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ABSTRACT Ever-increasing dynamic surges in renewable-based electric power systems, notably wind
and photovoltaic farms bring adverse impacts and challenges in terms of reliability and stability. The
intermittency of renewable sources imposes significant deviations in frequency due to variations in demand.
Wind power induces instability in the grid due to its vulnerable nature, and reduction in system inertia.
To mitigate these dynamics issues, an optimal control technique based on flatness-based Active disturbance
rejection control (FADRC) and utilizing an enhanced Beluga Whale optimization algorithm (EBWO) for a
multi-area interconnected power system with photovoltaic generation. The proposed LFC model addresses
the load perturbation and the deviation of tie-line power, with system uncertainties considered as lumped
disturbances that are approximated by extended state observers. To achieve optimal performance, the
Enhanced Beluga Whale optimization algorithm is adopted and integrated with the suggested controller
to fine-tune the controller. To validate the formidable performance of the suggested scheme, different cases
have been studied with the existing approaches. The simulation results reveal the supremacy and robustness
of the dynamic response of the Flatness-based active disturbance rejection control as compared to other
approaches under load variations and parameter uncertainty.

INDEX TERMS Flatness-based Active disturbance rejection control, beluga whale optimization algorithm,
Photovoltaic generation, multi-area interconnected power systems, renewable sources.

NOMENCLATURE
Abbreviations
AGC Automatic generation control.
BWO Beluga Whale optimization algorithm.
BWO Beluga Whale optimization.
BWs Beluga Whales.
EBWO Enhanced Beluga Whale optimization

algorithm.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wonhee Kim .

ESO Extended state observer.
FADRC Flatness based active disturbance rejection

control.
HHO Haris hawk optimizer.
IMC Internal mode control.
ITAE Integral time absolute error.
LADRC Linear active disturbance rejection control.
LFC Load frequency control.
MPPT Maximum power point tracking.
PID Proportional integral derivative.
PSs Power system.
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PV Photovoltaic system.
RESs Renewable energy sources.
SMC Sliding mode control.
WT Wind turbine.
System dynamics

α1, α2 Negative zero, Pv system gain,.
α3, α4 Negative poles.
1ACE Area control error.
1fi Frequency deviation.
1Kr Reheater gain.
1PPV Solar power deviation.
1PW Wind Power Deviation.
1PDi Load Perturbation.
1Pth Thermal Power Deviation.
1Ptie Tie-line power deviation.
B,R Frequency bias, droop gain.
H ,D Inertia constant, Droop coefficient.
Kfc,Kpc Fluid coupling gain, Blade characteristics.
KP1 Wind pitch control.
KP2,KP3 Gain of pitch actuator, data pitch.
TW Wind generation constant.
Tg,Tt ,Tr Time constant of governor, turbine, reheater.
TP1,TP2 Time constant of wind Pitch control, Pitch

actuator.
TP3 Data pitch time constant.

Optimization parameters

χT
i Position of ith beluga Whale.

χT
r Represents a random selected beluga Whale.

χstep Step size of whale fall.
ωc Controller bandwidth.
ωo Observer bandwidth.
Bf Equilibrium factor.
lb, ub Lower and upper bounds.
Lf Leavy flight.
ri Random number.
Wf Represents the whale fall phase.

I. INTRODUCTION
The ever-increasing demand for electric power and the
rapid increase of renewable energy sources (RESs) as a
means of reducing the impact of climate change have
captured significant attention in recent years [1]. Renewable
energy sources (RESs) are environmentally friendly and
cost-effective alternatives to fossil fuels. However, the
stability and reliability of power systems can be compromised
by the variability of RESs, such as solar and wind energy [2].
The utilization of RESs presents significant potential; yet,
it introduces a degree of uncertainty in power supply
due to factors such as weather conditions and daylight
availability. Thus, variations in the active power demand and
the intermittent characteristic of RESs may result in deviation
in frequency and tie-line power. These variations may
significantly affect the power system’s overall functionality

and stability [3]. However, severe frequency changes not only
pose a significant risk to the power system equipment but
also have the potential to trigger severe system failures [4].
Therefore, maintaining the balance between load demands
and generation requires an efficient and reliable control
mechanism.This control method, also known as Automatic
Generation Control (AGC) or Load Frequency Control
(LFC), is essential to the functioning of contemporary power
systems.

In the last few decades, a considerable amount of research
has been done on LFC schemes for frequency deviation
and disturbance mitigation in single and multi-area power
systems (PSs). Most widely traditional PID, PI controllers
have been used in power systems for handling external
disturbances. However, these control techniques are easy to
implement but not robust against parameter uncertainties,
resulting in maximum settling time and frequency devia-
tion [5]. A PI controller is designed to deal with oscillations
and stability issues due to communication delays, but the
approach is straightforward [6]. One of the challenges of
PI-LFC is to find the optimal values of the PI parameters that
can enhance the system performance. Various optimization
methods have been proposed to solve this problem and
adjust the PI parameters accordingly. A firefly algorithm-
based PI [7], Harris Hawks optimizer (HHO) [8] has
been explored. Besides, robust control techniques have
been utilized for the LFC problem, a PSO-based sliding
mode controller (SMC) [9], an ESO based Second-order
SMC [10], a PSO tuned Linear active disturbance rejection
control (LADRC) for multi-area power systems with high
wind penetration [11], dual loop internal mode control
(IMC) [12]. A type-2 fuzzy fractional order PID based
on a multi-objective optimization algorithm for the LFC
issue in an interconnected PSs has been introduced without
considering the RESs [13].
Additionally, to overcome the ever-increasing energy

demand and mitigate environmental emissions, RESs have
been integrated into the power system [14]. Among RESs,
the wind power system is the most advanced and widely
employed in power generation [15]. With the perpetual
penetration of renewable sources and their intermittent
nature, LFC has become a challenging problem to deal
with increasing unpredictability and inconsistency in gen-
eration [16], [17]. PI-TID [3] and PID [18] controllers
based on chaotic butterfly optimization and black widow
optimization algorithms have been introduced to improve the
LFC capabilities of the interconnected PSs including RESs.
Multi-objective optimization algorithm based fractional order
PID without considering the RESs [19] and fractional
order brain emotion learning based intelligent controller is
employed to actively reduces the deviation of frequency
and tie-line power [20]. Quasi-oppositional harmony search
optimization based fractional order fuzzy PID has been
utilized in a power system including a wind turbine [21].
Considering the impact of wind and solar-thermal, a fuzzy
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PD-PI cascade controller [22], based on the grasshopper
optimization algorithm. a PD with filter cascade PI LFC
technique has been utilized to gain a robust performance in
the presence of uncertainties and load perturbations [23].
In the preceding literature, the LFC methods are estab-

lished based on a thorough knowledge of the system,
where the system reliability is a prime priority. However,
uncertainties in the dynamics of real-time power systems,
errors in modeling and unmodeled dynamics, parameter
perturbation, and instantaneous load changes. Hence, the
LFC scheme for multi-area PSs should have an inher-
ent property of robustness and adaptiveness against load
perturbation and parameter variations which can adversely
affect the system stability and reliability. Therefore, a well-
equipped LFC scheme should be designed to estimate all
of the uncertainties at once and compensate for them to
maintain the system’s performance. Therefore, to handle the
external disturbance along with the un-modeled dynamics
in a system, the ADRC approach has been proposed by
Han [24]. The characteristic feature of the ADRC is to
use the extended state observer, defines the extended states
as lumped disturbances in addition to approximating the
system states. Thus, the internal disturbances and parameter
uncertainties caused by the un-modeled dynamics are lumped
together as an extended state, which a PD control law can
be used to compensate and estimate utilizing ESO [25].
The ESO operates independently of the mathematical model
of disturbances, demanding only a modest detail of the
controlled process for its implementation [26]. Although
many parameters must be tuned, a linear ADRC [27] has
been proposed to optimize only one parameter and facilitate
its practical applications [28]. For a multi-area PS that
includes non-linearities, a linear ADRC has been applied
without taking RESs into account [29]. LADRC, based
on Reinforcement learning, has been introduced to deal
with extensive external disturbances [30] considering the
non-linearities in the multi-power system. An effort has been
made to integrate a DFIG-based wind turbine into the power
system using a Linear-ADRC based on the modified bat
to deal with the intermittent nature of wind and external
disturbances with uncertainties in system parameters [31].
Furthermore, an extended form of the ADRC has been
introduced based on the concept of differential flatness [32]
and ADRC known as Flatness based ADRC(FADRC). The
FADRC method uses the flatness property [33] to design an
observer that estimates the system’s state and disturbances
and then uses the ADRC algorithm to compensate for the
disturbances [34]. The flatness-based discrete ADRC has
been applied to overcome the issue of non-minimum phase
(NMP) zero in flexible transmission system [35]. Without
taking RESs into account, an approximated flatness-based
ADRC has been presented for the LFC of interconnected
PSs [36].

Motivated by the growing complexity in power systems
due to the integration of RESs because of their intermittent
nature as analyzed from the above discussion, this research

article proposes an application of flatness-based ADRC.
Although numerous research works have investigated differ-
ent variations of ADRC in power system control, a notable
void remains in addressing the complex issues raised by
the incorporation of RESs into LFC methodologies. The
preceding literature has not fully addressed the complications
presented by the intermittent and unpredictable nature of
RESs, such solar and wind power systems. This work
aims to make a substantial contribution by presenting
a Flatness-based ADRC approach specifically to address
the uncertainties resulting from the intermittent RESs,
accommodating load disturbances, un-modeling dynamics,
and parameter uncertainties. A modified version of the
beluga whale optimization technique, called enhanced beluga
whale optimization (EBWO), is used to adjust the controller
parameters [37]. A summary of the paper contribution is
provided as;

• The integration of the EBWO with FADRC has been
presented for multi-area PSs, including thermal power
plant and RESs like PV and Wind turbine.

• Beluga whale optimization incorporated with particle
swarm optimization is studied to broaden the search
range and enhance the likelihood of attaining the opti-
mal solution between the exploration and exploitation
phases.

• The suggested FADRC robustness and sensitivity analy-
sis are assessed by taking into account the uncertainties
in the model parameters, load demand, wind speed, and
solar irradiation.

The structure of the paper is: in section II presents the system
components and their mathematical models using transfer
functions. Section III discusses the mathematical modeling
of the proposed FADRC for the system. Sections IV explains
the tuning algorithm for the controller parameters, followed
by analyzing the simulation results in section V. Lastly, the
conclusion is given in Section VI.

II. MODELING OF POWER SYSTEM
Figure 1 depicts a two-area PS comprising of a thermal
generation plant combined with a wind farm in the first area,
while the second area is a photovoltaic generation [23]. The
overall power deviations in the system under study can be
described as:{

1Ptotal1 = 1Pth + 1PW − 1PD1 + 1Ptie
1Ptotal2 = 1PPV − 1PD2 − 1Ptie

(1)

In (1),1PPV , 1PW , 1Pth, and1Ptie represent the deviations
in power output for the solar, wind, thermal plants, and tie-
line power. 1PD1 and 1PD2 correspond to the perturbation
in the required load for area 1 and 2, respectively. The
APPENDIX contains the system design parameters.

A. MODELING OF THERMAL SYSTEM CONFIGURATION
Within this section, a single generator featuring a reheated
turbine is investigated. As shown in Fig. 1, this system
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FIGURE 1. Block diagram based on transfer function for a two-area power system.

is used to demonstrate the effectiveness of the suggested
strategy. Typically, PSs with a reheated turbine encompasses
the subsequent components, represented in the s domain as
follow [18], [23].

Gg(s) =
1

Tg(s) + 1

Gt (s) =
1

Tt (s) + 1

Gr (s) =
1 + KrTr (s)
Tr (s) + 1

Gp(s) =
1

2H (s) + D

where Gg(s), Gt (s), Gr (s), Gp(s) represents the governor,
turbine, re-heater and machine, respectively. Area control
error(ACE) for area-1 can be expressed as 1Ptie(s) =

2πT12
s

(1f2(s) − 1f1(s))

ACE1(s) = B1f2(s) − 1Ptie
(2)

B. MODELING OF WIND SYSTEM CONFIGURATION
Wind Modeling shown in Fig. 1 comprised of different parts
[23] which is presented in s domain as follows:

1Pc(s) =
Kp1(1 + sTp1)

1 + s
(3)

where 1Pc is th pitch control, Kp1, and Tp1 is the gain
and time constant respectively. The 1Gp is known as the
hydraulic pitch actuator defined as

1Gp(s) =
Kp2

1 + sTp2
(4)

where Kp2, Tp2 is the gain and time constant for hydraulic
pitch actuator.Where1GH represents the data pitch response

presented as

1GH (s) =
Kp3

1 + sTp3
(5)

where Kp3 and Tp3 is the gain and time constant correspond-
ingly. The wind generation part can be expressed as

1GD(s) =
1

1 + sTw
(6)

The output wind power deviation can be expressed as

1PGW = KfcG1w(s), (7)

and the parameterKfc represent the fluid coupling gain, where
Kpc is blade characteristic.

C. MODELING OF PHOTOVOLTAIC SYSTEM
CONFIGURATION
In area 2, the PV system comprises its all component in a
single transfer function such as a PV panel, inverter, filter,
and maximum power point tracking (MPPT) [7], [18] [23] is
modeled below:

GPV (s) =
α1 + sα2

s2 + α3s+ α4
(8)

In (8), α2 represents the PV system gain, α1 corresponds to
the negative zero value in the transfer function, and α3 as well
as α4 represents the negative pole values [23]. In contrast
to the thermal power system, the area control error (ACE2)
in the PV generation area is designed to primarily focus
on tie-line power error. This is determined by the intrinsic
properties of PV systems, which do not have a direct impact
on frequency regulation in the grid because the performance
of the PV system is significantly impacted by solar irradiance
and temperature variations. Thus, ACE2 exhibiting an input
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for the controller in this particular area is 1Ptie, expressed as
follow [23].

ACE1 = 1Ptie =
2πT12
s

(1f2 − 1f1) (9)

III. FLATNESS-BASED ADRC
Considering an nth-order system with time-varying coeffi-
cients along with uncertainties is presented as:

ẋ1 = x2
ẋ2 = x3
...

ẋn = −an−1xn − an−2xn−1 − · · · − a1x2 − a0x1
+bmum + · · · + b0u+ f (x1, . . . , xn, u, . . . , um, d)
y = x1

(10)

where y is the output, u is the control input, x =

[x1, x2, . . . , xn]T is the state vector, d is the external distur-
bance, and f (x1, . . . , xn, u, . . . , um, d) is the total disturbance
incorporating the unknown input disturbances and internal
dynamics. The set of parameters a = [a1, . . . , an] are the
coefficients.

For the system considered to be flat, there should be a
unique output known as flat output denoted by y, and express
system variables as a function of y [38] and its finite time
derivatives, modelled as:

yn +

n−1∑
i=0

aiy(i) = bu+ f (t) (11)

where f (t)(y0, . . . , y(i), u, d) considered as the total distur-
bance, comprised of the output and its derivatives y(i), i =

n− 1, control input u, and the external disturbances d(t).
To estimate the total disturbances, it is requisite to design

an ESO depending on output variable y(t) and control input
u(t) as presented [34]:

ẏ0 = y1 + λn(e0)
ẏ1 = y2 + λn−1(e0)
...

˙yn−1 = bu−

3∑
i=0

aiyi + z+ λ1(e0)

z = λ0(e0)

(12)

where e0 = y − y0, which is referred to as the redundant
estimated output error. This error component effectively
fulfills the subsequent perturbed linear dynamics

e(n)0 + λn−1e
(n−1)
0 + · · · + λ1ė0 + λ0e0 = ḟ (t) (13)

The design parameter set λ0, λ1, . . . ,λn − 1 needs to
be adjusted with respect to the following characteristic
polynomial:

a(s) = s(n) + λn−1s(n−1)
+ · · · + λ1s+ λ0 (14)

which is a Hurwitz polynomial. To compensate for the
estimated perturbed dynamics and for a smooth trajectory

tracking task such as y → y∗(t), y∗(t)represents the desired
objective, which is achieved by the feedback controller given
as

u =
1
b

[
(y∗(t))(n) − z+

n−1∑
i=0

aiyi −
n−1∑
i=0

κi(yi − (y∗(t))(i))
]
.

(15)

In (15), κi, i = 0, 1, . . . , n are constant coefficients that
are deliberately selected to transform the corresponding
polynomial into a Hurwitz polynomial [34].

q(s) = s(n) + κn−1s(n−1)
+ · · · + κ1s+ κ0. (16)

A. FADRC CONTROLLER FOR THERMAL SYSTEM
The state space representation for a reheated turbine shown
in Fig. 1 is expressed as

ẋ1 = −
D
H
x1 +

1
H
x2 −

1
H
(d(t) + Ptie(t))

ẋ2 = −
1
Tt
x2 +

1
Tt
x3

ẋ3 = −
1
Tr
x3 +

Tg − TrKr
TrTg

x4 −
Kr
TgR

x1 +
Kr
Tg
u

ẋ4 = −
1
Tg
x4 −

1
TgR

x1 +
1
Tg
u.

(17)

Here x1 represents the deviation of frequency 1f , x2,
x3 and x4 represents the 1Pg, 1Pr and 1Xg respectively.
By observing the (1), the flat output is represented by the
frequency deviation ξ = 1f . Therefore, each variable in
the perturbed model needs to be represented as a differential
equation in terms of ξ .

x2 = Dξ + H ξ̇ + d(t) + Ptie(t)

x3 = Dξ + (DTt + H )ξ̇ + HTt ξ̈ + Tt (ḋ(t) + Ṗtie)

+ d(t) + Ptie(t)

x4 =

(
ρD+

4kr
TgR

)
ξ + (4D+ ρDTt + ρH) ξ̇

+ (4DTt + 4H + ρHTt) ξ̈ + 4HTt
...
ξ

+ 4Tt (d̈(t) + P̈tie(t)) (4 + ρTt) (ḋ(t) + Ṗtie(t))

+ ρ(d(t) + Ptie(t))

u =
1
β

{ (
ρD+

4kr
TgR

+
1
R

)
ξ +

(
ρTgD+ 4D+ ρDTt

+ρH+
4Kr
R

)
ξ̇ +

(
4TgD+ ρDTgTt + 4DTt + ρTgH

+ 4H + ρHTt

)
ξ̈ +

(
4DTtTg + 4TgH + ρHTtTg

+ 4HTt

) ...
ξ + 4HTtTg

....
ξ −

Kr4
Tg

u̇

+ 4TgTt (
...
d (t) +

...
P tie(t)) +

(
4Tg + ρTgTt

+ 4Tt
)
(d̈(t) + P̈tie(t))

(
4 + ρTt + ρTg

)
(ḋ(t) + Ṗtie(t))

+ ρ(d(t) + Ptie(t))
}

(18)
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where 4 =
TrTg

Tg−KrTr
, ρ =

Tg
Tg−KrTr

, β =
Tg−KrTr−TgTrKr

Tg−KrTr
....
ξ = −γ4

...
ξ − γ3ξ̈ − γ2ξ̇ − γ1ξ + β0u− ω(t)

where

ω(t) =
1
H

...
fd (t) +

(
1
TtH

+
1

TrH
+

1
TgH

)
f̈d (t)

+

(
1

TrTtH
+

1
TtTgH

+
1

TrTgH

)
ḟd (t)

+
1

TrTgTtH
fd (t) +

Kr
HTtT 2

g
u̇ (19)

γ1 =
D

HTtTgTr
+

Kr
HTtT 2

g R
+
Tg − TrKr
HTtTrT 2

g R

γ2 =
Kr

HTtTgR
+

D
HTtTr + HTtTg + TrTgH

+
1

TrTtTg

γ3 =
D

HTt + HTr + HTg
+

1
TgTr + TtTg + TtTr

γ4 =
D
H

+
1

Tr + Tt + Tg

β0 =
HT 2

g Tr (Tt − TrKr ) − KrTr
HTtT 2

g − Tr
(20)

where fd (t) = d(t) + Ptie(t). However, the following
system is considered to be invariant in terms of system
parameters. Where the process nominal parameters can
be computed by (20). Considering the uncertainty in the
nominal parameter, the controlled process can be rewritten
by including the total disturbance

....
ξ = −γ4

...
ξ − γ3ξ̈ − γ2ξ̇ − γ1ξ + βu− f (t) (21)

where the total disturbance, f (t), is represented as follows:

f (t) = eγ 4
...
ξ + eγ 3ξ̈ + eγ 2ξ̇ + eγ 1ξ

+ (β − β∗)u+ ω(t) (22)

where eγ = γi − γ ∗
i , i = 0, 1, 2, 3, which defines the error in

the system parameters and γ ∗
i is the nominal parameter value.

Assume that

ξ1 = ξ, ξ2 = ξ̇ , ξ3 = ξ̈ , ξ4 =
...
ξ , ξ5 = f , (23)

hence the process modal (21) can be represented as

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4

ξ̇4 = u+ ξ5

ξ̇5 = f .

(24)

The tracking goal that follows is developed in order to obtain
the process estimated value of the output, its limited-time
derivatives, and overall disturbances f (t):

ξ̇1
∗

→ ξ∗

2 , ξ̇2
∗

→ ξ∗

3 , ξ̇3
∗

→ ξ∗

4 , ξ̇4
∗

→ ξ5, ξ5 → ḟ (t)

(25)

where ξ∗

1 , ξ∗

2 , ξ∗

3 , ξ∗

4 are the approximations of ξ∗, ξ̇∗, ξ̈∗, · · · .
In order, to track the system state and estimate the
disturbances an ESO is designed as

er1 = (ξ1 − z1)
ż1 = z2 + λ4er1
ż2 = z3 + λ3er1
ż3 = z4 + λ2er1
ż4 = βu+ λ1er1 + z5
ż5 = λ0er1

(26)

where the design parameters {λ4, λ3, λ2, λ1, λ0} of the
observer are chosen by bandwidth parameterization method
[27]. And z2, z3, z4, z5 are the approximated value of
ξ2, ξ3, ξ4, ξ5. Based on the appropriate approximation, sum
of the all perturbations f (t) with help of suggested ESO,
in accordance with the idea of flatness, a feedback control
law can be expressed as u =

1
β
(γ4ξ∗

4 + γ3ξ
∗

3 + γ2ξ
∗

2 + γ1ξ
∗

1 + v− z5)

v = (ξ∗)(4) − κ4ec4 − κ3ec3 − κ2ec2 − κ1ec1
(27)

where eci = ξ∗
i − zi and κ1, κ2, κ3, κ4 are the controller

gains need to be optimized to get the desired output trajectory.
The controller gains can be specified by governing the
characteristic polynomial with all the poles in the left
half of the complex plane. The characteristic polynomial
corresponds to the Hurwitz polynomial as follows:

P(s) = s4 + κ3s3 + κ2s2 + κ1s+ κ0 = (s2 + 2ζcωcs+ ω2
c )

2

where ωc and ζc are the controller bandwidth and damping
coefficient respectively. The value of ζc is chosen between
0 and 1. the gains of the controller can be computed by
κ3 = 4ζcωc, κ2 = 4ζ 2

c ω2
c + ω2

c , κ1 = 4ζcω3
c , κ0 = ω4

c .
The above procedure has been followed in the next sections
by converting the system into a differential flatness problem
and then designing an ADRC controller to control the process
output.

B. FADRC CONTROLLER FOR WIND SYSTEM
The wind turbine’s output power is managed through pitch
control, which adjusts the blade angle to match changing
wind speeds and maintain optimal performance. The pitch
controller utilizes the wind turbine’s output power as
feedback. Modeling the wind farm system as shown in 1,
which can be mathematically represented as

y = Kfcx1

ẋ1 = −
x1
Tw

+
Kpc
Tw

x2 + d(t)

ẋ2 = −
x2
Tp3

+
Kp3
Tp3

x3

ẋ3 = −
x3
Tp2

+
Kp2
Tp2

x4

ẋ4 = −x4 + Kp1Tp1u̇+ Kp1u

(28)
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where, 1PGW = y, x1 = Glw, x2 = Gd , x3 = Gh, and
x4 = Gp. The system presented in (31) is flat with output F =

y = 1PGW , where the system variables can be represented in
terms of F and its derivatives. The system unperturbed input
to flat output representation can be written as follows:

x1 =
F
Kfc

x2 =
Tw

KpcKfc
Ḟ +

1
KpcKfc

F +
Tw

KpcKfc
d(t)

x3 =
Tp3Tw

Kp3KpcKfc
F̈ +

Tp3 + Tw
Kp3KpcKfc

Ḟ +
1

Kp3KpcKfc
F

−
TwTp3
Kp3Kpc

˙d(t) −
Tw

Kp3Kpc
d(t)

x4 =
Tp3Tp2Tw

ϕ

...
F +

Tp3 + Tw − Tp3Tw
ϕ

F̈

+
Tp2 − Tp3 + Tw

ϕ
Ḟ +

1
ϕ
F −

TwTp3Tp2
Kp2Kp3Kpc

d̈(t)

+
TwTp2 − TwTp3
Kp2Kp3Kpc

ḋ(t) −
Tw

Kp2Kp3Kpc
d(t)

u =
Tp3Tp2Tw

ϕKp1

....
F +

(
Tp3Tp2 + Tp2Tw + Tp3Tw

ϕKp1

+
Tp3Tp2Tw

ϕKp1

) ...
F +

(
Tp2 + Tp3 + Tw + Tp2Tp3

ϕKp1

+
Tp2Tw + Tp3Tw

ϕKp1

)
F̈ +

Tp2 + Tp3 + Tw + 1
ϕKp1

Ḟ

+
1

ϕKp1
F − Tp1u̇ (29)

where ϕ = Kp3Kp2KpcKfc. PlW represents the unknown input
disturbance, hence, (31) can be rewritten as:

....
F + γ3

...
F + γ2F̈ + γ1Ḟ + γ0F = βu− η(t) (30)

where

γ3 =
1
Tw

+
1
Tp3

+
1
Tp2

+ 1

γ2 =
1

Tp3Tw
+

1
Tp2Tw

+
1

Tp2Tp3
+

1
Tw

+
1
Tp3

+
1
Tp2

γ1 =
1

Tp3Tw
+

1
Tp2Tw

+
1

Tp2Tp3
+

1
TwTp3Tp2

γ0 =
1

TwTp3Tp2

η(t) = Kfc
...
d (t) + Kfc

(
1
Tp3

+
1
Tp2

+ 1
)
d̈(t)

+Kfc

(
1
Tp3

+
1
Tp2

+
1

Tp3Tp2

)
ḋ(t) +

Kfc
Tp3Tp2

d(t)

(31)

To accurately estimate the output F and limited-time
derivatives combined with the disturbances η(t), a tracking
aim is designed as by considering the reference trajectory
r∗

= F − F∗,

Ḟ∗

1 → F∗

2 , Ḟ∗

2 → F∗

3 , Ḟ∗

3 → F∗

3 , Ḟ∗

4 → F∗

4 , Ḟ5 → η (32)

where F∗

1 ,F∗

2 ,F∗

3 ,F∗

4 are the approximated values of
F∗, Ḟ∗, F̈∗,

...
F ∗. To optimally track the system state and

estimate the disturbances an ESO is designed as

ew = (F1 − z1)
ż1 = F1 + λ4(ew)
ż2 = F2 + λ3(ew)
ż3 = F3 + λ2ew)
ż4 = βueq + λ1(ew) + z
ż = λ0(ew)

(33)

The parameters λ4, ·, λ0 are the observer parameters. In the
end, a feedback control law is designed as u =

1
β
(γ3F4 + γ2F3 + γ1F2 + γ0F1 + v− z)

v = (F∗)(4) − κ4ewc4 − κ2ewc3 − κ2ewc2 − κ1ewc1
(34)

where ewci = z1 − F∗

1 .

C. FADRC CONTROLLER FOR PHOTOVOLTAIC SYSTEM
The PV system represented in (8) can be rewritten as

ÿ = −α4ẏ− α3y+ α2u+ α1u̇. (35)

Here x1 = y, x2 = ẏ, and
(
x1
x2

)
Therefore, x2 = ẋ1, ẋ2 =

−α4x2 − α3x1 + α2u+ α1u̇. Hence u = f (y), therefore{
x2 = x1
ẋ2 = −α4ẋ2 − α3x1 + α2f (u) + α1 ˙f (u)

(36)

By solving the differential equation in terms of f (y), u = f (y)
and u̇ = ˙f (y) is a flat system that can be represented in terms
of input to flat output as

F̈ = −dḞ − cF + βu+ f (t) (37)

where f (t) is the total disturbance including unknown
external disturbance, tie-line power deviation, and modal
uncertainties. To obtain the process estimated value of the F ,
and its limited-time derivatives including the disturbances
f (t) for a perturbed system, an ESO is given

epv = F − F0
Ḟ0 = F1 + λ2(epv)
Ḟ1 = βu+ λ1(epv) + z
ż = λ0(epv)

(38)

following the feedback control law is designed as follows u =
1
β
(γ1F1 + γ0F0 + v− z)

v = (F∗)′′ − κ1(F1 − (F∗)′ − κ0(F0 − F∗)
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IV. EBWO ALGORITHM FOR CONTROLLER PARAMETERS
TUNING
A. CONVENTIONAL BELUGA WHALE OPTIMIZATION
The Beluga Whale Optimization (BWO) method is a novel
optimization technique inspired by the coordinated actions
of Beluga whales (BWs) during various activities such as
hunting, swimming, and engaging in whale falls [37], [39].
Found in groups of 2 to 25 individuals, Beluga whales
exhibit social predator behavior within their natural envi-
ronment. These groups collaborate in hunting, swimming,
and information sharing to obtain a wide variety of food.
The BWO algorithm like other algorithms initiates with the
initialization step. Then incorporates the exploitation and
exploration phases followed by whale fall behaviors of BWs.
To mathematically model the BWO, the beluga whales are
randomly initialized with each whale is considered as a
solution and will be updated accordingly. The beluga whales
positions are presented in a matrix (X ) of a size (n × d)
presented below:

χ =

x1,1 · · · xi,d
...

. . .
...

x1,n · · · xn,d

 (39)

with the corresponding fitness values of each beluga whales
are listed as:

Fχ =

 f (x1,1, · · · , xi,d )
...

f (xn,1, · · · , xn,d )

 (40)

The exploration phase of the BWO replicates the swimming
behavior of two pairs of closely swimming Beluga whales,
either synchronized or moving randomly. It can be repre-
sented as follows:

χT+1
i,j = χT

i,pj +

(
χT
r,p1 − χT

i,pj

)
(1 + r1) sin(2πr2), j = even

χT+1
i,j = χT

i,pj +

(
χT
r,p1 − χT

i,pj

)
(1 + r1) cos(2πr2), j = odd

(41)

in which T denotes the current iteration and χT+1
i,j indicates

the updated location for the ith beluga whale along the jth
dimension. χT

r,p1 represents a random selected beluga whale,
r1 and r2 are randomly selected within [0, 1] range.

The exploitation phase of the BWO is inspired by the
preying behavior of the beluga whale in which they share
the information to hunt, guided by the best solution of the
BW. To improve the convergence ability of the algorithm,
a Levy flight strategy has been utilized in the exploitation
phase which is mathematically expressed as:

χT+1
i = r3χT

best − r4χT
i + C1 · LF · (χT

r − χT
i ) (42)

χT
r and χT

i are the current positions of random and ith BW
respectively, while r3 and r4 are random numbers ranging
from 0 to 1, and χT

best is the best location of a beluga whale.

In (42) C1 is the random step size that calculates the intensity
of the Levy flight expressed as

C1 = 2r4(1 − T/Tmax) (43)

where LF describes the Leavy flight function and is expressed
as

LF = 0.05 ×
u× σ

|v|1/β
(44)

where

σ =

(
0(1 + β) × sin(πβ/2)

0((1 + β)/2) × β × 2(β−1)/2

)1/β

(45)

here u and v are the random numbers, while β is the constant
factor with a value of 1.5. The transition of BW focus from
exploration to exploitation is influenced by the equilibrium
factor Bf = B0(1 − T/2Tmax), B0 is a random value chosen
from the interval [0,1]. The algorithm is in the state of
exploration if Bf > 0.5, and will shift to exploitation as soon
as the Bf ≤ 0.5. The increasing number of iterations T and
reduction in the range of Bf from [0,1] to [0, 0.5], increase
the likelihood of the exploitation stage.

During the whale fall phase, Beluga whales (BWs) are
vulnerable to predation by killer whales and human activities
while migrating and foraging. In this phase, deceased BWs
sink to the seafloor, and to maintain consistent population
size, their positions are updated using the following as

χT+1
i = r5χT

i − r6χT
r + r7χstep (46)

where r5, r6 and r7 are the random numbers in range 0 ≤

r5, r6, r7 ≥ 1. χstep is the step size of the whale fall which
can be expressed as:

χstep = (ub − lb)exp(−C2T/Tmax) (47)

where lb and ub are the boundaries of the variables and C2 is
a time-varying factor determined by the population size and
the probability of whale fall as follows:

C2 = 2Wf × n (48)

where whale fall is denoted by Wf which is a linear function
and can be calculated as:

Wf = 0.1 − 0.05T/Tmax . (49)

B. ENHANCED BWO
The conventional Beluga Whale Optimization (BWO)
method is enhanced by incorporating Particle Swarm Opti-
mization (PSO) [40] during the whale fall phase. PSO is
renowned for its robust exploration capabilities. Leveraging
the swarm’s collective movement, whales can navigate
through a variety of regions within the search space,
consequently enhancing the chances of discovering superior
solutions. Moreover, the exploitation aspect of PSO, where
particles gravitate towards the best-found positions, aids
BWO in converging towards promising areas. This charac-
teristic entails global information sharing among particles
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through their respective best-match positions. By capitalizing
on this information sharing, whales can communicate their
optimal positions, thereby influencing the movement of their
counterparts which ultimately drives better convergence. The
velocity and position components of the PSO algorithm are
expressed as follows

Vij(t + 1) = ω · Vij(t) + c1 · ϒ1 · (Pbij (t) − χij(t)) (50)

+ c2 · ϒ2 · (Gbj (t) − χij(t))

χij(t + 1) = χij(t) + Vij(t + 1) (51)

where Vij(t) represents the velocity of BWs i in dimension j
at time t , ω is the inertia weight, Pbij (t) is the personal best
position of BW i in dimension j at time t , χij(t) is the current
position of BW i in dimension j at time t . The flowchart
and pseudo code can be found in Fig.2 and Algorithm 1,
respectively. Application of the proposed EBWO utilized for
tuning the parameters of the controller shown in Fig. 1.

C. IMPLEMENTATION AND COMPARISON OF PROPOSED
EBWO WITH OTHER METAHEURISTIC ALGORITHMS
To initiate the optimization, initial parametric values are as
follows: population size of N = 25, a maximum iteration
limit of M = 300, and Dimension D = 30. Providing a
clear understanding of how the EBWO algorithm operates,
the procedural steps are depicted in a flowchart shown in
Figure 2. This flowchart offers a detailed overview of how the
optimization process is executed using the EBWO algorithm.

To evaluate the performance improvement achieved by the
Enhanced Beluga Whale Optimization(EBWO) algorithm,
compared with several recently developed optimization algo-
rithms, including the Bat algorithm [41], Firefly algorithm
[42], Particle Swarm Optimization [40], and the traditional
Beluga Whale Optimization [37]. EBWO algorithm is eval-
uated on five different benchmarks [37] including unimodal
andmultimodal functions, as detailed in Table 1. The analysis
included tracking the minimum fitness value obtained with
the EBWO algorithm and the convergence curve for the com-
petitive algorithms shown in Figure3 and 4. The performance
of these algorithms has been evaluated, and the results were
analyzed using statistical metrics, including mean, mode,
median, and standard deviation (STD) given in Table 2.
Overall performance of the EBWO algorithm demonstrates
superior performance as compared to other optimization
techniques across all benchmark problems. The superior
performance, as reflected in the statistical data, underscores
the effectiveness and robustness of the EBWO algorithm
in obtaining optimal solutions for the given functions.
Therefore, to use the EBWO algorithm for optimizing the
proposed FADRC for the purpose of LFC, an Integral Time
Absolute Error (ITAE) serves as the performance index to
achieve the optimal gain values(controller bandwidth(ωc) and
observer bandwidth(ωo)). ITAE is frequently employed in
LFC studies [31], providing a robust settling time. As a
result, minimizing ITAE is essential. Mathematically, ITAE

Algorithm 1 algorithm
Input: Initialize the population with algorithmic

parameters (population size, maximum
iteration)

Output: The best solution
1 Evaluate fitness values based on initial population and

obtain the best solution (P*)
2 while T ≤ Tmax do
3 Compute Whale fallWf by Eq (49) and Bf
4 for each beluga Xi do
5 if Bf > 0.5 then

// Exploration phase
6 Generate random values for p(j = 1, 2, . . . , d)
7 Choose a beluga whale Xr randomly
8 Update the new position using Eq (41)
9 else
10 if Bf ≤ 0.5 then

// Exploitation phase
11 Update C1 and compute Lf
12 Update the new position using Eq (42)
13 end
14 end
15 end
16 Check the boundaries and Evaluate fitness
17 for each beluga Xi do

// Whale fall phase
18 if Bf ≤ 0.5 then
19 Update C2 and compute Xstep
20 if case = PSO then
21 Update the new position using Eq (51)
22 else
23 Update the new position using Eq (46)
24 end
25 Check the boundaries and Evaluate fitness
26 end
27 end
28 Find the current best solution
29 T = T + 1;
30 end
31 Output the best solution

is expressed as

J = ITAE =

∫ tsim

0
(

i∑
n=1

1fi +
j∑

n=1

1Ptie,j)tdt. (52)

The value of J must be minimized to improve the dynamic
response of the system, the ITAE comprised of the response
of deviation in frequency (1f1, 1f2) in area 1 and area 2,and
the tie-line power deviation 1Ptie,j. The optimum controller
gains are obtained within the defined bounds for the PV, ther-
mal system, and wind turbine controller separately given as

ωo,min ≤ ωo ≤ ωo,max

ωc,min ≤ ωc ≤ ωc,max (53)
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FIGURE 2. Flow chart of the EBWO algorithm for tuning controllers parameters.

TABLE 1. Details of the test benchmark problem.

V. SIMULATION RESULTS
MATLAB/SIMULINK 2019b is used to build and simulate
themodel shown in Fig.1. In this study, the system parameters
used for simulations are given in Appendix. The optimal
gains of PID, LADRC, and FADRC were obtained by using
the designed EBWO. Firstly, a two-area PS is taken into

consideration for analysis, the first area is a thermal power
plant with a wind penetration whilst the second area is a PV
plant as presented [7], [23]. Secondly, the system is extended
to four areas. The superiority, robustness, and sensitivity
of the proposed EBWO-tuned FADRC controller are being
analysed by taking into account the subsequent scenarios.
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FIGURE 3. Convergence curve for function F1, F2, and F3.

FIGURE 4. Convergence curve for function F4 and F5.

TABLE 2. Results of the test benchmark functions for compared
algorithms.

1) Comparison of the proposed scheme with optimized
controller

2) Impact of high load demand
3) Sensitivity analysis
4) Fluctuation in load and RESs
5) Photovoltaic system downtime
6) Four area PS

A. COMPARISON OF THE PROPOSED SCHEME WITH
OPTIMIZED CONTROLLERS
In this scenario, a load deviation of 1% in area-1 and
2 with a step time of 5s. Comparisons have been made

TABLE 3. Performance indices of competitive controllers in Area 1.

with other controllers optimized by different optimization
algorithms such as Firefly optimized PI [7], PSO-based
LADRC [11], Bat algorithm-based LADRC [31] and the
EBWO based PID and LADRC. Fig. 5 illustrates the
responses of competing controllers in the multi-area PS.
Subsequently, Fig. 5a and Fig. 5b represents the frequency
variation for both areas. Fig. 5c shows the tie-line power
deviation. The analysis particularly centres on both tie-line
power and frequency deviations. The dynamic responses
indicate the effectiveness of the proposed EBWO-optimized
FADRC controller. It shows enhanced dynamic performance
in contrast to alternative controllers with minimum overshoot
and settling time. The competitive controllers are evaluated
based on ITAE, settling time(s), and overshoot(p.u.) as
tabulated in Table 3 and 4. Based on this comparison, it is
evident that the proposed EBWO-tuned FADRC controller
yields significantly less settling time (s), overshoot, and
ITAE results. In area 1, FADRC obtains a settling time
of 10.5821(s) and an overshoot of 0.0011(p.u.) which is
very small as compared to the competitive controllers.
Also in area 2, the FADRC controller demonstrates the
smallest settling time and overshoot, measuring at 10.7677 (s)
and 0.0104 (p.u.) respectively, while exhibiting an ITAE
of 552.0376. The overall performance of the proposed
EBWO-based FADRC is more robust and effective in its
dynamic response and performance indices.

B. IMPACT OF HIGH LOAD DEMAND
In this case, the system is examined by subjecting it to
successive step changes in load demand in the thermal power
system, while the WT and PV system remains unchanged.
The first step change is 0.1pu and the second change is 0.4 at
the 20s, Table 5 and 6 shows the settling time, overshoot,
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FIGURE 5. Responses of the competing controllers, (a) and (b) is
Frequency deviation in Area 1 and 2 respectively, (c) tie-line power
deviation.

and ITAE indices of the controllers. Results illustrated the
lowest values for the proposed controller FADRC indices.
The dynamic performance is depicted in Fig. 6, Fig. 6a

TABLE 4. Performance indices of competitive controllers in Area 2.

TABLE 5. Performance indices of area-1 with high load demand.

TABLE 6. Performance indices of area-2 with high load demand.

and Fig. 6b shows the frequency responses for area 1 and 2,
respectively, while Fig. 6c is the tie-line power deviation. The
EBWO-based FADRC controller demonstrates robustness
and significantly improves the system’s damping and settling
time characteristics compared to the LADRC and PID
controllers.

C. SENSITIVITY ANALYSIS
The sensitivity analysis has been conducted to further
examine the scientific validity of the proposed EBWO-based
FADRC by measuring its robustness to parameter uncer-
tainties. This addresses a common drawback of competitive
methods, where performance deteriorates significantly with
even minor model uncertainties and could lead to the
deviation of frequency and tie-line power from their nominal
values. To, analyze the stability and robustness of the
proposed method against the competitive controllers, the
parameter values ((0.04 ≤ Tg ≤ 0.12, 0.15 ≤ Tt ≤

0.45, 5 ≤ Tr ≤ 15, 0.165 ≤ Tg ≤ 0.495)), are changed
by ±50% from the values listed in Appendix. Firstly, the
parameters are changed from their nominal values by +50%
to test the stability of the system, the dynamic response
of the proposed controller and the competitive controllers
are shown in Fig. 7. Secondly, the system parameters are
changes from their nominal values by−50% to further assess
the system performance in the presence of uncertainties,
and the simulation results are shown in Fig. 8. Overall,
results shows that the proposed EBWO-based FADRC
indicates stability and robustness against uncertainties, and
is more efficient as compared to LADRC and PID. Even
when there’s uncertainty about the model parameters, there
is no need to reset the controller gains. Moreover,
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FIGURE 6. Response in the presence of high load demand, (a,b) is the
deviation of frequency in area-1 and 2 respectively, (c) tie-line power
deviation.

a detailed comparison between FADRC, LADRC, and PID
is presented in Table 7 and 8 for the key performance
indices(settling time(s), overshoot(p.u.), and ITAE) shows

FIGURE 7. Dynamic responses for a +50%, (a,b) is the deviation of
frequency in area-1 and 2 respectively, (c) Tie-line power deviation.

the substantial practical benefits of EBWO-based FADRC as
the minimum indices have been achieved in the presence of
practical parameters uncertainties. Overall results, highlight
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FIGURE 8. Dynamic responses for a -50%, (a,b) is the deviation of
frequency in area-1 and 2 respectively, (c) Tie-line power deviation.

its effectiveness and suitability in real-world scenarios.
This comprehensive sensitivity analysis, therefore, not only
supports the theoretical validity of EBWO-based FADRC but

TABLE 7. Performance indices for parameters variation in the range
of ±50% in Area 1.

TABLE 8. Performance indices for parameters variation in the range
of ±50% in Area 2.

FIGURE 9. (a) Wind power deviation (b)Load power deviation (c) Solar
power deviation.

also emphasizes its practical worth as a robust and efficient
control method.

D. FLUCTUATION IN LOAD AND RESS
In this case, the practical uncertainties of wind speed,
solar radiation, and load variations have been considered
to evaluate the system response. The wind power data is
obtained from the [43] for real-time implementation. Solar
power fluctuation is designed accordingly given in [44]
and load deviation is modeled by using band-limited noise
followed by initial input [23]. These deviations in the load,
wind, and solar irradiance are shown in Fig. 9, offering
a clear depiction of the fluctuating nature of the RESs.
Fig. 10 illustrates the results of competing controllers for both
frequency and tie-line power deviations in the presence of
RESs uncertainties and load deviation. The dynamic results
and the subsequent analysis demonstrate the superiority
of the proposed FADRC controller. Regardless of notable
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FIGURE 10. Simulation results in the presence of load, wind, and solar
deviation, (a) and (b) is deviation of frequency in Area-1 and 2
respectively,(c) Tie-line power deviation.

fluctuations in RESs and load demands, the system’s dynamic
performance shows how reliable and effective the suggested
FADRC controller is. The frequency change in areas 1
and 2 deviate within the acceptable range, even during
instances of substantial load demand as shown in Fig. 10. The
system responses exhibit the superiority and efficiency of the

FIGURE 11. Changes in RESs and load.

proposed FADRC controller with EBWO-tuned parameters
in facing the practical uncertainties of wind speed, solar
irradiance, and load deviations.

E. PHOTOVOLTAIC SYSTEM DOWNTIME
In this simulation scenario, our main objective was to
assess the system’s reaction to real-world uncertainties in
wind speed and load fluctuations, while not considering the
influence of photovoltaic (PV) generation. PV sources have
downtime especially during the night-time or due to weather
conditions as depicted in Fig. 11. During these times the
wind and thermal power system will manage to maintain
the equilibrium between the load and generation. Figure 12
illustrates the dynamic responses of different controllers
concerning both frequency and tie-line power deviations,
taking into account uncertainties in wind speed and load
variations. The results indicate that the overshoot of the
EBWO-based FADRC controller is very small with respect to
the competing controllers and always in an acceptable range.
Although there is no photovoltaic generation, the analysis
demonstrates the robustness and efficacy of the EBWO-based
FADRC controller.

F. FOUR-AREA POWER SYSTEM
In this case, the LFC technique based FADRC is utilized on
a commonly employed four-area PS [10]. The structure of
the system is shown in Fig 13. Each area is comprised of the
non-reheated turbine shown in Fig. 14, while the wind power
penetrated in area-4.

1) MODELING OF FLATNESS BASED ADRC FOR
NON-REHEAT POWER SYSTEM
In the non reheat unit, let x1 = 1f , x2 = 1Pm, x3 = 1XG
and d = 1Pd , the LFC model is designed as:

ẋ(t) = Ax(t) + B1u(t) + B2d(t) (54)

y(t) = Cx(t). (55)

15362 VOLUME 12, 2024



S. Ali et al.: Frequency Regulation in Interconnected Power System Through EBWO FADRC

FIGURE 12. Results in the absence of PV (a) and (b)is Frequency
deviation in Area 1 and 2 respectively,(c) Tie-line power deviation.

where

A =

−
1
Tp

Kp
Tp

0

0 −
1
Tt

1
Tt

1
TgR

0 −
1
Tg


B1 =

 0
0
1
Tg

 , and B2 =


Kp
Tp
0
0

C =

1
0
0

 .

From the system, it can be observed that the system is flat,
all of the variables can be represented as function of flat

FIGURE 13. Four area structure.

FIGURE 14. Single area non-reheated system.

output F = y.

x2 =
1
Kp
F +

Tp
Kp
Ḟ

x3 =
1
Kp
F +

Tp + Tt
Kp

Ḟ +
TtTp
Kp

F̈

u =

(
1
Kp

+
1
R

)
F +

(
Tp
Kp

+
Tt
Kp

+
Tg
Kp

)
Ḟ

+

(
TpTt
Kp

+
TpTg
Kp

+
TtTg
Kp

)
F̈ +

TtTpTg
Kp

...
F

(56)

where d(t) in (54) is the unknown input disturbance,
by including the disturbances input to the flat output of the
model is expressed as

...
F + γ2F̈ + γ1Ḟ + γ0F = bu+ η(t) (57)

where

γ2 =
1
Tg

+
1
Tt

+
1
Tp

, γ1 =
1

TgTt
+

1
TpTg

+
1

TpTt
,

γ0 =
Kp + R
TgTpTtR

, b =
Kp

TgTpTt

η(t) =
Kp

TgTpTt
d(t) + Kp(

Tg + Tp
TgTtTp

)ḋ(t) +
Kp
Tp
d̈(t).

(58)

To appropriately estimate the output variable F and its
finite time derivatives along with parameters uncertainties
considered as a total disturbance, an ESO is designed
as given by

enr = (F − F0)
Ḟ0 = F1 + λ4(enr )
Ḟ1 = F2 + λ3(enr )

Ḟ2 = βu+ z−

2∑
i=0

γiFi + λ1(enr )

ż = λ0(enr ).

(59)
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FIGURE 15. Frequency deviation of the four-areas. FIGURE 16. Tie-line power deviation of the four-areas.
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TABLE 9. Parameters of the non-reheated four-area system.

In (57), η(t) is the total disturbance which can be accurately
estimated as z in (59), a feedback control law using the idea
of flatness as a foundation mathematically expressed as

u =
1
β
(γ2F2 + γ1F1 + γ0F0 + v− z)

v = (F∗)(
′′′)

− κ2(F2 − (F∗)′′) − κ1(F1 − (F∗)′)
−κ0(F − F∗)

(60)

here y∗ represents the reference trajectory and κ2, κ1, κ0 are
the control gains that can be determined by bandwidth
parameterization.

2) SIMULATION RESULTS
Considering the model with non reheated turbine and wind
power penetration in area 4, and the parameters used are given
in Table 9. A load disturbance of 0.01 p.u. has been applied
simultaneously to area-1 and 2 at t = 5s, with a consecutive
step load deviation in area-3 and 4 of 0.01 p.u. at t = 20s.
Fig.15 shows the frequency deviation in the four-area PS of
the competitive controllers.

The suggested LFC scheme, as depicted in Fig 15, demon-
strates a significant enhancement in the system frequency as
compared to the linear ARRC and PID. Considering the quick
response of the suggested LFC scheme, a prompt control
measure can be executed whenever there are disturbances.
Consequently, even when the governor and generator exhibit
slow dynamics, the FADRC expedites the attainment of a
stable state for system frequency, resulting in a considerably
smaller frequency deviation when compared to the existing
controller. Fig 16 demonstrates the variation in tie-line power
of the four-areas. Simulation results are evidence that the
FADRC effectively reduces the frequency and tie-line power
deviation, and achieves faster convergence towards zero
deviation.

VI. CONCLUSION
In this paper, a robust Flatness-based Active Disturbance
Rejection Control (FADRC) scheme is proposed for LFC,
incorporating an Enhanced Beluga Whale Optimization
Algorithm. The LFC model encompasses diverse area power
systems with renewable resources, including photovoltaic
generation and wind turbines. Initially, the system is
transformed into a differential flatness model, addressing
the complexity of real-world power systems. Then, total
disturbances, including tie-line power deviations, load varia-
tions, and parameter uncertainties, are considered as lumped

disturbances. An extended state observer is developed to
approximate and track the overall disturbances in order to
effectively handle these disturbances. Finally, a feedback con-
trol law is developed to mitigate dynamic errors. To ensure
optimal performance, the controller gains are fine-tuned uti-
lizing the enhanced Beluga Whale Optimization Algorithm,
resulting in superior control outcomes. The simulation results
indicate the optimum settling time of 10.5821s, minimal
overshoot(0.0011p.u.), and ITAE(193.6188), with a settling
time improvement of 89.41%. Furthermore, in comparison to
proportional integral derivative and linear active disturbance
rejection control methods, the results demonstrate robustness
and efficiency of the suggested controller.

In the future, this research can be extended to include
intricate battery storage systems in the absence of pho-
tovoltaic cells and address the challenges associated with
electrical vehicles. Furthermore, investigating system delays
is a remarkable subject that warrants extensive investigation
in the ongoing research efforts and extending the current
optimization algorithm to a multi-objective optimization
algorithm.

APPENDIX
A. PV system parameters:

α1 = 900, α2 = −18, α3 = 100, α4 = 50
B. Thermal power system parameters:
PR = 2000MW(rating), PL =1000MW(nominal loading);

f = 60Hz; R1 = 2.5Hz/p.u. MW; B = 0.425p.u MW/Hz;
Tg = 0.08s; Tt = 0.3s; Tr = 10s; Kr = 0.33pu MW; Kp =

120Hz/pu MW; Tp = 20s; 2πT12 = 0.545p.u.; a12 = −1.
C. Parameters for wind turbine:
Kp1 = 1.25pu MW; Tp1 = 0.6 s; Kp2 = 1 pu MW;

Tp2 = 0.041 s; Kpc = 0.08; Kfc = 1.494; Kp3 = 1.4 pu MW;
Tp3 = 1 s; Tw = 4 s.
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