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ABSTRACT Residential consumers can optimize their participation in demand response programs (DRPs)
using home energy management systems (HEMS). By automatically adjusting air conditioning (AC)
setpoints and shifting certain appliances to off-peak hours, HEMS can lead to significant cost reductions.
While HEMS aims to adjust AC temperature setpoints, it is important to consider the occupants thermal
comfort. This study aims to develop amulti-objectivemodel for the application of DRPs in a smart residential
house. The objectives of the model are to achieve (a) reduction in electrical load demand, (b) adjustment
in thermal comfort temperature setpoints, and (c) minimization of consumer costs subject to the related
constraints. Determining occupancy status through HEMS provides more economic benefits and thermal
comfort for consumers. However, traditional methods such as direct occupancy monitoring are often costly,
inaccurate, and can intrusively collect data on residents’ activities, locations, and routines, compromising
their privacy. To tackle these challenges, this study introduces advanced forecasting algorithms such as
random forest, light gradient boosting machine, and multilayer perception artificial neural networks to
predict occupancy by utilizing indirect data sources, such as energy consumption patterns. This approach
enables the prediction of residential presence without direct monitoring. However, inherent uncertainty
associated with predicted parameters can compromise the effectiveness of DRPs, and potentially lead to
non-optimal energy savings, jeopardizing consumer comfort, and even system instability. To address these
uncertainties, this study integrates robust counterpart optimization techniques, augmented with uncertainty
budgets to control uncertainty variation making them less conservative. Simulations show uncertainty
increases costs by 36% and reduces AC temperature setpoints. Further, implementing DRPs reduces demand
by shifting some appliances to off-peak hours and lowers costs by 13.2%.

INDEX TERMS Demand response program, thermal comfort, occupant privacy, occupancy forecasting,
learning algorithms, robust counterpart optimization, multi-objective genetic algorithm.

NOMENCLATURE
IDENTIFIERS AND VARIABLES
hi Index of time, from 1 to H .
H start
s Start of next interval.

The associate editor coordinating the review of this manuscript and

approving it for publication was Akin Tascikaraoglu .

H end
s End of a period.

K Index used to represent time lags in the ARX
model.

S Index used for the load points (customers)
connected to each node.
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A Matrix of coefficients.
b Right side vector of inequality.
c Linear programming vector.
d Linear programming vector.
cc Penalty or reward price at time h ($/kW).
L Number of uncertain data.
N Set of nodes in the community circuit.
M Set of exogenous inputs to the ARX model.
O Objective function.
Occ Occupancy level.
pdh Consumers demand (kW).

pshifth Shiftable loads (kW).

pn_shifth Non-shiftable loads (kW).

pmish Miscellaneous electrical loads (kW).

pd
′

h Internal demand except for air conditioning
power(kW).

puh Purchased power from the utility (kW).

pACi,j,h Air conditioning power consumption (kW).

pd,des
h Desired demand at time h (kW).

T AC,set Air conditioning temperature setpoints (◦C).

T AC,des Air conditioning desired setpoints (◦C).

us,h Binary variable indicating if the shiftable
load s is ON at time h(= 1: ON, 0: OFF).

U Set of uncertain parameters.
cuh Cost of electricity at time h ($/kW).
γ Uncertainty budget.
γ ′ Uncertainty budget.
0 Auxiliary variable.
ς Uncertainty adjustment factor.
α Coefficient of the ARX model.
β Coefficient of the ARX model.

SUPERSCRIPTS˜ Uncertain form of a certain parameter.
◦ Nominal or given value of a parameter.̂ Basic shifts of uncertain parameters
d Demand.
O Objective function.
Ro Robust optimization.
T Transposed of vectors.

I. INTRODUCTION
Electricity demand has been experiencing significant growth
over the past few decades, resulting in a wider supply-demand
gap. To address this issue, utilities have introduced demand
response programs (DRPs) [1]. The primary goal of these
programs is to provide customers with opportunities to reduce
their demands and electricity costs. DRPs require consumers

to manage and monitor their power consumption, which is
unlikely to be accomplished manually [2]. So, home energy
management systems (HEMSs) have been developed to suc-
cessfully implement DRPs into smart buildings. HEMS is
responsible for scheduling or shifting the consumption of
some appliances into off-peak hours to reduce consumer
energy costs [3]. They also adjust the air conditioning (AC)
temperature setpoints corresponding with DRP schemes [4].
While HEMS aims to adjust AC temperature setpoints to
reduce demand, it is important to consider the occupants
thermal comfort. In the existing literature, various studies
have been conducted on the implementation of DRPs in
smart buildings through HEMS with a particular focus on
preserving occupants thermal comfort.

A. OCCUPANTS THERMAL COMFORT
Several studies have incorporated occupants thermal comfort
into their optimization problems. For example, a multi-
objective optimization approach is proposed in [5] for
residential load scheduling in a smart grid, focusing on
reducing peak load and costs while maintaining occupant
thermal comfort. Another study proposes a multi-objective
optimization methodology in individual neighborhoods to
maximize consumer thermal comfort, reduce demand, and
minimize battery operational costs [6]. The paper [7] devel-
ops a multi-objective optimization model that balances
user satisfaction with various demand response types in a
dynamic electricity pricing environment, for optimizing effi-
cient energy consumption across different user categories. A
multi-objective optimization is developed in [8] to enhance
economic efficiency and reliability in smart integrated energy
systems while addressing demand responses and consumer
comfort. A proportional response strategy is used in [9] to
optimize residential thermal comfort and energy costs as a
result of identifying the outdoor temperature and the user
preferences.

While valuable studies have been conducted to consider the
occupants thermal comfort through HEMS, a significant gap
remains in the literature regarding occupancy detection. For
HEMS to effectively leverage DRPs to minimize costs and
energy consumption, while simultaneously preserving occu-
pants thermal comfort, HEMS must be aware of occupancy
levels.

B. OCCUPANCY FORECASTING
DRP capabilities can be dynamically influenced by occu-
pancy status [10]. Occupancy forecasting specifically refers
to the advanced prediction of how many people will be
present in a building and at what times. Various technolo-
gies and devices such as video cameras, infrared cameras,
passive infrared sensors, and break-beam sensors can detect
occupancy levels. For example, a synchronized low-energy
electronically chopped passive infrared sensor is used [11]
to enhance occupancy detection accuracy in indoor envi-
ronments. In [12], a thermal sensor array is employed to
estimate the number of people in a space. To better monitor
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occupancy changes, cloud-based technologies are used [13].
The study [14] introduces a new approach for estimating CO2
levels using indoor temperature and humidity data, applied to
monitoring occupancy within a residential setting. As proved
in [15], Wi-Fi connection data results are more accurate than
CO2 sensors for estimating occupancy levels.

While these technologies and devices that directly monitor
occupancy levels can provide valuable data for building
energy management systems, they have several draw-
backs. Direct monitoring technologies could potentially infer
sensitive personal information about occupants activities,
locations, and routines. Occupants often lack awareness and
control over what data are being collected and how they are
being used, leading to privacy violations [16]. Additionally,
such technologies can be expensive to install and maintain,
and they are limited in their ability to only estimate the current
occupancy state [17]. To address these challenges, learning
algorithms present an alternative to occupancy forecasting.
First, they are non-intrusive and privacy-aware, as they do
not directly monitor occupants. Second, these algorithms
leverage historical data and other types of indirect infor-
mation, such as power consumption, to which utilities have
access. The approach mitigates data exchange risks since
explicit occupancy information is not shared. Third, the use of
learning algorithms eliminates the need for additional devices
like sensors, making the solution cost-effective. Lastly, unlike
direct monitoring methods, which can only estimate current
occupancy levels, learning algorithms can forecast future
occupancy levels, providing a more dynamic and adaptable
solution.

The effectiveness of machine learning techniques has
been demonstrated in several power system applications.
For example, short-term photovoltaic generation forecast-
ing is discussed in [18] based on long short-term memory
(LSTM), convolutional neural networks, random forests, etc.
An innovative machine learning-based combined bootstrap
and cumulant method is proposed in [19] for forecasting
wind turbine power outputs. Authors of [20] utilize deep
learning frameworks to identify collective human behaviors
in smart cities. Besides, multilayer perception artificial neural
networks (MLP-ANN) with feature selection techniques are
utilized in [21] for solar irradiance forecasting. However, few
studies have applied these approaches to occupancy forecast-
ing. For example, the authors in [22] propose a statistical
method for occupancy detection that estimates occupancy
levels. It requires historical data, such as energy consumption,
temperature and humidity, modules, and various sensors, and
can only detect the current occupancy status. Also, traditional
machine learning algorithms such as support vector machines
are used in [23] for the analysis and prediction of binary
occupancy levels for residential consumers. However, these
algorithms cannot deal with imbalanced data [24]. Therefore,
powerful techniques such as next-generation machine learn-
ing algorithms and deep learning are required to provide a
non-intrusive, accurate, and cost-effective solution to forecast
occupancy levels for DRP applications.

Occupancy and load demand serve as crucial input parame-
ters for HEMS, and errors in their estimation can significantly
impact the system performance. Failing to account for such
uncertainties can compromise the effectiveness of DRPs, and
potentially lead to non-optimal energy savings, compromised
consumer comfort, and even system instability. Therefore,
it is critical to consider the associated uncertainties in the
predicted parameters to develop more realistic and effective
solutions.

C. UNCERTAINTY ANALYSIS
In real-world problems, changing even one data point can
violate multiple constraints, resulting in a non-optimal or
even impossible solution [25]. Traditionally, optimization
problems have been solved by assuming the data are deter-
ministic, despite the fact that most real-life data are uncertain.
For example, occupancy uncertainty accounts for up to 30%
variation in the building energy [26]. The approaches to
model uncertainty can be divided into probabilistic and non-
probabilistic models. Probabilistic models quantify uncer-
tainty by assigning probability distributions to uncertain
parameters. Monte Carlo simulation, stochastic program-
ming, and Bayesian networks are among the most commonly
used probabilistic techniques. These methods often require
large numbers of the data and fitting the data into a known
probability distribution function. On the other hand, non-
probabilistic models, such as robust optimization and fuzzy
logic address uncertainty by establishing parameter bounds.
They are particularly useful when data is insufficient, or when
probability distributions are either unknown or fitting them
are statistically insignificant [27]. Due to inadequate data to
fit a proper probability and avoid expensive computation,
this study utilizes robust counterpart optimization methods
to model the uncertain parameters. The primary approach to
dealing with uncertainty with robust optimization is to evalu-
ate the worst-case scenario. However, using the worst-case
scenario approach without considering uncertainty budgets
may lead to overly conservative solutions. This is because
uncertain data rarely hold their worst values at the same
time. In optimization problems, uncertainty budgets are used
to quantify the uncertainty in the data and determine the
acceptable level (not simply worst values).

D. CONTRIBUTIONS
The contribution of this study can be summarized as follows:

1- Advanced occupancy detection: This study recognized
occupancy levels as a key factor in the effective deploy-
ment of DRPs via HEMS. The next-generation learning
algorithms are employed to provide a non-intrusive,
cost-effective, and precise forecasting method that
equips HEMS with future occupancy information.

2- Optimal thermal comfort: As HEMS adjusts AC set-
point temperatures it is essential to maintain occupants
thermal comfort. This study elevates the importance
of this aspect by explicitly defining occupants thermal
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comfort as a primary objective function to strike a
balance between energy conservation and the thermal
comfort of residents.

3- Tackling predictive variabilities: Inherent uncertainties
in forecasted data can greatly influence the effec-
tiveness of HEMS. Recognizing this challenge, this
study incorporates robust counterpart optimization
techniques that not only account for uncertainties but
also effectively quantify them.

The summary of studies conducted on the subject is given
in Table 1. This research provides a comprehensive approach
to improving the effectiveness of DRPs through HEMS
by integrating thermal comfort, occupancy forecasting, and
uncertainty analysis. Although each component has been
studied individually in previous studies, the combined impact
and potential benefits of integrating them have not been fully
addressed. In thermal comfort, while existing multi-objective
optimization studies have effectively balanced energy effi-
ciency with occupant comfort, they often overlook the
critical aspects of occupancy status and forecasting. For
occupancy detection, despite the advantages of current tech-
nologies in real-time monitoring, issues such as privacy,
accuracy, and high installation costs remain unaddressed,
which our approach aims to resolve using non-intrusive learn-
ing algorithms. Regarding uncertainty analysis, traditional
probabilistic models, while adept at quantifying uncertain-
ties, face challenges with large data requirements, contrasting
with non-probabilistic models that, despite their utility in
data-limited scenarios, may lack detailed accuracy for com-
plex systems. The problem in our study is formulated as a
multi-objective model that aims to meet the requirements
for reducing electricity demand, adjusting thermal comfort
AC temperature setpoints, and minimizing consumer costs
subject to the related constraints. To comprehensively assess
the impact of applying DRPs and uncertainty on the results,
the problem is simulated for four case studies where all
possible combinations of applying and not applying DRPs
and uncertainty are examined thereby addressing the lim-
itations observed in existing research and highlighting the
novel contributions of our integrated approach. Besides, the
organizational flowchart of the simulation procedure in this
study is shown in Fig. 1.

II. METHODOLOGY
This section outlines the techniques employed in this study.

A. OCCUPANCY FORECASTING
1) DATA COLLECTION AND PREPROCESSING
The Wi-Fi connection data, which serves as an indicator of
occupancy levels, were collected from June 10th, 2019 to
October 7th, 2019. This dataset represents the hourly history
of Wi-Fi connections in a residential setting. Typically, the
house is inhabited by three people, although the occupancy
may vary over time. The corresponding electrical consump-
tion data was obtained from the local utility provider in the

FIGURE 1. Organizational flowchart of the simulation procedure in this
study.

same time frame. To ensure the integrity and reliability of
these datasets, we conducted a thorough check for NaN (Not
a Number) values to identify and address any missing or
undefined data points. Additionally, we verified the length
and consistency of both datasets to ensure alignment without
discrepancies.

To forecast occupancy levels based on learning algorithms,
two sets of initial datasets are required, inputs (or features)
and outputs (or responses). In this study, hourly electric-
ity demand data was used as the input feature set, while
Wi-Fi connection records served as the response dataset,
indicating occupancy levels. Fig. 2 demonstrates the rela-
tionship between occupancy levels and electricity demand
for a random day in September. It shows a clear correlation
between occupancy levels and electricity demand. As occu-
pancy increases, there is a corresponding rise in power usage,
indicating a direct correlation. For instance, periods with
three occupants consistently show higher electricity con-
sumption compared to hours with fewer occupants. This
pattern highlights the potential of using electricity demand
as a predictive feature for accurately forecasting occupancy.

FIGURE 2. Hourly residential electricity demand and corresponding
occupancy level number for a random day in September 2019.

VOLUME 12, 2024 15197



R. Nematirad et al.: Optimization of Residential DRP Cost

TABLE 1. The summary of studies conducted on the subject.

The performance of the learning algorithms could be
enhanced with data normalization techniques. Data normal-
ization is a preprocessing technique to scale variables to a
standard scale. In this study, Min-Max scaling was employed,
a common practice that scales data to a fixed range, between
0 and 1 [28].

2) LEARNING ALGORITHMS
After scaling the data, they can be fed into the learning
algorithms. Given the limited size of the dataset, there is a
potential risk of overfitting, which could lead to poor results.

Tomitigate this, the study employs three advanced supervised
learning algorithms, including random forest, light gradient
boosting machine (LightGBM), andMLP-ANN to accurately
forecast occupancy levels for effective use by HMES.

The random forest algorithm is an ensemble learning
method that constructs multiple decision trees during the
training phase [29]. Each of these trees is built using a random
subset of electricity demand data and occupancy data. When
making predictions, the algorithm aggregates the decisions of
all these trees. Specifically, each tree independently predicts
the occupancy levels based on electricity demand, and then
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these individual predictions are combined. The most frequent
prediction from all trees is chosen as the final forecast for
occupancy levels.

LightGBM is an advanced gradient-boosting learning
method that constructs its trees sequentially, unlike random
forests [30]. It creates a base tree to predict occupancy based
on electricity demand. Then, it identifies areas where this
prediction is inaccurate and constructs the next tree to address
these errors specifically. Through this iterative refinement,
LightGBM effectively captures and learns from the complex
patterns and relationships in the data, resulting in highly
accurate occupancy level predictions.

MLP-ANNs are a form of deep learning that consists of
multiple layers of interconnected neurons [31]. Each layer
in the network is trained using electricity demand data to
predict occupancy levels. As the input data passes through
these layers, each neuron processes the information by apply-
ing a weighted sum and a non-linear activation function.
This allows the MLP-ANNs to identify and learn complex,
non-linear patterns between electricity usage and occupancy
levels. Besides, regularization techniques such as dropout are
used to prevent overfitting [32]. The final output of the net-
work is generated in the last layer, representing the estimated
occupancy level based on the analyzed electricity demand
data. It should be noted that using multiple algorithms can
help identify the underlying patterns in the data and achieve
better accuracy by comparing their results.

Supervised learning algorithms include regression and
classification tasks that work with labeled datasets for predic-
tion purposes. Regression is necessary in this study because
many features with continuous values are lost when outputs
are defined as discrete values in the classification process.
This loss of information can reduce classification accuracy.
Additionally, if the input data distribution is heavily imbal-
anced, the classification result may be non-uniform, with all
outputs shifting to one class [33]. Further, to evaluate the
performance of the learning algorithms in this study, root
mean square error (RMSE), mean squared error (MSE), and
mean absolute error (MAE) are used [34].

B. LOAD MODEL
For the purpose of this study, the internal load demand of
a residential house has been categorized into four groups:
AC, shiftable, non-shiftable, and miscellaneous loads [35].
Shiftable loads such as dishwashers, washers, and dryers
can be operated at different time according to their patterns.
Appliances like ovens, TVs, and personal computers are con-
sidered non-shiftable loads [36]. To forecast the current AC
load, the methodology presented in [6] is employed, where
a black-box reduced order model called auto-regressive with
three exogenous inputs (outdoor temperature, occupancy, and
AC temperature setpoints) and a previous cooling load is used
to forecast the current AC loading given by [6]:

pACi,j,h

=

∑
k∈K

[
−αi,j,k×pACi,j,(h−k)+

∑
m∈M

βi,j,k,m×Occi,j,m,(h−k+1)

]
∀i ∈ N , ∀j ∈ D, ∀h ∈ H (1)

Since this study is conducted just for one smart home, M ,
i, and j are set to 1. As a result, the load demand can be
expressed as follows:

pdh = pshifth + pn_shifth + pmish + pACh , ∀h ∈ H (2)

C. ROBUST COUNTERPART OPTIMIZATION
The primary approach to dealing with uncertainty is to
evaluate theworst-case scenario and conduct robust optimiza-
tion based on that. However, using the worst-case scenario
approach without considering uncertainty budgets may lead
to overly conservative solutions. This is because uncertain
data rarely hold their worst values at the same time. In opti-
mization problems, uncertainty budgets are used to quantify
the uncertainty in the data and determine what level of uncer-
tainty is acceptable (not simply worst values).

1) ROBUST COUNTERPART
Consider the optimization problem given by:

O =

{
cT .x + d

}
(3)

Subjected to:

A.x ≤ b (4)

If coefficients of c, d, A, and b are uncertain and belong to
uncertainty set U , Eq. (3) can be written as [37]:

ORo =

{
min
x

{
cT .x + d : A.x ≤ b

}}
(A,b,c,d)∈U

(5)

The uncertainty set is affinely parameterized by a perturba-
tion vector ς alteringwithin a perturbation setZ . For instance,
the parameter c with uncertainty can be written as [37]:

c̃ = c0 +

∑
q∈Q

ςq × ĉq : ς ∈ Z ⊂ RQ

Z =

{
ς ∈ RL : |ς | ≤ 1,

}
(6)

Then the optimization problem assuming the worst-case sce-
nario for all uncertain variables is as follows [37]:

ORo=min
x

{
max

(A,b,c,d)

[
cT .x + d

]
,A.x ≤ b, (A, b, c, d) ∈ U

}
(7)

2) UNCERTAINTY BUDGET BOX
While it is highly unlikely that all uncertain parameters
coincide, by allocating budgets to uncertain parameters, the
deviation from their nominal value can be controlled and
limited. So, by taking budgets into account, the perturbation
set Z can be rewritten as [37]:

Z = Z0
+

L∑
l=1

ςl[Z l] (8)
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To develop robust counterpart optimization in the general
case, the robust counterparts of the objective functions and
constraints must be obtained. If A and b are uncertain, they
can be rewritten as follows using (6):

A = A0
+

L∑
l=1

ςl[Al] (9)

b = b0 +

L∑
l=1

ςl[bl] (10)

Therefore, by using Eqs. (9) and (10), Eq. (4) is written as
follows:[

A0
]T
x +

L∑
l=1

ζl

[
Al

]T
x ≤

[
b0

]T
+

L∑
l=1

ζl

[
bl

]T
(11)

L∑
l=1

ζl

([
Al

]T
x −

[
bl

])
≤

[
b0

]
−

[
A0

]T
x (12)

The left-hand side of Eq. (12) can be written as follows [37]:
L∑
l=1

ζl

([
Al

]T
x −

[
bl

])
=

L∑
l=1

∣∣∣∣[Al]T x −

[
bl

]∣∣∣∣ (13)

Accordingly, by integrating Eq. (13) into Eq. (12), Eq. (14) is
obtained.[

A0
]T
x +

L∑
l=1

∣∣∣∣[Al]T x −

[
bl

]T ∣∣∣∣ ≤

[
b0

]
(14)

Finally, Eq. (14) is linearized using axillary parameters Z and
W . The uncertainty budget γ is applied to be less conservative
as [37]:

L∑
l=1

|Zl | + γ.max |Wl | +

[
A0

]T
x ≤ b0 (15)

where [37]:

Zl +Wl = bl −
[
Al

]T
x, l = 1, 2, . . . , L (16)

Generally, objective functions also have uncertain parameters
and are modeled by auxiliary variables. Therefore, by using
an auxiliary variable 0O, the robust counterpart of Eq. (3) can
be written as follows [37]:

ORO = min0O (17)

If c is uncertain by introducing auxiliary parameters Z ′, W ′

for uncertain parameter c, and considering budget γ ′, Eq. (17)
is converted as follows:

0O
≥ cT x + d + γ ′.max

∣∣W ′
l

∣∣ +

L∑
l=1

∣∣Z ′
l

∣∣ (18)

Z ′
+W ′

= 1O (19)

Eq. (18) can be linearized, for instance, absolute valueW can
be linearized as follows:

max |W | ≤ T (20)

−T ≤ W ≤ T (21)

III. CASE STUDIES
To applyDRPs, it is assumed that the utility offers two options
to consumers: first, the ability to adjust their indoor tem-
perature by selecting desired AC temperature setpoints, and
second, the option to shift selected appliance operations from
peak hours to off-peak hours. Consumers who participate
in DRPs receive financial rewards or face penalties. In this
study, four cases are developed to comprehensively examine
the impact of uncertainty in demand and occupancy data and
the application of DRPs.
Case (a): This scenario operates the HEMS under standard

conditions, where neither uncertainty in demand and occu-
pancy data nor DRPs are considered. It serves as a baseline,
illustrating the HEMS functionality in a controlled environ-
ment without external incentives or unpredictability.
Case (b): In this scenario, the HEMS accounts for uncer-

tainties in forecasted occupancy levels and load demand
enhancing its adaptability to unpredictable variations. How-
ever, this case does not involve the HEMS participating in
DRPs, thereby focusing solely on the HEMS capabilities in
the face of data uncertainties.
Case (c): Here, the HEMS actively participates in DRPs,

allowing consumers to adjust AC temperature setpoints
and shift appliance usage to off-peak hours. However, this
scenario does not incorporate strategies for handling uncer-
tainties in demand and occupancy data, thereby assessing the
effectiveness of DRP participation under stable and determin-
istic conditions.
Case (d):This comprehensive scenario combines the appli-

cation of DRPs with the consideration of uncertainties in
occupancy and load demand. It represents an advanced imple-
mentation of the HEMS, showcasing how the system can
optimize energy management by responding to both DRP
incentives and data variability.

A. CASE (A)
As all data are assumed deterministic and there is no DRP
contract between consumers and the utility, the consumers
energy cost is as follows:

Cos t =

∑
h∈H

cuh p
d
h (22)

B. CASE (B)
As this case examines the impact of uncertainties in data
for demand and occupancy levels without any application
of DRPs, based on the methodology described in the robust
counterpart optimization with uncertainty budgets section,
Eq. (22) can be written as an uncertain optimization problem
given by:

Ocase (b) = min

{∑
h∈H

cuh p
d
h

}
(23)
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According to Eqs. (17)-(21), by applying auxiliary parameter
01, Eq. (23) can be rewritten as follows:

OROcase (b) = min
{
01

}
(24)

where OROcase (b) is robust counterpart of Ocase (b) subject to:

01
≥

∑
h∈H

cuh p
d
h (25)

∀h ∈ H , Zp
d

h =

{
ςp

d
∈ RH :

∥∥∥ςp
d
∥∥∥

∞

≤ 1,
∥∥∥ςp

d
∥∥∥
1

≤ γ
pd

h

}
(26)

01
≥

∑
h∈H

cuh p
d
h + γ

pd

h,case (b).max(
∣∣∣W pd

h,case (b)

∣∣∣)
+

∑
h∈H

∣∣∣Zpdh,case (b)∣∣∣ (27)

W pd

h + Zp
d

h = −1pdh .c
u
h (28)

Eq. (27) can be easily linearized by using Eqs. (20) and (21).
Also, a power balance constraint is required to model the total
internal load:

puh = pdh , ∀h ∈ H (29)

Since considering uncertainties increases the margin of
safety, the power balance equality in Eq. (29) can be
expressed as [37]:

puh ≥ pdh , ∀h ∈ H (30)

Since consumer demand includes occupancy levels, Eq. (2)
can be rewritten as follows:

pdh = pd
′

h + pACh (31)

pd
′

h = pshifth + pn−shifth + pmish (32)

By combining Eqs. (1) and (2) with Eqs. (31) and (32), the
power balance constraint can be rewritten as:

puh ≥

∑
k∈K

[
−αk × pAC(h−k) + βk × Occ(h−k+1)

]
+ pd

′

h , ∀h ∈ H

(33)

According to Eqs. (14)-(16), the robust counterpart of Eq.
(33) can be derived as:

puh ≥

∑
k∈K

[
−αk × pAC(h−k) + βk × Occ(h−k+1)

]
+ pd

′

h

+ γ
pd

′

h,case (b).max(

∣∣∣∣W pd
′

h,case (b)

∣∣∣∣) +

∣∣∣∣Zpd ′

h,case (b)

∣∣∣∣
+ γ occh,case (b).max(

∣∣∣W occ
h,case (b)

∣∣∣) +

∣∣∣Zocch,case (b)

∣∣∣ (34)

∀h ∈ H : Zp
d ′

h,case (b) + W pd
′

h,case (b) = 1pd
′

h (35)

∀h ∈ H : Zocch,case (b) + W occ
h,case (b) =

∑
k∈K

βk × 1Occ(h−k+1)

(36)

Notice that Eq. (34) is linearized based on Eqs. (20) and (21).

C. CASE (C)
In this case, consumers participate in DRPs without consider-
ing uncertainties in data, and a multi-objective optimization
is developed.

1) OBJECTIVE FUNCTIONS
The problem is formulated as a multi-objective optimization
where (a) electricity load demand reduction, (b) adjustment in
occupants thermal comfort AC temperature setpoints, and (c)
minimizing consumer costs are achieved subject to the related
constraints. Typically, during peak hours, the HEMS requires
consumers to match their load demand with the expected load
demand and minimize the difference between them at time h.
This can be accomplished by adjusting the AC setpoint or
shifting loads from peak hours to off-peak hours. Therefore,
the load demand reduction objective function can be defined
as [38]:

O1
case (c) = min

∑
h∈H

∣∣∣pdh − pd,des
h

∣∣∣ (37)

While HEMS effectively aims to reduce consumer demand,
it might compromise occupants thermal comfort if it ele-
vates the AC temperature setpoints beyond occupants desired
thermal comfort levels. Tominimize dissatisfaction regarding
the AC temperature setpoints, the difference between the
desired and AC temperature setpoint must be minimized.
Accordingly, the occupant thermal comfort objective function
is expressed as follows:

O2
case (c) = min

∑
h∈H

(
T AC,set

− T AC,des
)
.Occh (38)

In addition, participation in DRPs should result in a reduction
in customer costs. If consumers decrease their load demand
relative to the utility desired load demand, they earn incentive
fees. Otherwise, they will be monetarily penalized. This has
been expressed as the consumer cost objective function given
by:

O3
case (c) = min

∑
h∈H

cuh p
d
h + cc

(
pdh − pd,des

h

)
(39)

2) CONSTRAINTS
If shiftable appliances are set to be switched on at time h, the
following conditions must be met:

• They must have been off in the previous steps.
• They must remain on for the required time to complete
their cycle.

• Once the cycle is completed, they must be switched off.
These constraints are formulated in Eqs. (40) and (41). Eqs.
(42) and (43) state that appliances cannot start before the
predetermined start time and must complete their processes
before the predetermined end time. Moreover, if a demand
shift is planned, the entire load will be shifted to the following
time step [38]:

∀s ∈ S :

∑
h∈H

us,h = Ns (40)
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∀s ∈ S, ∀h ∈ H : us,h+1 ≥
us,h
Ns

(Ns −

h∑
τ=1

us.τ ) (41)

∀s ∈ S :

H start
s −1∑
h=1

us,h = 0 (42)

∀s ∈ S :

H∑
h=H end

s +1

us,h = 0 (43)

Additionally, while optimizing, there is a risk of reaching
uncomfortable temperatures for residents. To mitigate this,
we set a desired AC temperature setpoint at 23.33◦C for
residences, ensuring it never exceeds 28.55◦C as demanded
by the utility [6]:

∀h ∈ H :

∣∣∣T AC,set
h − T AC,des

∣∣∣ ≤ 5.22 (44)

Besides, the optimization process may consistently maintain
AC temperature setpoints at their maximum value, as indi-
cated by Eq. (44), which is not desired for occupants.
To address this, we impose constraints on the total variations
of AC temperature setpoints against desired AC setpoints as
expressed by Eq. (45), where 19.44◦C is chosen according
to [6]:

H∑
h=1

∣∣∣T AC,set
h − T AC,des

∣∣∣ ≤ 19.44 (45)

Finally, to prevent overcooling in summer, AC temperature
setpoints should never be less than the desired temperature as
expressed as follows [6]:

∀h ∈ H : T AC,set
h ≥ T AC,des (46)

D. CASE (D)
As described, the robust equivalent of the multi-objective
function expressed in case (c) can be calculated. Since the
second objective function is nonlinear, it can be linearized
using an auxiliary variable denoted as yh, as shown in Eqs.
(20) and (21). In addition, the objective functions include
uncertain variables. So, the auxiliary variable models their
uncertainty [37]. Consequently, Eq. (37) can be rewritten as
Eq. (47).

O1,Ro
case (d) = min

∑
h∈H

yh, (47)

where,

∀h ∈ h : yh ≥

∣∣∣pdh − pd,des
h

∣∣∣ (48)

Since objective functions contain uncertain variables, aux-
iliary variables 01

case (d), 02
case (d), and 03

case (d) are used to
obtain their robust counterpart.

O1,Ro
case (d) = min01

case (d) (49)

O2,Ro
case (d) = min02

case (d) (50)

O3,Ro
case (d) = min03

case (d) (51)

01
case (d) ≥

∑
h∈H

yh (52)

02
case (d) ≥

∑
h∈H

(T AC,set
− T AC,des).Occh (53)

03
case (d) ≥

∑
h∈H

(cuh p
d
h + cc(pdh − pd,des

h )) (54)

According to Eqs. (18) and (19), robust counterparts of Eqs.
(52)-(54) can be derived as follows by including γ occh and
γ dh as occupancy level and demand budgets, respectively, and
W occ
h , Zocch , W d

h ,wd
′

h ,Zd
′

h , and Zdh as auxiliary variables.

01
case (d) ≥

∑
h∈H

yh + γ dh .max(
∣∣∣wdh ∣∣∣) +

∑
h∈H

∣∣∣Zdh ∣∣∣ (55)

02
case (d) ≥

∑
h∈H

(T AC,set
− T AC,des).Occh

+ γ occh .max(
∣∣wocch

∣∣) +

∑
h∈H

∣∣Zocch

∣∣ (56)

03
case (d) ≥

∑
h∈H

(cuh p
d
h + cc(pdh − pd,des

h ))

+ γ dh .max(
∣∣∣wd ′

h

∣∣∣) +

∑
h∈H

∣∣∣Zd ′

h

∣∣∣ (57)

∀h ∈ H , wocch +Zocch =−d(Occh)1(T AC,set
−T AC,des)

(58)

∀h ∈ H , wdh + Zdh = −d(pdh ) (59)

∀h ∈ H , wd
′

h + Zd
′

h = −d(cuh p
d
h ) (60)

where perturbation set for each uncertain variable is as
follows:

Zdh =

{
ςp

d
∈ RH :

∥∥∥ςp
d
∥∥∥

∞

≤ 1,
∥∥∥ςp

d
∥∥∥
1

≤ γ
pd

h

}
(61)

Zocch =

{
ςocc ∈ RH :

∥∥ςocc
∥∥

∞
≤ 1 ,

∥∥ςocc
∥∥
1 ≤ γ occh

}
(62)

It should be noted that all constraints related to this case are
the same as cases (b) and (c).

Cases (c) and (d) are formulated as a multi-objective
function where (a) electricity load demand reduction, (b)
adjustment in occupants’ thermal comfort AC temperature
setpoints, and (c) minimizing consumer costs are achieved
subject to the related constraints. A multi-objective function
refers to a function that involves optimizing two or more con-
flicting objectives simultaneously [39]. The multi-objective
genetic algorithm (GA) is used in this study, which has shown
a great ability to solve multi-objective problems [40]. This
solver was configured with carefully chosen parameters to
balance and optimize these conflicting objectives effectively.
Through this process, the GA algorithm iteratively evolved
potential solutions. These solutions provide insights into the
trade-offs between electricity demand, thermal comfort, and
cost, aiding in the identification of strategies that optimally
balance all three objectives.
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IV. RESULTS AND DISCUSSION
All the simulations were performed on a system equipped
with an Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz
and 16 GB of memory. Table 2 lists the execution times of the
learning, simulations, and optimization processes for various
stages of this study.

TABLE 2. Execution times for various simulation processes.

A. ASSUMPTION AND DATA COLLECTION
The following assumptions and approaches are considered in
this study for numerical analysis.

• Washing machines and dishwashers were considered
shiftable loads.

• It was assumed that indoor temperature equals ambient
temperature.

• Forecasting and simulation were carried out for 12 hours
(It is applicable for larger periods if needed).

• For all uncertain parameters, a box of uncertainty was
defined as 0.9 to 1.1 times their nominal value [38].

• Each time slot was taken to be one hour without loss
of generality, which means power demand in kW is
equivalent to energy consumption in kWh.

• The financial fines and rewards are assumed to remain
constant throughout all hours [38].

• It was assumed the house is demand responsive through
HEMS.

• For forecasting and data preparation, Python and MAT-
LAB were employed to solve the multi-objective prob-
lem.

B. OCCUPANCY FORECASTING RESULTS
The learning algorithms can provide non-intrusive, cost-
effective, and accurate occupancy level information to able
the HEMS to more effectively implements DRPs. However,
in this study, the occupancy samples are heavily imbalanced.
Specifically, the majority of the training samples fall under
the category of resident presence, while a smaller propor-
tion represents resident absence. In this case, the learning
algorithms may face difficulties in accurately classifying
the minority class. This is because it has not seen enough
examples of the minority class to learn its characteristics
effectively. This limitation becomes apparent as the precision,
recall, and f1-score metrics for the resident absence class are
zero. For instance, the parametric values for the classifica-
tion process with MLP-ANN are given in Table 3, where
the precision, recall, and f1-score parameters for the resi-

dent absence class are zero. This underscores the algorithm
inability to correctly predict occupancy levels. Given these
limitations, this study utilizes regression as a more suitable
approach to address this challenge. The regression parameters
for the random forest, MLP-ANN, and lightGBM algorithms
are detailed in Table 3 and 4. Besides, Table 5 shows that
MSE, RMSE, and MAE are 0.97, 0.99, and 0.66, respec-
tively, for MLP-ANN regression. According to Table 5, using
lightGBM improves MLP-ANN performance by 3.52%,
1.75%, and 5.47%, respectivelywhile using the random forest
algorithm improves them by 42.18%, 23.94%, and 40.6%.
Therefore, random forest outperforms MLP-ANN regression
and lightGBM. It is important to note that these results were
obtained through multiple executions of the model, all con-
ducted with fixed random state parameters. That means a
specific seed was set for random number generation to ensure
that the results of stochastic processes, like data shuffling or
model initialization, are consistent in each execution.

TABLE 3. Parametric values for MLP-ANN regression and classification.

TABLE 4. Parametric values for random forest and LightGBM regression.

TABLE 5. MSE, RMSE, and MAE for MLP-ANN, random forest, and
lightGBM algorithms.
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Forecasting results with the random forest algorithm are
illustrated in Fig. 3. This graph shows a strong correlation
between electricity demand and occupancy levels, indicating
the effectiveness of using electricity demand as a predic-
tive feature for accurately forecasting occupancy. Finally,
the results derived from the random forest algorithm are
employed by HEMS to optimize DRPs, ensuring consumer
demand and cost reduction while preserving occupants ther-
mal comfort.

FIGURE 3. Forecasted occupants and residential electricity demand for
12 hours.

C. CASE STUDY RESULTS
1) CASE (A)
This case is considered as the benchmark without consider-
ation of uncertainties and without applying DRPs. The total
consumer cost for 12 hours is $6.942.

2) CASE (B)
The robust counterpart optimization of case (a) is employed
in case (b) incorporating uncertainty budgets. Each uncertain
variable is associated with 13 distinct budgets, leading to
a total of 169 possible states, considering uncertainties in
demand and occupancy levels. Due to the large number of
states, the analysis primarily focuses on scenarios where both
uncertain parameters have identical budgets. Fig. 4 demon-
strates the consumer total costs in this case. As illustrated
in Fig. 4, when both uncertainty budgets are set to zero,
the consumer total costs align with the costs observed in
case (a). A budget of zero denotes the parameters oper-
ating at their nominal values. As the uncertainty budget
increases, consumer costs increase. For instance, consumer
total costs increase by 36 percent when uncertainty is consid-
ered at all hours. Additionally, robust counterparts become
less conservative as budgets increase. When both uncertainty
budgets transition from 0 to 1, robust counterpart optimiza-
tion allocates these budgets to demand and occupancy during
hours with the lowest electricity tariffs. However, uncertainty
intensifies during hours with high electricity rates as the
budget increases. when both uncertainty budgets transition
from 11 to 12, the system experiences pronounced uncer-

tainty. Numerically, by changing both budgets from 0 to
1 and 11 to 12 respectively, consumer costs rise by 0.08%
and 5.37%. This behavior indicates that robust counterpart
optimization is less conservative and can control uncertainty
levels based on the system condition.

FIGURE 4. Consumer total costs in different cases. where the horizontal
axis indicates occupancy and demand budgets, for example, number
3 represents that occupancy and demand budgets are both 3.

3) CASE (C)
In this case, consumers participate in DRPs without consid-
ering uncertainties. The multi-objective GA is employed to
solve the optimization problem and its hyperparameters are
detailed in Table 6. Besides, the multi-objective GA conver-
gence curve is depicted in Fig. 5. Initially, the curve displays
low values for the objectives, indicating that the exploration
of multi-objective GA across a wide range of potential
solutions. As multi-objective GA evolves and refines to
produce more optimal solutions, these values progressively
increase. The observed fluctuations before reaching stability
highlight the algorithm dynamic process in balancing and
effectively optimizing the interrelated objective functions of
load demand reduction, occupant thermal comfort, and con-
sumer cost. This trend underscores the efficacy and capability
of multi-objective GA in simultaneously achieving an opti-
mal solution across these interconnected objective functions.
Besides, Table 7 shows the transferred demand for shiftable
loads across different time intervals. According to Table 7,
shiftable loads are transferred from the hot hours of the day,
to the nighttime hours when cooling loads are less prevalent.
Demand transfers arise from the multi-objective function,
which seeks to minimize both consumer costs and the sur-
plus demand discrepancy between the desired and actual
consumer demand to avoid penalties. The AC temperature
setpoints are shown in Fig. 6. The AC temperature setpoint
is aligned with the desired temperature, set at 23.85◦C for
the majority of hours. This is driven by the occupant thermal
comfort objective function, which aims tomaintain the indoor
temperature as close to the desired value as feasible. Further-
more, consumer total costs are $6.025, which is improved
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by 13.2% compared to case (a). This improvement can be
attributed to the load demand reduction objective function
which aims to reduce consumer load demand by shifting their
loads to lower-rate hours and increasing AC temperature set-
points. It should be noted that the occupant thermal comfort
objective function makes the AC run at low temperatures
(close to desired) during most hours, increasing costs and
energy use.

TABLE 6. Hyperparameters of the multi-objective genetic algorithm.

TABLE 7. Transferred demand for shiftable loads in Case (c).

FIGURE 5. Multi-objective GA convergence curve in case (c).

This case underscores that participation in DRPs can yield
cost savings for consumers without compromising com-
fort. However, ignoring uncertainties in input parameters
can result in suboptimal or even impossible solutions. For
instance, if actual demand surpasses predicted levels, con-
sumers will face penalties resulting in an increase in their
costs. The thermal comfort of occupants can also be compro-
mised if fluctuations in occupancy levels are not accounted
for. Accordingly, by integrating these uncertainties into the
optimization problem, we can develop more resilient strate-
gies that not only optimize energy consumption and costs but
also ensure occupant thermal comfort.

4) CASE (D)
The concurrent effects of considering uncertainties and the
application of DRPs are investigated in this case. Also, the
convergence curve of the multi-objective GA is similar to
Fig. 5. As demonstrated in Fig. 6, the AC temperature set-
points remain the same in uncertain and certain states for
most hours, except for late hours of the night when electricity
rates are lower, causing a decrease in AC setpoints due to
uncertainty. This minor deviation is largely attributed to the
occupancy level coefficient in the occupant thermal comfort
objective function. Because any change in occupancy levels
caused by uncertainty significantly increases the occupant
thermal comfort objective function, and the robust coun-
terpart optimization aims to maintain the AC temperature
setpoints as close to desired value as possible. Moreover, the
performance of shiftable loads exhibits sensitivity to uncer-
tainty. According to Table 8, similar to case (c), washing
machine operations transition from 17:00 and 18:00 to 21:00
and 22:00, respectively. While dishwasher operations con-
tinue at 13:00 and only change from 20:00 to 22:00. This
change can be attributed to the hourly electric rates, which
determine load transfer decisions. Given this study assumes
deterministic hourly electric rates, the optimization problem
reached the nearly identical schedules compare with case
(c). In addition, uncertainty decreases the AC temperature
setpoints at 21:00 to 22:00 (see Fig. 6), resulting in increased
demand during these hours. Therefore, the optimization prob-
lem prevents appliances from being transferred to these hours
to avoid extra costs. As illustrated in Fig. 4, consumer costs
under case (c) align with those in case (d) when no budgets
are applied. Moreover, even under worst-case conditions of
case (d), where uncertainty exists in all hours, consumer costs
improve by 9% compared to the worst point in case (b) due
to the impact of DRPs.

TABLE 8. Transferred demand for shiftable loads in Case (d).

Cumulatively, across all cases, using robust counterpart
optimization with uncertain budgets allows HEMS to handle
and measure uncertainty in a realistic manner. Instead of
solely focusing on the worst-case scenarios, this approach
considers varying levels of uncertainty that the HEMS might
face. Fig. 4 illustrates all possible planning scenarios with
various uncertainty budgets for all cases. Using the costs
of case (a) as a benchmark, implementing DRPs and tak-
ing uncertainty into account for up to 8 out of 12 hours is
cost-effective. For example, in case (d), when the data are
uncertain for 8 hours, the consumer costs are $6.94 which
is almost equal to the costs of case (a). However, in case (d)
where uncertainty exists for more than 8 hours, the consumer
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FIGURE 6. AC set-point temperature in cases (c) and (d).

costs rise and surpass the predefined benchmark indicating
uncertainty offsets the savings from the DRPs. While this
scenario might not seem cost-effective initially, accepting the
higher costs could be justified for two key reasons: first,
a more robust solution can increase system reliability and
reduce the likelihood of unexpected failure. Secondly, it is
less likely to encounter uncertainty spanning more than 8 out
of 12 hours simultaneously.

V. CONCLUSION
This study addresses the significance of occupancy forecast-
ing in the optimization of HEMS for effective participation
in demand DRPs. While HEMS aims to adjust AC temper-
ature setpoints the occupants thermal comfort should not
be compromised. For HEMS to effectively leverage DRPs
to minimize costs and load demand, while simultaneously
preserving occupants thermal comfort, HEMSmust be aware
of occupancy levels. To address that, this work proposed non-
intrusive, accurate, and cost-effective methods for predicting
the occupancy level using advanced learning algorithms.
The results demonstrated that the classification is ineffective
because the occupancy samples are imbalanced. Accord-
ingly, the regression task was performed by using advanced
learning algorithms, such as random forest, MLP-ANN, and
lightGBM. The results demonstrated the superiority of the
random forest regression with MSE, RMSE, and MAE of
0.5630, 0.75038, and 0.39525, respectively. Additionally, the
study emphasized the need to account for the inherent uncer-
tainties tied to predicted occupancy and load demand when
optimizing HEMS. Robust counterpart optimization along
with uncertainty budgets were employed to pragmatically
quantify uncertain parameters. This equipped the HEMS to
reliably implement DRPs as well. The comparative analysis
revealed that participation in DRPs, even with considering
uncertainties, could yield cost savings for consumers without
compromising comfort. The study showcased that while it is
cost-effective to consider uncertainties up to 8 out of 12 hours,
going beyond might lead to higher costs. However, these
higher costs could be justified by increased system reliability
and the relatively low likelihood of experiencing uncertainty
for more than 8 hours. While this study provides a robust

framework for HEMS optimization in the context of DRPs,
future research may explore:

• Applying a smart city or multiple smart homes instead
of a smart home.

• Formulating the problem from the investors or utility
point of view.

• Considering uncertainties in other data such as market
prices.

• Considering comfort in other sections, namely dish-
washer and washing machine operation time, and find-
ing the best function hours for these machines.

• Exploring the application of time series analysis tech-
niques to forecast occupancy levels.
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