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ABSTRACT At present, designing an RNA sequence that folds into a specific secondary structure is a
problem that is not fully solved, due to its exponentially increasing complexity. To address this matter,
many computational methods have been developed, but none of them has been able to completely and
in an affordable time solve Eterna100, a widely recognized benchmark used to test the performance of
RNA inverse folding algorithms. In previous publications we presented the m2dRNAs tool, a Multiobjective
Evolutionary Algorithm, and its extension eM2dRNAs, which added a recursive decomposition of the target
structure, thus simplifying the problem. At that time they successfully improved the ability to solve the RNA
inverse folding problem, but were still unable to complete the Eterna100 benchmark. Here we introduce
ES+eM2dRNAs, an improvement of eM2dRNAs that optimizes the decomposition process, as a drawback
in its nature was identified.A comparative study of this new tool against its predecessors and other RNA
design methods was performed using the two current versions of the Eterna100 benchmark. ES+eM2dRNAs
was shown to be the best in all performance indicators considered (number of structures solved, success rate,
and total run time). Moreover, it is able to solve two Eterna100 structures for which none of the compared
methods had ever found a solution.

INDEX TERMS Bioinformatics, evolutionary strategy, genetic algorithm, multiobjective evolutionary
algorithm, multiobjective optimization problem, ncRNA design, RNA inverse folding, RNA secondary
structure decomposition strategy.

I. INTRODUCTION
The RNA inverse folding problem consists in discovering
a nucleotide sequence that folds into a specific secondary
structure, known as target structure [1]. In this way, since
the 3D structure determines the function, it is possible to
design a non-coding RNA (ncRNA) molecule that fulfills a
particular application. The nucleotide sequence is known as
primary RNA structure and is usually coded as a sequence of
four nucleotides: Adenine (A), Guanine (G), Cytosine (C), and
Uracil (U). From this, nucleotides in the sequence interact to

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

establish hydrogen bonds between two specific nucleotides,
giving rise to canonicalWatson-Crick base-pairs (AU,UA,GC,
CG) [2], [3] or less commonly to wobble base pairs (UG/GU)
[4]. Those base pairing interactions fold the RNA molecule,
resulting first in the secondary structure, and then in the 3D
structure (tertiary structure) [5].

Functional non-coding RNAs (ncRNAs) play essential
roles in various biological processes, including splicing,
regulation of gene expression, inactivation of human
X-chromosome, translation, control of chromatin in epige-
netic processes or mRNA stability [6]. The ease of construct-
ing synthetic RNAs [7] has attracted significant attention,
considering their potential as a powerful biotechnological
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tool. At present, these synthetic RNAs find applications
in diverse domains such as constructing ribozymes and
riboswitches to be used as drug or therapeutic agents [8],
building self-assembling structures utilizing RNA molecules
(nano-biotechnology) [9], and advancing the field of syn-
thetic biology [10]. For the purpose of designing an ncRNA
molecule that can perform a specific function, it is nec-
essary to develop computational methods that successfully
solve the RNA inverse folding problem in a reasonable
time.

Brute force can be used to solve this problem [11],
however with a complexity that exponentially increases
as a function of the length of the target structure. Even
considering the main feature of the RNA molecule folding,
which is that the paired positions have to form the valid
base pairs mentioned above, complexity and in consequence
time remain exponential and consequently not affordable.
To circumvent this problem, many alternative approaches
have been developed.

A. MOTIVATION
Nowadays there is no computational method capable of
designing any possible RNA target structure in an affordable
time. To compare the capabilities of the methods being
designed it is common practice to test them against a standard
benchmark. Currently, no method has yet been able to
completely solve the Eterna100 benchmark, so it is an open
challenge in this field.

In previous publications we have developed m2dRNAs
and its improvement eM2dRNAs, two RNA Design Tools
based on evolutionary algorithms. As we are going to
see, m2dRNAs does not include any pre-treatment of the
target structure to ease its processing, so it has to handle
the whole structure at once. This matter was tackled by
eM2dRNAs, which incorporates a recursive decomposition
strategy of the target structure at the beginning and creates
a dependency graph. But the decomposition strategy is
based on a greedy procedure, which does not necessarily
result in an optimal dependency graph. In this paper we
incorporate an Evolutionary Strategy (ES) that optimizes the
eM2dRNAS decomposition process, in order to improve the
performance of the algorithm both in quality and execution
time.

II. STATE OF THE ART
In 1994 was presented the first RNA inverse folding tool.
Since then, several methods have been introduced to tackle
the RNA design problem from various perspectives. In [12]
tools published during the period from 1994 to 2016 were
summarized. Here we offer a condensed version of all
the tools present in that summary, to show the evolution
of this topic and the wide range of approaches that have
been applied: RNAinverse [1] utilizes an adaptive random
walk to minimize the difference between the Minimum Free
Energy (MFE) secondary structure of the ongoing RNA

sequence and the target structure; RNA-SSD [13] employs a
stochastic local search after an initialization process to select
an initial RNA sequence in a greedy manner; INFO-RNA [8]
involves two steps: generating good initial sequences by
means of a dynamic programming method and a refined
stochastic local search;MODENA [14], [15], [16] follows the
fast Non-Dominated Sorting Genetic Algorithm (NSGA-II),
using two objective functions involving structure: 1) stability
and 2) similarity; The NUPACK suite [17], [18] contains
an RNA designer that employs an algorithm similar to
RNA-SSD; The genetic algorithm fRNAkenstein [19] solves
the multitarget version of the RNA design problem, where
multiple target structures need to be found simultaneously;
DSS-Opt [20] makes use of Newtonian dynamics in sequence
space, simulated annealing and a negative design term;
RNAiFOLD [21], [22] addresses the problem by means of
constraint programming; EteRNA ensemble algorithm [23]
is a folding procedure that combines strategies from EteRNA
players and other RNA design software; ERD [24], [25]
starts with pools of different components to create an
initial sequence consistent with the target structure. The
quality of this subsequences are then enhanced by an
evolutionary algorithm; Lastly, the ant colony optimization
method antaRNA [26], [27] manages multiple constraints to
design RNA structures.

Methods published after that interval are reviewed in [28].
We summarize here the most relevant ones to this work,
which are those that used the same benchmark as us
(Eterna100, as we will see) and provide the full list of solved
structures.

SentRNA [29] propose an initial solution sequence by
means of a fully-connected neural network trained on
solutions of the RNA design game EteRNA, submitted by
human players. Then an adaptive walk algorithm, which
integrates simple human design strategies, refines it.

In [30], an agent for RNA design (a neural network made
of convolutional layers) was trained using Reinforcement
Learning (RL) and a collection of randomly generated
secondary structures to choose actions (modifying a single
or two paired bases) that ultimately lead to a sequence with
the specified target structure.

LEARNA [31] utilizes deep RL to train a policy network
to sequentially create a RNA sequence. Next it locally adapts
it with the help of the Hamming Distance (HD) between
the candidate and the target structure as a measure of error.
Furthermore, by meta-learning on a great compilation of
biological sequences, theMeta-LEARNA extension develops
a unique RNA design policy.

The goal in [32] is to prove how strategies of Eterna
participants can refine automated computational RNAdesign.
A Convolutional Neural Network was trained from a
repository of top players’ moves in advanced puzzles and
subsequently extended with a Single-Action-Playout of six
canonical human strategies, giving rise to the EternaBrain-
SAP method.
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RNAPOND [33] couples both positive and negative design
objectives. It employs a Fixed-Parameter Tractable algorithm
that adapts its sampled sequence distribution to priori-
tize solutions by identifying and eluding Disruptive Base
Pairs.

MoiRNAiFold [34] is an upgrade of RNAiFold whose goal
is to engineer complex functional RNAs, focusing on the
control of gene expression via RNA-RNA interactions.

aRNAque [35] is an evolutionary algorithm with local
mutations that minimizes three objective functions: HD,
normalized energy distance and ensemble defect, which are
used individually at different levels. It was updated in [36]
by incorporating a Lévy-flight mutation scheme (local search
integrated with infrequent significant leaps).

Next we present our previous contributions in this field:
m2dRNAs and eM2dRNAs, on which ES+eM2dRNAs is
based.

A. M2DRNAS ALGORITHM
The m2dRNAs algorithm is a Multiobjective Evolutionary
Metaheuristic developed byRubio-Largo et al. [12] to address
the RNA inverse folding problem. This algorithm focuses on
finding RNA sequences that minimize three objectives in the
designed sequence:
• Partition Function [37]: To determine the partition
function for the complete set of potential secondary
structures of a given RNA sequence x, equation 1 can
be employed:

f1(x) =
∑

SϵS ′(x)

e
−1G(S)
RT (1)

where −1G means the Gibbs’ free energy change,
R indicates the universal gas constant, T symbolizes
the absolute temperature (37 ◦C), and S ′(x) represents
the collection of all potential secondary structures. The
summation is carried out over this set.

• Ensemble Diversity [38]: This measure fundamentally
represents the average base pair distance (number of
base pairs present in one structure but not in the other),
which is the more straightforward measure of distance
between two structures. This calculation is performed
for all structures in the Boltzmann ensemble and can be
defined with respect to base pair probabilities pij, as in
equation 2.

f2(x) =
∑
(i,j)ϵx

pij · (1− pij) (2)

• Nucleotides Composition: This function is intended to
promote diversity within the solution set, thus mitigating
any significant bias that may arise in the composition
of the designed sequences. The designed RNA sequence
x is studied with respect to: Base-pairs percentages→
%GC : GC/CG, %AU : AU/UA, and %GU : GU/UG
(distribution of the three types of base pairs along
the paired positions in the target structure), unpaired
bases percentages → %uA, %uC , %uG, and %uU

(nucleotides distribution in unpaired positions), and total
bases distribution → %A, %C , %G, and %U (total
nucleotides distribution in the entire designed sequence).
In consequence, the nucleotides composition objective
function is calculated as equation 3:

f3(x) = max{%GC,%AU ,%UG}

+max{%uA,%uC,%uG,%uU}

+max{%A,%C,%G,%U} (3)

In addition, similarity between the target structure and the
secondary structure of the designed sequence is proposed
as a constraint to be met. Similarity (σ ) [15] is defined as
equation 4:

σ (x) =
n− d
n

(4)

where n represents the length of x, and d the number
of nucleotide positions whose structure in the designed
sequence is not the same as the corresponding one in the target
structure.

If σ (x) = 1 the predicted and the target structures are
exactly the same. Examples of this calculation can be found
in [12].

TheMultiobjective Evolutionary Algorithm (MOEA) used
inm2dRNAs, known asFast Non-Dominated SortingGenetic
Algorithm [39], is widely known in the field of multiobjective
optimization. In [12], the RNA inverse folding problem
is formulated as a multiobjective optimization problem
with continuous variables, which allows the use of genetic
operators suitable for this type of problem. From an input
target structure S in dot-bracket notation, m2dRNAs starts
processing it to create the sets of base pairs (B) and unpaired
bases (U ) positions. The encoding of the chromosome is a
real-valued vector of length |B| + |U |,

X = {ρ1, ..., ρ|B|, ρ|B|+1, ..., ρ|B|+|U |}

where ρ is a real value in the range [0,1] that represents the
type of base pair or unpaired nucleotide. The |B|first elements
save the ρ values of the base-pairs, while from |B| + 1 to
|B| + |U | ρ values of unpaired positions are stored.

There is a procedure to translate an input chromosome
into an RNA sequence. The resulting RNA sequence will
be evaluated to determine if it satisfies the similarity
constraint and to calculate its objective functions. To initialize
individuals, m2dRNAs randomly assign values for paired
positions (B set). However, when selecting each unpaired
position (U set), we consider its potential related base
pairs. This approach minimizes the likelihood of generating
unnecessary loops in the structure of the resulting RNA
sequence.

Crossover and mutation operators utilized are those
suggested by Deb et al. [39]: simulated binary crossover
(SBX) and polynomial mutation. The crossover probability
(pc) and mutation probability (pm) are set to 0.9 and 1/n′

respectively, where n = |B| + |U |.
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B. EM2DRNAS ALGORITHM
eM2dRNAs [28] is an improved version of m2dRNAs. This
algorithm begins with the recursive decomposition of the
input target structure, which simplifies the problem to be
solved. The results obtained, compared to several published
methods using the Eterna100 dataset, show that this proposal
obtains significantly better results.

We summarize here the process followed by eM2dRNAs:
1) Given an input target structure, it is decomposed

into one or more substructures using a recursive
procedure. Each substructure thus becomes an RNA
inverse problem (RNAinv) to be solved. If a repeated
substructure is found, it is referenced instead of
creating a new problem. This generates a directed
acyclic graphG representing the dependencies between
RNAinv problems.

2) Removal of those RNAinv problems that meet one of
the following criteria
• The outcome of multiplying the size of the
substructure by the number of times it is referenced
is less than 20. For example, if a substructure of
size 19 occurs only once, it would be removed.
However, a different substructure of size 10 arising
three times in the target structure would be
retained.

• Each substructure that contains only one substruc-
ture will be removed, regardless of its size.

• If a substructure is the sole child of the target
structure, then it will be deleted.

3) Provided a global stopping criterion determined by
execution time, it is allocated proportionally to the size
of each substructure. To achieve this, we consider the
participation of each problem. Initially, we sum up
the sizes of all the structures, which we’ll refer to as
the ‘‘total’’ size. Next, we calculate the participation
of each problem by dividing its structure size by
the total size. Finally, we multiply the execution
time by the participation of each problem, result-
ing in a specific runtime assigned to each RNAinv
problem.

4) A topological ordering of the RNAinv problems that
need to be solved is performed This ordering provides
a linear sequence of all nodes (RNAinv-problems)
in the directed acyclic graph G. In G, an edge uv
indicates that problem umust be solved before problem
v. This graph must be acyclic, as is unfeasible to
obtain a topological ordering of the graphs containing
cycles.

5) Find the solution of each RNAinv problem utilizing an
adapted variant of the m2dRNAs algorithm. m2dRNAs
algorithm receives as input parameters the substructure
to be solved and the stopping criterion (max. execution
time). Two groups are created: base-pairs (B) and
unpaired (U ). The input substructure is processed,
storing in B and U the positions of the base-pairs
or unpaired nucleotides respectively. Also, the

subproblems positions (P) of the input structure are
available from previous steps, so they are used to
encode the input structure as a chromosome (X ) of
length |B| + |U | + |P|. The output will consist of
a collection of all the discovered RNA sequences,
which will be saved. Once each problem is solved,
it is necessary to recalculate the participation of each
remaining problem. This is important because it is
possible that the assigned time for solving the problems
is not fully utilized, due to m2dRNAs’ stagnation
detection mechanism. The assigned time will be
redistributed in consequence. In this manner, simpler
problems do not consume time that might be required
for solving more intricate problems. If m2dRNAs
do not solve a particular subproblem, eM2dRNAs
will eliminate that subproblem and reconfigure the
graph.

6) The final problem to be addressed will be the one
encompassing the target structure. After solving it the
first valid solution found or a set of non-dominated
RNA sequences will be reported.

The success of eM2dRNAs in solving or not the target
structure (as well as the time invested), lies fundamentally
in the decomposition of the target structure.

III. METHODS
The main goal of this paper is the implementation of an ES
that optimizes the decomposition process of a target RNA
structure, in order to simplify the problem to be solved. The
multi-objective metaheuristic m2dRNAs is the core that finds
suitable solutions of the substructures, and eM2dRNAs is
responsible for the initial decomposition and the managing
of the substructures.
Another objective is to test the performance of

ES+eM2dRNAs by developing a comparative study between
our proposal and other algorithms published in the literature
to address the RNA inverse folding problem.
Before explaining the methodology of both goals, we state

the formal definition of the problem and explain the
chromosome encoding, since it is a key feature of the
algorithm

A. FORMAL DEFINITION OF THE PROBLEM
The problem addressed here can be formulated as a binary
optimization problem.

Maximize: σ (eM2dRNAs(x))

subject to xk ∈ {0, 1}, k = 1, 2, . . . , |B|

where:
• x = (x1, x2, . . . , x|B|) is a binary vector with |B| decision
variables.

• Similarity→ σ (eM2dRNAs(x)) is the objective function
to maximize. It will be calculated between the predicted
secondary structure of the RNA sequence resulting from
calling a modified version of the eM2dRNAs algorithm
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and the target structure. Similarity (σ ) is defined as in
equation 4.

• |B| is the number of base-pairs in the target structure.

B. CHROMOSOME DEFINITION
In the ES, the individual’s chromosome (x) has been defined
as a binary vector x = (x1, x2, . . . , x|B|), where |B| is the
number of paired bases in the target structure. In this encoding
xk = 1 means that the base-pair is the limit of a substructure,
and xk = 0 that is not. This binary representation is
called the guide and will be received by the eM2dRNAs
algorithm for the dependency graph creation process and
subsequently solve the different subproblems to address the
main one.

To clarify this definition, we provide some examples
below, including what the dependency graph will look like
when the guide is processed by eM2dRNAs (Recall that when
encountering a duplicated substructure, it is referenced rather
than generating a new problem). Consider the following
target structure represented in dot-bracket notation:
S : ..((((....))))((((....))))((((...))))

(n = 37)
Aswe can see, there are 12 base-pair (|B| = 12). Therefore,

3 example chromosomes could be:
x1 : 100010001000
x2 : 010000000111
x3 : 010101010101
As established before, a value of 1 means that the base-pair

is the limit of a substructure, marking thus the limits
for the decomposition. In consequence the decomposition
will be:
x1 : ..((((....))))((((....))))((((...))))

2 ((((...))))1 ((((....))))

0 .. 1 1 2

x2 : ..((((....))))((((....))))((((...))))

4 (...)

3 ( 4 )

2 ( 3 )1 (((....)))

0 ..( 1 )((((....))))( 2 )

x3 : ..((((....))))((((....))))((((...))))

4 (...)

3 (( 4 ))

2 (....)

1 (( 2 ))

0 ..( 1 )( 1 )( 3 )

The output of eM2dRNAs with each of the guides will be
an RNA sequence and its predicted secondary structure, with
which the similarity to the target structure will be calculated.

C. ES+EM2DRNAS ALGORITHM
We analyze here the process followed by ES+eM2dRNAs
(see Algorithm 1) that aims to find an RNA sequence that
folds into a given target structure. It receives as input the
target structure in dot-bracket notation (S) and the stopping
criterion: maximum execution time of the algorithm (tg). Its
output will be the RNA sequence (Xx) found with the highest
similarity to the target structure (S).

This process can be explained as a sequence of steps:
1) It starts by dividing the execution time tg into two

equal parts. In order to be able to perform at least
50 generations in the ES, the first of these halves, which
will be the stopping criterion of the ES, is divided into
50 time intervals: tl . These intervals will be used to
control the execution time of the eM2dRNAs algorithm
(as eM2dRNAs incorporates a stopping mechanism
that can cause tl not to time out). As an example,
suppose tg is 100 seconds. It will be divided into two
parts of 50 s (amount of time that will be the stopping
criterion) each. One is divided into 50 tl intervals,
so tl = 1 s. The remaining part of 50 s is kept for later.

2) Next, a greedy initialization is applied (see line 2 in
Algorithm 1). This initialization is the one exposed
in the first step of eM2dRNAs, and leads to a initial
guide x with a high probability of solving the problem.
After this, modified eM2dRNAs is called to evaluate
the initial guide x (see line 3 in Algorithm 1).
It receives as input the target structure S, the guide
x and the maximum execution time tl . As a result
eM2dRNAswill return a candidate RNA sequence (Xx)
and its predicted secondary structure (Sx). To show
this step, we are going to use the following structure
as target, that corresponds to an RNA sequence of
129 nucleotides, identifying a total of 39 base pairs:

S : .(((.(((...(((.(((...))).(((..

..))).)))...(((.(((....))).((((..
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Algorithm 1 ES+eM2dRNAs
Input: − A target structure in dot-bracket notation (S)
− Execution time (stopping-criterion) (tg)

Output: − RNA sequence with maximum similarity (Xx)
1: tl ← (tg/2)/50; /* Execution time eM2dRNAs
in ES */

2: x ← GreedyInitialization(S);
/* eM2dRNAs returns, for a guide x,

a RNA sequence (Xx) and its predicted
secondary structure (Sx) */

3: {Xx , Sx} ← eM2dRNAs (S, x, tl);
4: ge← 0; /* Stagnation control */
5: pm← 0.01; /* Mutation factor */

/* Evolutionary strategy (ES) */
6: while¬stopping−criterion(tg ∗0.5) & σ (Sx , S) ̸= 1 do
7: y←Mutation (x, pm);
8: {Xy, Sy} ← eM2dRNAs (S, y, tl);
9: if σ (Sy, S) > σ (Sx , S) then
10: x ← y;
11: {Xx , Sx} ← {Xy, Sy};
12: ge← 0;
13: pm← 0, 01;
14: else
15: ge← ge + 1;
16: if ge = 5 then
17: pm← pm ∗ 1.2;
18: ge← 0;
19: end if
20: end if
21: end while

/* In case the
ES does not find a solution, use the
best guide (x) until the execution
time tg is exhausted */

22: if σ (Sx , S) ̸= 1 then
23: tl ← calculateRemainingTime(); /* At least:

tg ∗ 0.5 */
24: {Xx , Sx} ← eM2dRNAs(S, x, tl);
25: end if

.)))).)))...(((.(((....))).((((..

.)))).)))...))).((((...)))).)))..

The greedy initialization decomposes this structure as
shown in Fig. 1.
The chromosome representing this decomposition
would be a vector (x) of size 39, which is the initial
guide:

x : 1001001001001001001

00100010010010001000

The target structure S, the obtained initial guide x and
tl = 1 are used as input for eM2dRNAs, which returns
a candidate RNA sequence (Xx) and its predicted
secondary structure (Sx).

FIGURE 1. Graph obtained by the greedy initialization for the target
structure S.

3) In lines 4 and 5 of Algorithm 1, the stagnation counter
ge is initialized to 0 and the mutation factor pm to 0.01
(1%). Then, the ES is started (see line 6 inAlgorithm 1),
which will continue as long as none of these conditions
are met: that the stopping criterion (which is related to
the execution time) is reached and that the similarity
between Xx and the target structure S is equal to 1.
As calculated before, in our example the stopping
criterion is 50 s.

4) At each iteration of the loop, the guide resulting from
mutating the best guide so far (x) is stored in y
(see line 7 in Algorithm 1). The mutation process is
very simple: the chromosome of x is traversed and,
with a probability of pm, the binary value 0 or 1 is
interchanged.
With this new guide (y), a call is made to the
modified eM2dRNAs algorithm to obtain the generated
candidate RNA sequence (Xy) and its predicted
secondary structure (Sy) (see line 8 in Algorithm 1).
If the similarity obtained from the y guide is better
than that obtained from the x guide (see line 9 in
Algorithm 1), the x guide is replaced by y, as well as the
candidate RNA sequence and secondary structure (see
lines 10 and 11 in Algorithm 1). The stagnation counter
ge and mutation factor pm are reinitialized to 0 and
0.01 respectively (see lines 12 and 13 in Algorithm 1).
ES+eM2dRNAs has a stagnation control (see
lines 14-18 in Algorithm 1), if the guide does not
improve within 5 generations, the mutation factor pm
is increased by 20%, thus trying to avoid possible local
optima.
We are going to assume that with Sy, which is the
structure predicted from the new guide y, the similarity
between Sy and the target structure S is 0.9. If the
similarity between Sx , the structure predicted from the
initial guide x were, for example, 0.95, since it is greater
(better) than 0.9, x would be maintained and ge would
increase by 1. On the other hand, if it were 0.8, ywould
replace x, Xy and Sy would replace Xx and Sx , as well
as ge and pm would be reset to their original values.

5) Once the ES is finished, it is checked whether an RNA
sequence identical to S has been found (see line 22 in
Algorithm 1). If no such RNA sequence has been
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found, the remaining execution time is calculated (see
line 23 in Algorithm 1) and the best guide found during
the whole evolutionary process of the ES is used in
a last call to eM2dRNAs, assigning it the remaining
execution time (see line 24 in Algorithm 1). In our
example, we suppose that the ES has finished once
its stopping criterion (50 s) has been reached, having
therefore not found an RNA sequence whose similarity
to the target structure is 1. Therefore the remaining time
(which will be at least the second part of 50 s that was
saved at the beginning) is calculated, and will be used
as the time limit for the last call to eM2dRNAs with the
guide stored in x (the best one) instead of tl = 1 s as
the previous ones.

D. COMPARATIVE STUDY
The performance evaluation of ES+eM2dRNAs and various
RNA inverse folding methods utilized the broadly recognized
benchmark Eterna100. This benchmark consists of 100 RNA
secondary structures obtained from the EteRNApuzzle game,
encompassing a diverse range of design complexities, ranging
from simple hairpins to intricate 400-nucleotide designs.

Initially, the Eterna100 dataset (Eterna100-V1) was assem-
bled using ViennaRNA 1.8.5, which relied on the Turner1999
(T99) energy parameters [40]. However, upon identifying
19 targets that were insoluble by ViennaRNA 2.4, which
employs Turner2004 (T04) energy parameters [41], these
structures were reengineered. The updated dataset, known
as Eterna100-V2 [42], includes the modified 19 structures,
aiming to be solvable by any inverse folding algorithm using
default ViennaRNA 2.4 or any version utilizing Turner2004
parameters. Both versions of Eterna100 were utilized in the
evaluation of eM2dRNAs, along with its corresponding set of
Turner energy parameters.

The parameter configuration for ES+eM2dRNAs con-
sisted of the following settings: a population size of
52 individuals, with a stopping criterion determined by time,
specifically 24 hours. The genetic operators employed were
SBX (Simulated Binary Crossover) with parameters ηc = 10
and pc = 0.9, along with polynomial mutation using ηm = 5
and pm = 10/n′, where n′ represents the total number of base
pairs and unpaired positions. The compilation of the program
was done using g++ (GCC) version 7.5.0.
For each combination of Eterna100-version and Turner-

version (Eterna100-V1T99 and Eterna100-V2T04), all struc-
tures were attempted ten times during the evaluation process.

The methods selected to participate in this compara-
tive study were those for which Eterna100-V1T99 and/or
Eterna100-V2T04 results are available, including a list detail-
ing the solved structures (LEARNAand themethod presented
by Eastman et al. in 2018 were discarded because they used
Eterna100-V1T04). The results of RNAinverse, RNA-SSD,
INFO-RNA, MODENA, DSS-Opt, and m2dRNAs were
collected from the source [12]. As for the remaining methods,
the data was obtained directly from their respective sources.

FIGURE 2. Comparison among diverse methods when solving the
Eterna100 (Version1/Version2, V1/V2) benchmark for their corresponding
energy parameters Turner1999 (T99) and Turner2004 (T04). The successes
(■) and failures (■) are shown for each algorithm. The number of solved
structures is shown next to the name of each method.

These methods include SentRNA-Full, EternaBrain-SAP,
RNAPOND, MoiRNAiFold, aRNAque, and eM2dRNAs.
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FIGURE 3. Comparison, in percentage of executions solving each
structure, among diverse methods when solving the Eterna100
benchmark. All of them (100%) is represented by (■) and none (0%) as
(■). The overall percentage of solved structures is shown next to the
name of each method.

IV. EXPERIMENTAL RESULTS
The comparative study is divided into two parts, depending on
the version of Eterna100 and Turner energy parameters used

FIGURE 4. Comparison, in number of successfully solved structures,
among diverse methods when solving the Eterna100 (Version1/Version2,
V1/V2) benchmark for their corresponding energy parameters Turner1999
(T99) and Turner2004 (T04).

FIGURE 5. Total execution time required by m2dRNAs, eM2dRNAs and
ES+eM2dRNAs in designing all the Eterna100 structures (in seconds).

(Eterna100-V1T99 and Eterna100-V2T04). Fig. 2 shows
the Eterna100 structures solved by each individual method,
whereas the heatmap in Fig. 3 represents the percentage
of executions that solve each structure, when the data to
perform this calculation are available. Also, the counts of
number of successfully solved structures by each method
can be found in Fig. 4. We then proceed to evaluate the
effectiveness of various methods as success rate, defined
as the percentage of successful runs in relation to the
total number of executions. Due to data availability, this
calculation is limited to Meta-LEARNA, EternaBrain-SAP,
MoiRNAiFold, aRNAque (−OP and −GC2), m2dRNA,
eM2dRNAs, and of course ES+eM2dRNAs. Therefore, this
comparison will be conducted exclusively among these
competitors (Table 1). Finally, we compare execution times
of m2dRNAs, eM2dRNAs and ES+eM2dRNAs, since they
were run in the same machine (Fig. 5).

As we can observe, for Eterna100-V1T99, ES+
eM2dRNAs solves 94 of the 100 structures, improving
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FIGURE 6. Solution found for ET99 structure (V1T99).

TABLE 1. Comparison among diverse methods in terms of success rate
(in %).

the results of eM2dRNAs by one, which was already
superior to the rest of the algorithms shown. We can
highlight that for the structure ET99, ES+eM2dRNAs is the

FIGURE 7. Solution found for ET60 structure (V2T04).

only algorithm able to solve it in the scientific literature.
Its structure with the RNA sequence found embedded
is shown in Fig. 6, represented by PseudoViewer3 web
server [43] (http://pseudoviewer.inha.ac.kr/). In terms of
success rate, ES+eM2dRNAs is the winner with 88.8%,
followed closely by aRNAque-OP (88.4%) and eM2dRNAs
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FIGURE 8. Solution found for ET86 structure (V2T04).

FIGURE 9. Solution found for ET97 structure (V2T04).

(87.9%). Moreover, execution time of ES+eM2dRNAs is
better than eM2dRNAs, which was already significantly
better than m2dRNAs.

For Eterna100-V2T04, ES+eM2dRNAs solves 90 of the
100 structures. Apart from our previously publishedmethods,
to our knowledge the only alternative method tested with
Eterna100-V2T04 is aRNAque. To use it in our comparative
study, we collected the data of its best configuration
(aRNAque-GC2, Lévy flight version) from their GitHub
repository. As we can see in Fig. 4, ES+eM2dRNAs beats
all contenders, wining by two structures over the second
(eM2dRNAs), and both methods improving quite a lot the
results of the remaining algorithms (aRNAque-GC2 and
m2dRNAs, with 73 and 72 respectively). ES+eM2dRNAs
is the only method within this category that solves ET60
(Fig. 7), ET86 (Fig. 8) and ET97 (Fig. 9). Remarkably, this

last structure has also not been solved by any published
method. About success rate, ES+eM2dRNAs is the best
(85.2%) and only eM2dRNAs is not far behind (82%).
As before, ES+eM2dRNAs is also the best in execution
time.

These results demonstrate the better performance of
ES+eM2dRNAs compared to the other methods. Given that
this is the method that solves the most structures and has the
best success rate, and that the Eterna100 benchmark includes
a wide variety of structure types, it is the most versatile. This
is also supported by its ability to find solutions to structures
that no other tool has been able to achieve. Thus, this tool
would be the most reliable for trying to find RNA sequences
that fold into a desired target structure.

As discussed in the introduction, time is also an important
feature to consider here, as it is necessary to be able to obtain
the solution RNA sequences in affordable times. Although
not many tools are compared with this metric (due to the need
to be run under the same conditions), the fact that it is the
fastest is a further point in favor of ES+eM2dRNAs.

V. CONCLUSION
We have developed a new enhancement to our previously
presented m2dRNAs RNA design tool, which was first
improved by eM2dRNAs adding a recursive decomposition
of the target structure. Since the greedy procedure used
by eM2dRNAs does not necessarily result in an optimal
dependency graph, we have incorporated an ES to optimize
this decomposition process and improve the performance of
the core MOEA algorithm. In consequence, this new tool is
called ES+eM2dRNAs.
We also present a comparative study of ES+eM2dRNAs

against its predecessors and other tools at the scientific liter-
ature, to test the performance of this extension and show the
progression of our algorithm as it is improved. The two avail-
able versions of the Eterna100 benchmark in combination
with its corresponding versions of Turner energy parameters
were used in this comparative. The selected alternative
tools were: RNA-SSD, RNAinverse, RNAPOND, DSS-
Opt, INFO-RNA, MODENA, EternaBrain-SAP, SentRNA-
Full, MoiRNAiFold, and aRNAque. ES+eM2dRNAs
outperforms all contenders in all categories considered
(Number of structures solved, success rate, and total
execution time) for both versions of Eterna100. Moreover,
ES+eM2dRNAs is the first known method that solves ET97
and ET99.

To summarize, as main contributions of ES+eM2dRNAs
we can mention:
• It is the first RNA design method capable of solving
94 of the 100 RNA secondary structures of the first
version and/or 90 of the second version of the Eterna100
benchmark, widely used in this area.

• It manages to find solutions to two structures that had
not been solved by any other computational method.

• It also has better success rate and total execution time
than its predecessors.
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• To the best of our knowledge, there is no other
computational tool that applies an Evolutionary Strategy
to decompose the RNA target structure at the beginning
of the RNA design process.

RNA design tools allow prediction of RNA sequences that
fold into a desired secondary structure, which determines
function. As ES+eM2dRNAs is currently the RNA design
tool that proves to obtain the best results, any decision
on which RNA sequences should be constructed and
experimentally tested to achieve a ncRNA with the desired
function could be supported by computational design of
candidate RNA sequences using this tool. This reduces time
and funding efforts.

Future applications of this work include any field where it
is necessary to find RNA sequences that fold into a desired
target structure, thus being candidates to fulfill a desired
function once synthesized. Synthetic RNAs are used in
diverse biotechnological areas, such as nano-biotechnology,
biomedical engineering and synthetic biology.

Future research efforts could be aimed at modifying this
tool in order to improve its ability to solve structures or
decrease execution time. Related actions that could be taken
could be directed at:
• Modify the ES itself (changing the mutation operator or
using a different ES).

• Completely change the early decomposition strategy
to something other than the ES presented here or the
recursive decomposition used in eM2dRNAs.

• Modify the core m2dRNAs algorithm to: Optimize
other objective functions (such as those used by other
published tools), use another existing multiobjective
algorithm, or change the chromosome encoding, muta-
tion operator, and/or crossover operator.

Another possible action to extend this work would be to
repeat the comparative study utilizing other sets of structures,
for example larger and more complex ones, to analyze the
scalability of the algorithms included in it.

Finally, it would be interesting to widen the capabilities
of ES+eM2dRNAs by adding desirable features in this field,
such as the possibility of including design constraints (base-
pairs bounds and specifiedmotifs), allowing for pseudoknots,
and multi-target RNA design.

From an algorithmic point of view, we are interested in
studying whether existing genetic algorithms, differential
evolution or particle swarm optimizers will perform well on
the RNA design problem. In the future we will perform a
comparison with state-of-the-art algorithms using the same
initialization strategy.
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