafSpot is highly
confused with the class Mhealthy. There are also confusions
between the classes sr and CommonRust and also sr and
GreyLeafSpot, etc.

The proposed MRW-CNN model trained from scratch on
the maize leaf dataset performed well; it showed a validation
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TABLE 7. Classification report of MRW-CNN model on the maize leaf
dataset.

FIGURE 16. Accuracy and loss performance of the model MRW-CNN on
the maize leaf dataset.

accuracy of 0.9656 and a 2% increase in testing accuracy of
0.9704 compared to the fine-tuned models. The normalized
confusion matrix of the MRW-CNN model on the maize leaf
dataset is shown in Fig. 15. In Fig. 15, when observing the
diagonal elements, the Mhealthy and nlb classes of maize
performed equally well when compared to the other classes.
Confusion among classes can also be observed; for example,
the class nlb is highly confused with Mhealthy, the Mhealthy
class is confused with CommonRust, etc. The accuracy and
loss performance of the MRW-CNN model on the maize leaf
dataset is shown in Fig. 16.

The classification report of the Xception, MobileNet and
the proposed MRW-CNN model on the maize leaf dataset is
shown in Table 5, Table 6 and Table 7. The tables show the
precision, recall, F1-score, and support scores for each class
in the maize leaf dataset on the test data. The macro avg,
micro average, and accuracy are also calculated. More details
regarding how these values can be calculated in mentioned in
Subsection D of Section VI.

G. RICE
The performance of the state-of-the-art deep learning models
on the rice leaf dataset is shown in Table 8. Out of all eight
fine-tuned models trained on the rice leaf dataset, the models
Xception, MobileNet, Inception V3, and MobileNetV2

FIGURE 17. Accuracy and loss performance of the model inception V3 on
the rice leaf dataset.

FIGURE 18. Accuracy and loss performance of the model xception on the
rice leaf dataset.

FIGURE 19. Normalized confusion matrix of the model inception V3 on
the rice leaf dataset.

showed validation and testing accuracy above 95% when
compared to all the other models trained. The Xception
model performed best when compared to all the other models.
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TABLE 8. Application of the state-of-the-art models on the rice leaf dataset.

FIGURE 20. Normalized confusion matrix of the model xception on the
rice leaf dataset.

TABLE 9. Classification report of xception model on the rice leaf dataset.

The MobileNetV2 model showed a validation accuracy of
0.9624 and a testing accuracy of 0.9584. The MobileNet
model showed a validation accuracy of 0.9676 and a testing
accuracy of 0.9572.

The Inception V3 model showed a validation accu-
racy of 0.9628 and a testing accuracy of 0.9620. The

TABLE 10. Classification report of inception v3 model on the rice leaf
dataset.

FIGURE 21. Normalized confusion matrix of the model MRW-CNN on the
rice leaf dataset.

InceptionResNetV2 showed a validation accuracy of
0.9492 and a testing accuracy of 0.9532. The VGG16 model
showed a validation accuracy of 0.9148 and a testing accuracy
of 0.9120. The Xception model showed a validation accuracy
of 0.9708 and a testing accuracy of 0.9728. The graphs
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TABLE 11. Classification Report of MRW-CNN model on the rice leaf
dataset.

FIGURE 22. Accuracy and loss performance of the model MRW-CNN on
the rice leaf dataset.

showing the accuracy and loss performance of the fine-tuned
models trained on the rice leaf dataset with a testing accuracy
of above 96% are shown in Fig. 17 and Fig. 18. The
normalized confusion matrix of the fine-tuned models that
showed a testing accuracy of above 96% on the rice leaf
dataset is shown in Fig. 19 and Fig. 20.
Fig. 19 shows the normalized confusion matrix of the

model InceptionV3 on the rice leaf dataset. It can be observed
from the confusion matrix that the class bls performs slightly
better when compared to the other classes. Some classes are
confused with each other, like rblast and bls, riceh and ricebs,
etc. Similarly, Fig. 20 shows the normalized confusion matrix
for the Xception model on the rice leaf dataset. It can be
observed from the figure that all the classes perform equally
the same except for rbb. Some classes that are highly confused
with each other are rblast and bls, riceh, and bls, etc. The
proposed MRW-CNN model trained from scratch performed
equally well on the rice leaf dataset with a validation accuracy
of 0.9729 and a testing accuracy of 0.9706 when compared
with the fine-tuned models. The normalized confusion matrix
of the MRW-CNN model on the rice leaf dataset is shown
in Fig. 21. In Fig. 21 from the normalized confusion matrix,
it can be observed that class ricebs performs slightly better
when compared to the other classes. Confusion among classes

FIGURE 23. Accuracy and loss performance of the model mobilenet on
the wheat leaf dataset.

FIGURE 24. Accuracy and loss performance of the model mobilenetv2 on
the wheat leaf dataset.

can also be observed, for example, rblast and bls, riceh and
ricebs, etc. The accuracy and loss performance of the MRW
model on the rice leaf dataset is shown in Fig. 22. The
classification report of the Xception, Inception V3, and the
MRW-CNNmodel on the rice leaf dataset is shown in Table 9,
Table 10, and Table 11. The classification report shows the
precision, recall, F1-Score, support scores for all the classes
in the rice leaf dataset for the test images. It also calculates
the macro average, accuracy, and weighted average.

H. WHEAT
The performance of the state-of-the-art deep learning models
on the wheat leaf dataset is shown in Table 12. Out
of all eight models trained on the wheat leaf dataset,
the models MobileNetV2, MobileNet, Inception V3, and
InceptionResNetV2 showed a validation accuracy above
90% when compared to all the other models trained.
The MobileNetV2 model showed a validation accuracy of
0.9724 and a testing accuracy of 0.9632. The MobileNet
model showed a validation accuracy of 0.9632 and a testing
accuracy of 0.9628. The Inception V3 model showed a
validation accuracy of 0.9496 and a testing accuracy of
0.9508. The InceptionResNetV2 model showed a validation
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TABLE 12. Application of the state-of-the-art models on the wheat leaf dataset.

TABLE 13. Classification report of mobilenet model on the wheat leaf
dataset.

TABLE 14. Classification report of MobileNetV2 model on the wheat leaf
dataset.

TABLE 15. Classification report of MRW-CNN model on the wheat leaf
dataset.

accuracy of 0.9516 and a testing accuracy of 0.9488. The
graphs showing the accuracy and loss performance of the
fine-tune models trained on the wheat leaf dataset with a

FIGURE 25. Normalized confusion matrix of the model mobilenet on the
wheat leaf dataset.

testing accuracy of above 96% are shown in Fig. 23 and
Fig. 24.
The normalized confusion matrix of the fine-tuned models

that showed a testing accuracy of above 96% on the wheat
leaf dataset are shown in Fig. 25 and Fig. 26. Fig. 25 shows
the normalized confusion matrix of the MobileNet model on
the wheat leaf dataset. From the confusion matrix, it can
be observed that the striperust class performed best when
compared to all the other classes in the test data. Confusions
among classes also were observed, for example, leafrust
and wh, powderymildew and wh, etc. Fig. 26 shows the
normalized confusion matrix of the MobileNetV2 model on
the wheat leaf dataset.

The stripe rust class performed well when compared
to others. Some confusing classes were wh and leafrust,
powderymildew and wh, leafrust and wh, etc. The proposed
MRW-CNN model trained from scratch on the wheat leaf
dataset performed well; it showed a validation accuracy of
0.9793 and a 2% increase in testing accuracy of 0.9808 when
compared to the fine-tuned models. The normalized con-
fusion matrix of the MRW-CNN model on the wheat leaf
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FIGURE 26. Normalized confusion matrix of the model mobilenetv2 on
the wheat leaf dataset.

FIGURE 27. Normalized confusion matrix of the model MRW-CNN on the
wheat leaf dataset.

dataset is shown in Fig. 27. In Fig. 27, when observing the
diagonal elements, the leafrust, striperust, and wh class of
wheat performed equally well when compared to the other
classes. Confusion among classes can also be observed; for
example, the class wh is highly confused with leafrust, the
leafrust class is confused with wh, etc. The accuracy and
loss performance of the MRW-CNN model on the wheat
leaf dataset is shown in Fig. 28. The classification report of
the MobileNet, MobileNetV2, and the MRW-CNN model on
the wheat leaf dataset is shown in Table 13, Table 14 and
Table 15. The tables show the precision, recall, F1-score and

FIGURE 28. Accuracy and loss performance of the model MRW-CNN on
the wheat leaf dataset.

support scores for each class in the wheat leaf dataset on the
test data. The macro avg, micro average, and accuracy are
also calculated.

VII. CASE STUDY OF THE APPLICATION OF THE
PROPOSED METHOD
Computer vision technology will be a need in autonomous
futuristic farms. CNN based computer vision tasks have
shown great performance in recent years. Therefore, there is
an increased need to concentrate on the practical applications
of the system developed. If deployed properly, the proposed
method can help reduce crop loss and increase yield. A plant
protection systemAPP based on food grains can be developed
using the proposed system and the datasets developed. It can
be useful for detecting the diseases affecting the food grains
of rice, wheat, and maize.

Depending on the disease detected, appropriate curable
measures can be suggested. Identifying the disease at the
correct stage can help the users decide on the amount of
pesticide to be used and in what amount. The APP can be
trained to identify diseases with similar symptoms by asking
users additional questions about the weather conditions, the
location of the disease on the leaf, etc. By knowing more
about the weather conditions and the location of the disease.
It becomes easy to distinguish between diseases showing
similar symptoms to some extent.

Additional information regarding the weather conditions
that can favor the spread or advancement of the disease can
be given to the users. Suggestions on the pesticides that can be
used and the amount can also be made available. Small-scale
growers are the people who benefit more from these kinds
of solutions available for diagnosing plant diseases when
they are not able to get help from experts all the time. The
overall architecture of the plant protection system that can be
developed is shown in Fig. 29.

Fig. 29 discusses the possible use cases the user can
give the plant disease protection system. In case 1, the user
provides a diseased leaf to the system to detect the disease
affecting the leaf along with its stage. After the detection
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FIGURE 29. Application of the proposed system.

of the disease and its stage. The system also provides
suggestions regarding the curable measures and alerts on the
weather conditions that can be favorable for advancing the
disease. In case 2, when a diseased leaf has similar symptoms
of one or two diseases, more questions can be asked to the
users about the weather and geographical conditions. Based
on this information, possible predictions of diseases can be
made by the system. Also, suggestions for curable measures
for these predicted outcomes can be made.

In case 3, when the system encounters an unknown disease,
options can be given to the user to send it to an expert or plant
pathologist for analysis. The system learns from the disease
identified by the experts and their suggestions. The system
learns from the communication between the users or growers
and the experts.

VIII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
In the current work, real-time datasets for the food grains,
rice, wheat, and maize were formed by considering images
from different datasets and internet sources. Importance
was given to real-life images of different disease severity
levels, which is important for farmers or growers to make
appropriate decisions at the early stages of infection.
Identification of disease at the early stage of infection can
reduce yield loss and financial loss.

According to experimental results, CNN-based deep
learning models pre-trained on the ImageNet dataset, with
deep transfer learning strategy, downloaded from Keras and
fine-tuned, and the proposed MRW-CNN model performs
well in identifying and classifying rice, maize, and wheat
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diseases considered in the current work. All the models were
trained for 100 epochs.

During the development of the dataset, real-life images
were concentrated on more, rather than processed images.
Selected images from the datasets were pre-processed to
remove foreign objects if present. The number of images
collected under each class was 100 which was not enough
for training a deep learning model. So, the technique of data
augmentation was applied to all images per class to increase
the size of the dataset. The original images were combined
with the augmented images, and then the dataset formed
was splitted 80% for training and 10% each for validation
and testing for all three food grains: rice, wheat, and maize.
The datasets were then applied to different fine-tuned CNN
models and the proposed MRW-CNN model. The models
were evaluated using performance metrics like accuracy,
f1-score, precision, recall, etc.

B. FUTURE WORK
It can be observed that the datasets we developed have some
limitations. Although most of the images in the dataset are
real-life, some are pre-processed. In real-life scenarios, more
factors will influence the results than those concentrated
on developing the datasets in the current work. Therefore,
as future work, more importance can be given to factors like
how the impact of climate change can affect plant diseases
collection of leaf diseased images during different climatic
conditions.

Some of the other future works can be annotated images
from the dataset can be used in object detection models like
MaskRCNN to detect disease severity levels. A CNN based
deep learning system can be developed to detect and classify
diseases in food grains; the dataset can be further extended
by adding images of more food grains, images of multiple
diseases on the same leaf, etc.
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