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ABSTRACT The effectiveness of laser chaos decision-makers in facilitating ultrafast decision-making
makes it possible for a real-time process of channel allocation scheme for the non-orthogonal multiple
access (NOMA) technology in the next generation of wireless communications. However, managing the
increasing number of users is challenging as the complexity of channel allocation increases significantly.
To resolve this challenge, this paper proposes a novel approach to address scalability problems by introducing
a parallel bandit architecture using an array of laser chaos decision-makers. In the proposed method,
each user is allocated a specific channel by a dedicated laser chaos decision-maker, thereby reducing the
number of available options compared with the conventional approach. This parallel bandit architecture
enables the system to efficiently manage increasing users while maintaining scalability and ultrafast channel
allocation in NOMA. Additionally, fairness is considered by incorporating a logarithmic utility function for
design compensation. Numerical simulation results demonstrate that the proposed method achieves higher
data rate and enhanced fairness than conventional NOMA approaches such as minimum distance-NOMA
(MD-NOMA), conventional-NOMA (C-NOMA), and uniformed channel gain difference-NOMA (UCGD-
NOMA). Moreover, the system performance is evaluated on a larger scale, accommodating a significant
number of users, with the study considering up to 64 users, surpassing the limitations of the conventional
approach of one laser chaos decision-maker, which is constrained to 10 users.

INDEX TERMS Non-orthogonal multiple access (NOMA), channel allocation, logarithmic utility function,
laser chaos decision-maker, multi-armed bandit problem.

I. INTRODUCTION
With the rapid development of wireless networks, the
number of mobile devices is increasing rapidly. Thus,
the technology to process the massive mobile data traffic
for wireless communication systems should be continually
developed [1], [2]. Non-orthogonal multiple access (NOMA)
is one of the promising technologies to satisfy the demands
of next-generation wireless communication systems [3], [4].

The associate editor coordinating the review of this manuscript and
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Compared with orthogonal multiple access (OMA), NOMA
has various advantages, such as superior spectral efficiency
and scale connectivity [5], [6], [7]. The core concept of
NOMA is to serve multiple users concurrently in the same
resource block (i.e., the same time and channel) [8], [9].
For power-domain NOMA systems, superposition coding is
used at the transmitters, and the receivers use successive
interference cancellation (SIC) to distinguish the desired
signal from the multiplexed signal [10], [11]. In a NOMA
system, resource allocation, such as channels and power
allocation, is essential to maximizing the benefits of the
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NOMA. Channel allocation is extremely important as it
can improve performance, for instance, a high signal-to-
interference-plus-noise ratio (SINR) and throughput [12].

Several studies have been conducted on channel allocation
schemes for NOMA systems [13], [14], [15], [16], [17],
[18]. In [13] and [14], conventional-NOMA (C-NOMA) and
uniformed channel gain difference-NOMA (UCGD-NOMA)
are proposed. In C-NOMA and UCGD-NOMA, up to two
users are multiplexed in the same channel. The common
concept of C-NOMA and UCGD-NOMA is to pair far and
near users. Here, the definition of far and near users is
based on the distance between the users and the base station
(BS), and pairing means multiplexing the signals of multiple
users in the same channel. In these two methods, users are
first classified into two groups, ‘‘near area’’ and ‘‘far area’’,
according to their distance from the BS. In C-NOMA, the
user closest to the BS in the near area is paired with the user
farthest from the BS in the far area. The second closest user in
the near area is paired with the second farthest user in the far
area. Other users are paired in order according to this rule.
In UCGD-NOMA, the user that is nearest to the BS in the
near area is paired with the user that is nearest to the BS in
the far area. The second nearest user in the near area is paired
with the second nearest user in the far area. Other users are
paired in order according to this rule. Although these two
methods are easy to implement, the prior location information
of the users should be known. Hence, fast channel allocation
may be difficult because location estimation is necessary.
In addition, these two methods assume that up to two users
are multiplexed in the same channel, which may lead to the
loss of the benefit of the NOMA system.

Deep reinforcement learning (DRL) has been studied in
various fields of wireless communication because of its
superior performance, such as Reconfigurable Intelligent
Surfaces (RIS), Millimeter Wave (mmWave), Multiple-Input
and Multiple-Output (MIMO), Unmanned Aerial Vehicle
(UAV), Internet of Things (IoT), vehicular systems, etc.,
[19], [20], [21], and [22]. NOMA is no exception for it.
To achieve the full benefit of NOMA, scholars have recently
studied DRL based channel allocation approaches [15], [16],
[17], [18]. More than two users can be multiplexed in
the same channel with DRL approaches. In [16], chan-
nel assignment was based on DRL with the framework
called actor-critic. In [17], a deep learning method using
a long short-term memory (LSTM) network was applied
to NOMA systems. In [18], DRL was applied with an
attention-based neural network (ANN). In [15], a DRL-
based method was proposed to optimize channel allocation.
Specifically, the study adopted a paradigm of DRL called
actor-critic, and a recurrent neural network (RNN) module
was incorporated into an agent’s decision-making process
to capture relationships by leveraging the RNN’s ability to
integrate contextual information through time. This helps the
agent make decisions by extracting additional information
from past time slots. Simulation results indicated that the

proposed method obtained a high total data rate. In [16],
a method that conducts power and channel allocations using
the approximate solution method and Deep Q Learning
(DQL), respectively, was proposed. This method first solves
power allocation using Lagrange multipliers, considering
various constraints of the NOMA system and satisfying
the Karush-Kuhn-Tucker (KKT) optimality conditions. After
power allocation, channel allocation, which is priority-based,
is conducted using DQL. Simulation results revealed a high
performance of the proposedmethod in terms of sum data rate
and energy efficiency. Reference [17] proposed a framework
that uses deep learning to primarily address energy-efficient
user association, subchannel allocation, and power allocation
in NOMA mmWave heterogeneous networks. Simulation
results showed that the proposed scheme improves the
energy efficiency of systems. In [18], a method using Deep
Q-learning network (DQN) and back propagation neural
network (BPNN) for user clustering and power allocation,
respectively, was proposed. User clustering is conducted
using the DQN to maximize the total data rate. Power alloca-
tion is conducted using BPNN, which learns the correlation
between the power allocation coefficients and users’ channel
state information (CSI) in each cluster. Simulation results
revealed that the proposed approach achieves a high system
spectrum efficiency that closely matches that of an exhaustive
search.

However, these proposed schemes are complex for
channel allocation. This means that these methods have
computational complexity for training the model. These
methods require a long training time to obtain proper
results. Therefore, high-speed, real-time processing for future
dynamic environments would be difficult to achieve with
these methods.

Recently, the interest in optical technology as a key
component of artificial intelligence, particularly machine
learning, has increased [23]. Photonic-based machine learn-
ing methods have been reported using laser chaos, which
provides an ultrafast chaotic laser output [24], [25], [26].
In [24], the authors solved two-armed bandit problems in
the GHz order using the laser chaos time series. This paper
refers to such a system as a laser chaos decision-maker.
In addition, the time-domain correlations of laser chaos
can accelerate the solution of the bandit problem [27].
Reference [25] introduced time-division multiplexing of
chaotically oscillating ultrafast time series and demonstrated
a scalable, pipelined, multi-armed bandit problem (MAB)-
solving principle. The MAB algorithm is in which an agent
‘‘explores’’ an optimal action and ‘‘exploits’’ the result of the
selected action to maximize its reward [28], [29].

To achieve ultrafast decisions in wireless communications
to adapt to dynamic environments, the applications of
the laser chaos decision-maker to wireless communications
have been studied [12], [30], [31], [32]. In [30], the
MAB algorithm based on laser chaotic time series was
used for dynamic and autonomous channel selection in
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TABLE 1. Comparison of the proposed method and previous studies.

an IEEE802.11a-based four-channel wireless local area
network. The algorithm successfully solved the channel
selection problem in wireless communication systems with
dynamically changing communications environments due to
traffic, interference, and fading. In [31], the laser chaos
decision-maker solved channel selection problems, including
channel bonding in IEEE802.11ac networks. Autonomous
and adaptive channel bonding was experimentally demon-
strated, and better performance was achieved regarding
throughput than other MAB-based methods such as ϵ-greedy
and upper confidence bound (UCB) 1-tuned algorithms.

In [12] and [32], the user pairing problem in the NOMA
systems was considered. These studies demonstrated that
the laser chaos decision-maker can accommodate user
pairing and achieve optimal/near-optimal pairing solutions.
However, with the increase in users, these schemes cannot
easily achieve optimal pairing because the total number of
possible pairings is large. In other words, the total number
of possible pairings is (X − 1)!! when up to two users
are multiplexed in the same channel, where X is the total
number of users and (X − 1)!! means (X − 1) × (X −

3) × · · · × 3 × 1. Furthermore, when more than two users
are multiplexed in the same channel, achieving optimal/near-
optimal solutions becomes even more difficult. Owing to
the high complexity of the designed methods based on a
scalable laser chaos decision-maker in [12] and [32], the
performance was evaluated under the NOMA system with up
to 10 users, which is difficult to apply to the next-generation
wireless systems, where the number of users will expand
rapidly. In addition, these studies did not consider ‘‘fairness’’
regarding the equal distribution of wireless resources among
users. In NOMA systems, considering fairness is essential to
actualizing efficient communications.

To address the abovementioned problems, we propose
a scalable architecture for managing numerous users in
the next generation of NOMA systems using multiple
laser chaos decision-makers. Specifically, each laser chaos
decision-maker is used by the BS to allocate channels for
each user. Because the laser chaos decision-maker can make
decisions and perform channel selection at ultrahigh-speed
without prior information, it is implemented for channel

assignment in the NOMA system. In addition, recent
advances in integrated and silicon photonics [34], [35],
including on-chip photonic decision-makers, suggest using
photonic accelerators to enhance electronic systems [23].
Hence, the proposed architecture can be used in the BS to
allocate channels for the users in future wireless systems.
To highlight the motivation of selecting channels based on the
parallel bandit architecture laser chaos proposed in this paper,
we compare and analyze the performance, e.g., variables
being optimized, state space, implementation complexity,
etc. of the proposed method with the DRL methods [15],
[16], [17], [18], and our previous work on single laser chaos
decision maker [12], [32]. The comparison of the proposed
and previous studies is summarized in Table 1.
As shown in Table 1, the channel allocation method using

laser chaos decision-maker is much faster in operation than
DRL. That is, the DRL methods need to be implemented
on Central Processing Unit (CPU) or Graphics Processing
Unit (GPU), the processing computation time of which is
around 10−3

∼ 10−1 s [36]. The laser chaos methods
are implemented using the laser chaos decision-maker, the
processing time is 10−9

∼ 10−8 s [26]. This is because the
generation of laser chaos is very fast. In addition, the parallel
bandit architecture can expand the scalability compared to
the channel allocation method using the single laser chaos
decision-maker proposed in our previous study. This is
because the number of options in laser chaos decision-maker
is reduced for the parallel bandit architecture. Specifically,
the number of options for single laser chaos decision-maker
is (X − 1)!! while that for the parallel bandit architecture
equals the number of channels, which is less than X , where
X is the number of users. Regarding the state space, it is
necessary to work DRL because DRL utilizes a neural
network. Regarding the state space, DRL-based methods
have a multidimensional state-space as it is a neural net-based
technique, while the laser-based methods work on a different
principle; hence, state-space is not applicable for such.
Regarding hardware requirements for implementation, the
laser chaos decision-maker method needs optical equipment
such as a laser, optical fiber, coupler, and so on. Due to the low
implementation complexity of the parallel bandit architecture
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TABLE 2. The notations used in this paper.

chaotic laser method for more users in NOMA systems
as described above, [33] proposes channel allocation using
multiple laser chaos decision-makers. Compared to [33], this
paper considers user fairness and the integration of OMA
and NOMA. The following are the main contributions of this
paper:

• We design a fast channel allocation scheme based
on a parallel structure with multiple laser chaos
decision-makers that can perform real-time decisions for
downlink NOMA systems with a larger number of users.

• To consider fairness for the users in the NOMA
system, we improve the proposed scheme by inducing
a logarithmic utility function.

• To confirm the effectiveness of the proposed method,
we evaluate the performance of the proposed scheme
and compare it with other methods. The simulation
results show that the proposed scheme has superior
performance in terms of total throughput and fairness.

The remainder of this paper is organized as follows.
In Section II, we describe the system model of this
study. Section III introduces the laser chaos decision-maker.
Section IV presents the proposed method. Section V presents
numerical simulations of the proposed method. Section VI
concludes the paper. The notations used in this paper and their
descriptions are summarized in Table 2.

II. SYSTEM MODEL
AdownlinkNOMA system consisting of one BS andmultiple
users is considered. As shown in Fig. 1, multiple users
can be multiplexed on one channel simultaneously, which

FIGURE 1. System model.

can improve spectrum efficiency. We assume that all the
transmitters and receivers have one antenna each. Let the set
of users in the NOMA system be U = {1, 2, · · · , u, · · · ,U}

and the index of each channel be C = {1, 2, · · · , c, · · · ,C},
whereU andC denote the total number of users and channels,
respectively. Assuming that the distances between the BS
and users are ordered as d1 ≥ d2 ≥ · · · ≥ du ≥ · · · ≥ dU ,
where du represents the distance between the u-th user and
the BS. We assume that the total bandwidth is B. In addition,
we assume that the bandwidth for each channel is equal.
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Hence, the bandwidth for the c-th channel can be represented
as Bc = B/C . Let a binary variable χc

u ∈ {0, 1} indicate if
the u-th user is allocated at the c-th channel. If the u-th user is
allocated at the c-th channel, χc

u = 1; otherwise χc
u = 0.

Accordingly,
∑U

u=1
∑C

c=1 χc
u = U ,

∑U
u=1 χc

u = Mc, and∑C
c=1 χc

u = 1, where Mc represents the number of users
multiplexed in the c-th channel.
The NOMA symbol xc on the c-th channel is defined as

follows [37]:

xc =

U∑
u=1

χc
u (

√
pubu), (1)

where bu denotes the transmission symbols of the u-th user,
and pu is the transmission power of the u-th user. At the
receiver side, the multiplexed signals of the u-th user assigned
in the c-th channel can be expressed as follows:

yu =

C∑
c=1

χc
u (huxc + zc), (2)

where hu represents the channel response between the BS and
the u-th user, and zc is the noise. This paper assumes that zc
is the additive white Gaussian noise (AWGN) with variance
σ 2
zc and zero mean. hu is calculated as follows:

|hu|2 = (h̄u)2d−λ
u , (3)

where h̄u is a coefficient that follows a Rayleigh distribution,
d−λ
u represents the pathloss between the u-th user and BS, and

λ denotes the pathloss exponent.
According to the SIC principle, when the SIC is operating

exhaustively, the signals of the user with a stronger power
are decoded perfectly by considering the signals from the
other users as noise. In addition, the signals of the user
with a weaker power are completely detected by discarding
the signals with a stronger power than themselves using its
replica. Therefore, when performing NOMA, the data rate of
the u-th user can be expressed as

RNOMAu =

C∑
c=1

χc
uBc log2

(
1 +

pu|hu|2∑U
i=u+1 χc

i pi|hu|
2
+ σ 2

zc

)
.

(4)

If the data rate obtained by each user in OMA is greater
than that obtained in NOMA, the better option is to use OMA
for the user. OMA divides the channels used by NOMA using
the number of users. Thus, the data rate for the u-th user
obtained using OMA is expressed as follows:

ROMAu =

C∑
c=1

χc
u
Bc
Mc

log2

(
1 +

pu|hu|2

σ 2
zc

)
. (5)

Because switching between NOMA and OMA is performed
according to the data rate obtained, the data rate that
can be obtained by the u-th user, from (4) and (5),

FIGURE 2. Principle of laser chaos decision-maker for the two-armed
bandit problem [24].

is obtained as follows:

Ru =



C∑
c=1

χc
uBc log2

(
1 +

pu|hu|2∑U
i=u+1 χc

i pi|hu|
2
+ σ 2

zc

)
,

if
C∑
c=1

χc
uR

NOMA
u ≥

C∑
c=1

χc
uR

OMA
u

C∑
c=1

χc
u
Bc
Mc

log2

(
1 +

pu|hu|2

σ 2
zc

)
, otherwise

.

(6)

In this paper, the objective is to maximize the total
throughput of the NOMA system. The total throughput of
the NOMA system can be expressed as

∑U
u=1 Ru; hence, the

objective function of this paper is expressed as follows:

max
χc
u

U∑
u=1

Ru. (7)

III. PRINCIPLE OF LASER CHAOS DECISION-MAKER
In this section, we explain the principle of the laser chaos
decision-maker, an ultrafast reinforcement learning scheme
based on the chaotic oscillatory dynamics of lasers called
laser chaos [24], [25].

Laser chaos is the phenomenon when the output of
a semiconductor laser exhibits chaotic behavior. When a
portion of the laser’s optical output is delayed for a certain
time via an externally placed mirror and returned to its
cavity, instability is induced in the laser, causing it to
exhibit chaotic oscillation behavior [24]. Figure 2 shows
the decision-making based on a time series of laser chaos
produced by a semiconductor laser in the two-armed bandit
problem [26]. The principle of laser chaos decision-maker is
summarized as follows. The slot machine selection is decided
by comparing the sampled amplitude level of the laser chaos
time series with the threshold value. Here, we consider the
two-armed bandit problem, where the challenge is to quickly
and accurately determine the slot machine of two with the
higher reward probability. The two slot machines are called
machines 0 and 1. If the sampled amplitude of the laser chaos
time series is less than the threshold value, slot machine 1 is
selected. Otherwise, the decision is to select slot machine 0.
The threshold is adjusted depending on the results of playing
the selected slot machine (in other words, win or lose); thus,
the slot machine with a higher reward probability is selected
in the subsequent trials.
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More precisely, the threshold value T (t) at step t , which is
used in comparison with the amplitude of laser chaos signal,
is given as follows:

T (t) = k × ⌊TA(t)⌋, (8)

where TA(t) is the threshold adjuster value at step t , ⌊TA(t)⌋
is the nearest integer to TA(t) rounded to zero, and k is a fixed
value determining the range of the resultant T (t). The value of
⌊TA(t)⌋ can be one of the values in−Z ≤ ⌊TA(t)⌋ ≤ Z , where
Z is a natural number. Thus, the total number of possible
threshold levels is 2Z + 1. Possible values for T (t) are in the
range of −kZ ≤ T (t) ≤ kZ because of setting ⌊TA(t)⌋ = Z
when ⌊TA(t)⌋ is greater than Z , as well as ⌊TA(t)⌋ = −Z
when ⌊TA(t)⌋ is less than −Z . If the selected slot machine
yields a reward or not reward at cycle t (in other words, wins
or loses the slot machine play), the TA value is updated at
cycle t + 1 based on the following [24] and [25]:

TA(t + 1) = −1 + αTA(t), if selected slot machine 0 wins,
(9)

TA(t + 1) = +1 + αTA(t), if selected slot machine 1 wins,
(10)

TA(t + 1) = +� + αTA(t), if selected slot machine 0 loses,
(11)

TA(t + 1) = −� + αTA(t), if selected slot machine 1 loses
(12)

where α is a forgetting rate to reduce the influence of the
past results of decisions, which is in the range of (0 ≤

α ≤ 1), 1 is the constant increment, and � is the increment
parameter. If the selected slot machine wins, i.e., if the result
of playing the selected slot machine is a reward, the threshold
adjustment value TA(t) is varied based on ∓1 + αTA(t).
Otherwise, the selected slot machine loses, i.e., the result
of playing the selected slot machine is not a reward, the
threshold adjustment value TA(t) is updated by±�+αTA(t),
where � is the increment parameter based on the history of
choices and rewards and penalties. We define Ji and Li as
the number of times that slot machine i was selected and
that of wins by playing the selected slot machine i until step
t , respectively. Here, let the estimated reward probability,
or winning probability of the slot machine i be P̂i, and it is
given by

P̂i =
Li
Ji

. (13)

Considering the two-armed bandit problem, using the esti-
mated winning probability of (13), we donate � as follows:

� =
P̂0 + P̂1

2 − (P̂0 + P̂1)
, (14)

where P̂0 and P̂1 are the estimated reward probabilities of the
two slot machines, respectively.

Scalability of the laser chaos decision-maker is achieved
by cascading the above algorithms [25]. By lining up the
thresholds in the pipeline, the laser chaos decision-maker

FIGURE 3. Scalable decision-making by a hierarchical architecture in the
case of the 8-armed bandit problem [25].

FIGURE 4. Selection of channel to allocate u-th user in Lu.

can select one of several slot machines. Figure 3 shows
the scalable decision-making using laser chaos time series,
e.g., the eight-armed bandit problem. Specifically, scalable
decision-making is conducted according to the following
rules. At step t1, the sampled chaotic signal s(t1) compares
with the threshold TH1. At step t2, the sampled chaotic
signal s(t2) compares with the threshold TH2,0, if s(t1) is
greater than or equal to TH1. Otherwise, s(t2) compares with
the threshold TH2,1. Similarly, at step t3, s(t3) compares
with TH3,0,0,TH3,0,1,TH3,1,0, or TH3,1,1. In this rule, the
comparison with the threshold value and laser chaos is
terminated when it selects one slot machine. Thus, the laser
chaos decision-maker can make a scalable decision.

IV. PARALLEL BANDIT ARCHITECTURE FOR SCALABLE
CHANNEL ALLOCATION IN NOMA SYSTEMS
This section describes the proposed scalable channel alloca-
tion scheme based on a parallel array of laser chaos decision-
makers. The number of laser chaos decision-makers in the BS
equals the number of users U . For simplicity, we assume that
U is given by 2N , where N is a natural number. In addition,
we assume that the number of channels is half the number of
users, i.e., the number of channels C is C = 2N−1. Each laser
chaos decision-maker selects a channel for a distinct user.
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FIGURE 5. Channel allocation by parallel array of laser chaos
decision-maker in the case of 8 users.

The proposed method operates with a reinforcement
learning approach that maximizes the total data rate of all
users by repeating the following process.

1) Select the channel to be assigned to each user by the
corresponding laser chaos decision-maker.

2) Evaluate the total data rate of all users based on (7),
which corresponds to the reward of reinforcement
learning.

3) Adjust the threshold of each laser chaos decision-maker
based on the calculated results or reward.

Let the set of laser chaos decision-makers be L =

{L1,L2, · · · ,Lu, · · · ,LU }, and each can solve the C
(= 2N−1)-armed bandit problem. Lu is associated with
the u-th user. Each arm symbolizes the channel used
for communication. To elaborate, if Lu selects the c-th
channel, the u-th user is allocated in the c-th channel
(or χc

u = 1).
To describe the behavior of each laser chaos decision-

maker, we focus on the u-th laser chaos decision-maker Lu
shown in Fig. 4. Lu selects one channel from C based on
the following principle. The C channels are distinguished
by the index given by ranging from 0 to C − 1, which
are also represented in an N − 1-bit binary code given by
S1S2 · · · SN−1, where Sj (j = 1, 2, · · · ,N − 1) is 0 or 1. For
example, when C = 8 (or 2N = 16,N = 4), the channels
are numbered as S1S2S3 = 000, 001, 010, · · · , 111. S1 is
the most significant bit (MSB), whereas SN−1 is the least
significant bit (LSB). Thus, the identity of the channel to
be selected is determined bit by bit from S1 (MSB) to SN−1
(LSB) in a pipelined manner.

The decision is made for each of the bits based on a
comparison between the measured signal level of laser chaos
and the designed threshold value. First, the laser chaos signal
s(t1) measured at t = t1 is compared with a threshold

value denoted as T Lu1 . The output of this comparison is the
decision of the MSB concerning the channel to select. If the
time series is less than the threshold value, the output bit
of the decision is 1, which is donated as S1 = 1 (MSB =

1). Otherwise, the output will be 0 (S1 = 0) [24], [25].
Subsequently, we determine the second MSB based on the
determination of the first MSB. When the MSB is 1 (S1 =

1), the laser chaos signal s(t2) is subject to the threshold
value T Lu2,1. The ‘‘2’’ to the left of the subscript indicates
that this threshold relates to the second MSB, and the ‘‘1’’
to the right in the subscript represents that the one previous
determination is 1 (S1 = 1). If s(t2) is less than the
threshold T Lu2,1, then S2, which is the second MSB, is 1;
otherwise, it is 0 (S2 = 0). Finally, we should decide on the
LSB. Based on the aforementioned manners, the comparison
between thresholds and laser chaos signals is terminated
when all N − 1 bits are designated, or the selected channel
is determined. When U = 16 (= 24), C = 8 (= 23), and
S1S2S3 = 101, then Lu has selected the fifth channel, i.e.,
the ten hex of 101, and the u-th user is allocated to the fifth
channel.

The formula for updating the threshold adjuster value (TA)
of Lu is given as follows:

TALuK ,S1,S2,...,S(K−1)
(t + 1)

= −1 + αTALuK ,S1,S2,...,S(K−1)
(t), (15)

TALuK ,S1,S2,...,S(K−1)
(t + 1)

= +1 + αTALuK ,S1,S2,...,S(K−1)
(t), (16)

TALuK ,S1,S2,...,S(K−1)
(t + 1)

= −�K ,S1,S2,...,S(K−1) + αTALuK ,S1,S2,...,S(K−1)
(t), (17)

TALuK ,S1,S2,...,S(K−1)
(t + 1)

= +�K ,S1,S2,...,S(K−1) + αTALuK ,S1,S2,...,S(K−1)
(t), (18)

where1 is a constant, and�K ,S1,S2,...,S(K−1) can be calculated
based on (14). K corresponds to the K -th MSB. K is 1 ≤

K ≤ N − 1, and K0 is not described. TA
Lu
K ,S1,S2,...,S(K−1)

(t + 1)
represents the threshold adjustment value, which is used to set
the threshold for comparison with the laser chaos amplitude
to confirm the K -th MSB with the decision S1S2 . . . S(K−1).
Equations (15), (16), (17), and (18) are formulated based
on (9), (10), (11), and (12), respectively. The update of the
TALuK ,S1,S2,...,S(K−1)

(t + 1) is rewarded or non-rewarded based
on the output of the Lu decision maker, i.e., the results of the
channel allocation.

Here, we define the conditions of reward in the proposed
method. At each step t , the total data rate of users is
calculated, which decides whether to reward or punish based
on it (equivalent to a win or loss on a slot machine).
Specifically, the average of the total data rate of the most
recent τ times is compared with the total data rate in step
t to determine if a reward has been earned. At step t , the
average of the total data rate in the last τ times can be
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expressed as follows:

Rτ
ave(t) =

t−1∑
θ=t−τ

∑U
u=1 Ru(θ )

τ
, (19)

Accordingly, based on (19), if
∑U

u=1 Ru(t) ≥ Rτ
ave(t), all laser

chaos decision-makers are rewarded; otherwise, they do not
obtain any reward. Here, Ru(t) denotes the data rate of the
u-th user at step t .
In addition, to account for fairness, the total value of the

data rate of the logarithm of each user is compared one with
the last τ times. It is expressed as follows:

Rτ
log,ave(t) =

t−1∑
θ=t−τ

∑U
u=1 logξ Ru(θ )

τ
, (20)

where ξ is the base of the logarithm.
Without the logarithmic utility function, i.e., (19), the total

data rate will be large if the data rate of some users is very
large, even if the data rate of some users is small. With the
logarithmic utility function, i.e., (20), from the nature of the
logarithm function, the difference between users with large
data rate and those with small data rate becomes smaller than
when the logarithm is not taken.Moreover, we consider that if
users with a small data rate exist, the total logged data rate will
not be large, even if some users have a very large data rate.
Therefore, to increase the sum of logged data rates, we must
increase the data rate of users whose data rate is small. Thus,
we believe that taking the logarithm of each user’s data rate
enables us to consider fairness among users.

For clarity, Fig. 5 provides an example of channel
allocation on BS in a NOMA system with eight users.
Four channels are available. In Fig. 5, User1 is allocated
to CH1 because L1 selects CH1. Similarly, other users are
assigned to the channel selected by their respective laser
chaos decision-makers, which are associated with each user.
After completing the channel allocation of all users, the
BS calculates the achieved data rate of each user. If the
calculation is based on (19), the results of the calculations
are summed to determine the reward. If the calculation is
based on (20), the logarithm of the calculation results is taken
and then summed to determine the reward. After feedback is
provided to each laser chaos decision-maker, and when each
decision-maker has updated its threshold value, the channel
assignment process is repeated. This procedure is repeated for
a certain number of iterations.

Moreover, a fixed power allocation approach is used
because the BS lacks detailed user information. In our fixed
power allocation method, users are assigned a fixed power
level in a particular channel according to their distance,
with the closest user receiving the highest power. The power
allocation assignments can be determined as follows:

pu =


∑C

c=1
χc
u (1 − ac)Pc × 10−(ξu−1), if ξu < Mc∑C

c=1
χc
uacPc × 10−(Mc−1), if ξu = Mc,

(21)

where ξu =
∑u

n=1 χc
n , which indicates the order of the long

distance between the u-th user and BS among that of all users
assigned to the c-th channel. Pc and ac donate the transmit
power assigned to and the power allocation factor of the c-th
channel, respectively.

V. SIMULATION RESULTS
This section evaluates the performance of our proposed
method in terms of total data rate and fairness using
MATLAB R2022a. The sampled laser chaos time series
data generated by the practical semiconductor laser chaos
decision-maker are used to make decisions in the simulation.
The laser chaos time series used in this simulation are
sampled at 100 Gsample/s (10 ps sampling interval) with
8-bit resolution, and signal levels are integer values from -
127 to 128 [25]. The laser chaos time series data is sampled at
suitable interval, i.e., 50 ps [25]. The number of the generated
laser chaos time series equals to that of the users. In summary,
the implementation steps are described as follows. The laser
chaos time series for each user are generated by the practical
semiconductor laser that is the same one detailed in the
schematic diagram Fig. 1-c of reference [25]. The details
about the practical semiconductor laser also can be found in
[24], [26], [35], [38], [39], and [40]. Then, performance is
evaluated based on the generated laser chaos time series using
MATLAB R2022a. In the simulation, the access channel for
each user is selected by comparing the threshold and the value
of the sampled laser chaos time series.

We compare the performance of our method to three
existing techniques: MD-NOMA [41], C-NOMA [13], and
UCGD-NOMA [14]. The procedure of MD-NOMA is
summarized as follows: BS computes the pairing distance
threshold dThreshold according to dU ( u

v(β1−β2u)−u
)−λ, where

dU is the distance between the BS and the user that is farthest
from the BS. β1 and β2 are the power allocation coefficients

for the paired users. u = 2
R1min
B − 1 while v = 2

R2min
B − 1. R1min

and R2min are the minimum required throughput of the paired
users. According to the distance threshold, BS distinguishes
users farther than dThreshold into the far user group and others
into the near user group. The nearest user from the BS in the
far user group is paired with the user in the near user group
that is nearest from BS. Paired users perform NOMA. When
all users in the far user group or in the near group have been
paired, the remaining users in the other group perform OMA.
In the simulation, we considered a circular cell with U = 2N

users, where U represents the total number of users and N is
a natural number. In addition, we set the number of channels
to C = 2N−1, as defined in Section II. Thus, the number
of users was twice the number of channels. Furthermore,
we set the minimum distance between a user and BS to
10 m. The pathloss exponent λ was set to 3. The noise power
spectral density and total bandwidth were set as −170 dBm
and 20 MHz, respectively. The power allocation is fixed. The
total transmission power for the users allocated to the same
channel was set to 20 dBm regardless of the number of users
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TABLE 3. Parameter settings.

in each channel. The power allocation factor was ac = 0.1 for
all c (c = 1, 2, · · · , 2N−1). The 1 related to laser chaos
decision-maker was set to 1.0. The base of the logarithm
ξ was set to 10. The simulation results of the total data
rate and fairness described in this section were the average
values of the 100 runs. The common parameter settings in
the performance evaluation are presented in Table 3.
In this study, we used the Jain’s index J to evaluate the

fairness of the users which is defined by [42]

J =
(
∑U

u=1 Ru)
2

U ·
∑U

u=1(Ru)2
. (22)

In addition, note that we denote the simulation results
based on (19) and (20) as Proposed (1) and Proposed (2),
respectively.

1) CONVERGENCE OF THE PROPOSED METHOD
To assess the convergence of the proposed method, Figs. 6
and 7 present the simulation results changingwith the number
of iterations. Figs. 6a and 7a show the channels selected
for each iteration using Proposed (1) and Proposed (2),
respectively. The blue points in Fig. 6b represent the total
data rate obtained using Proposed (1), whereas the orange
points in Fig. 7b represent the total value of logarithmic data
rate achieved using Proposed (2). The numbers of users and
channels in the simulation were 8 and 4, respectively. The
cell radius and pathloss exponent were set to 500 m and 3.0,
respectively. The thresholds Z and the forgetting rate α were
set to Z = 128 and α = 0.999, respectively. Fig. 6a shows
the convergence of channel allocation using Proposed (1) and
Proposed (2), and Fig. 6b shows that the obtained total data
rate, which also converges as a result of the convergence of
the channel allocation. Proposed (1) is based on (19), which
determines rewards or non-rewards based on the value of the
total data rate. Therefore, Fig. 6b showcases the evolution
of the total data rate achieved through channel allocation.
As observed in the figure, the channel allocation is carried
out to maximize the reward, leading to an increase in the total
data rate.

Similarly, Fig. 7a shows the convergence of channel
allocation using Proposed (2), and Fig. 7b shows that the total

FIGURE 6. Convergence of Proposed (1). (a) Selected channel index in
each iteration of Proposed (1). (b) Total data rate in each iteration using
Proposed (1).

value of logarithmic data rate also converges as a result of the
convergence of the channel allocation. Proposed (2) is based
on (20), which determines rewards or non-rewards based on
the total value of the logarithmic data rate. Thus, Fig. 7b
depicts the evolution of the total value of the logarithmic data
rate achieved through channel assignment. Fig. 7b shows that
the channel allocation is performed to maximize the reward,
leading to an increase in the total value of the logarithmic data
rate. From the aforementioned observations, we concluded
that Proposed (1) and Proposed (2) have been functioning
properly.

2) Z DEPENDENCIES
Next, we assess the total data rate of Proposed (2) while
varying the parameter Z , which determines the number
of thresholds in the laser-chaos decision maker. In the
simulation, we set Z to 1, 2, 4, 8, 16, 32, 64, and 128 to
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FIGURE 7. Convergence of Proposed (2). (a) Selected channel index in
each iteration of Proposed (2). (b) Total data rate in each iteration using
Proposed (2).

analyze its impact on the total data rate. The number of users,
cell radius, and the number of iterations were 64, 1000 m,
and 60000, respectively. The forgetting rate α was set to α =

0.999. Fig. 8 presents the simulation results. The blue bars
represent the total data rate achieved using Proposed (2), and
the orange line represents Jain’s index. These metrics were
used to assess the performance of the system and analyze the
effectiveness of Proposed (2).

Fig. 8 shows that the best fairness was achieved when Z
was 128 and the number of iterations was sufficient. In the
laser chaos decision-maker, when the number of available
thresholds is small, the thresholds can reach the upper
or lower limits more quickly. Thus, selection convergence
is generally faster, but accurate selection becomes more
difficult. Conversely, if the number of thresholds is large,
a thresholdmay reach its upper or lower limit after a sufficient
search. Thus, convergence takes a longer time, but correct

FIGURE 8. Total data rate and Jain’s index when the number of threshold
levels increased using Proposed (2).

selection may be highly achievable [26]. In this simulation,
we set the same number of iterations regardless of the Z value;
thus, the performancewas considered to be better when Z was
128 (maximum). Fig. 8 shows that the optimal performance
in terms of both total data rate and fairness was attained at
Z = 128. Hence, the figures after Fig. 8 show results for a
setting of Z = 128.

3) FORGETTING PARAMETER DEPENDENCIES
Fig. 9 depicted the evolution of total data rate and fairness
when the number of users, cell radius, and number of
iterations were 32, 500 m, and 50000, respectively, using
Proposed (2). From (15)(16)(17)(18), if α is set smaller than
0.999, the fluctuation of threshold update becomes smaller,
learning speed becomes slower, and the speed of solution
cannot match the scale of the problem, increasing number of
iterations required for learning and leading to delays. For the
case of α = 0.99, 0.9, the 50000 iterations we set did not
converge, and performance deteriorated rapidly, as shown in
Fig. 9 because of the small width of the threshold variation.
In addition, Fig. 9 shows that the case of α = 0.999 was
the best in both total data rate and fairness. Therefore, the
setting of α = 0.999 was adopted when compared with other
methods.

4) SMALL AREA, SMALL PATHLOSS EXPONENT
Fig. 10 shows the evolution of total data rate and fairness
with the increasing number of users when the cell radius and
pathloss exponent λ were 500 m and 3.0, respectively. For
Proposed (1), the number of iterations was set to 1000, 2000,
5000, and 20000 when the number of users was 8, 16, 32, and
64, respectively. For Proposed (2), the number of iterations
was set to 2000, 5000, 20000, and 50000 when the number
of users was 8, 16, 32, and 64, respectively. As shown in
Fig. 10, Proposed (1) had the highest total data rate for any
number of users, but its fairness is not the best. In contrast,
Proposed (2) has a reasonable total data rate, and its fairness
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FIGURE 9. Total data rate and Jain’s index when the forgetting rate α

increased using Proposed (2).

FIGURE 10. Total data rate and Jain’s index obtained for the number of
users when the cell radius and pathloss exponent λ were 500 m and 3.0,
respectively.

was better than those of the other methods for any number of
users. This is because the log-taken value was larger under
the situation where all users had a similar overall data rate
than the situation where some users had a low data rate while
some had a very high data rate.

5) LARGE AREA, SMALL PATHLOSS EXPONENT
Fig. 11 shows the evolution of total data rate and fairness
as the number of users increased, considering a cell radius
of 1000 m and a pathloss exponent of 3.0. The number of
iterations was set the same as the case of a cell radius of
500m and pathloss exponent of 3.0. Figs. 10 and 11 show that
Proposed (1) had the highest total data rate for any number of
users, but its fairness is not the highest. Conversely, Proposed
(2) had the best fairness and a reasonably high total data rate.

6) SMALL AREA, LARGE PATHLOSS EXPONENT
Fig. 12 shows the evolution of the total data rate and fairness
as the number of users increased, considering a cell radius of
500 m and pathloss exponent of 4.0. The number of iterations
was set the same as the case of a cell radius of 500 m and
pathloss exponent of 3.0. Fig. 12 shows that Proposed (1)
had the highest total data rate for any number of users, but its
fairness was poor because the pathloss was more influential

FIGURE 11. Total data rate and Jain’s index obtained for the number of
users when the cell radius and pathloss exponent λ were 1000 m and 3.0,
respectively.

FIGURE 12. Total data rate and Jain’s index obtained for the number of
users when the cell radius and pathloss exponent λ were 500 m and 4.0,
respectively.

than before, probably because it was difficult to maintain
fairness while increasing the total data rate with the power
allocation of this study. The fairness of Proposed (2) also
became poor, but it was greater than that of Proposed (1).
The total data rate of Proposed (2) was higher than that of
MD-NOMA.

7) LARGE AREA, LARGE PATHLOSS EXPONENT
Fig. 13 shows the evolution of the total data rate and fairness
as the number of users increased, considering a cell radius
of 1000 m and pathloss exponent of 4.0. The number of
iterations was set the same as the case of a cell radius of
500 m and pathloss exponent of 3.0. Fig. 13 shows the same
conclusions as in Fig. 12.

8) PATHLOSS DEPENDENCIES
Fig. 14 shows the evaluation of the total data rate and Jain’s
index as the pathloss exponent increased while maintaining
the number of users and cell radius at 64 and 500 m,
respectively. The number of iterations in Proposed (1) and
Proposed (2) was set to 5000 and 20000, respectively.
Proposed (1) outperformed other schemes in terms of total
data rate. However, Proposed (1) was not as effective
in achieving fairness. In contrast, Proposed (2) exhibited
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FIGURE 13. Total data rate and Jain’s index obtained for the number of
users when the cell radius and pathloss exponent λ were 1000 m and 4.0,
respectively.

FIGURE 14. Total data rate and Jain’s index obtained for the pathloss
exponent when the number of users and cell radius were 32 and 500 m.

promising results in terms of fairness, particularly when
the pathloss exponent was not large. For larger pathloss
exponents, specifically when the pathloss exponent was 4.0,
the fairness performance of Proposed (2) was inferior to that
of MD-NOMA. However, the total data rate performance
of Proposed (2) surpassed that of MD-NOMA. When the
pathloss exponent was large, the power attenuation increased,
which posed challenges in maintaining fairness. As a result,
the expected improvement in fairness with Proposed (2) was
poorer than that with a small pathloss exponent.

9) CELL RADIUS DEPENDENCIES
Fig. 15a shows the evaluation of the total data rate and
Jain’s index while maintaining the number of users and
pathloss exponent at 32 and 3.0, respectively, as the cell
radius expanded. The number of iterations in Proposed (1)
and Proposed (2) was set to 5000 and 20000, respectively.
Proposed (1) had the highest total data rate for any cell radius,
but its fairness was poorer than MD-NOMA when the cell
radius was larger than 600 m. In contrast, Proposed (2) had
the highest fairness for any cell radius.

Fig. 15b shows the evaluation of the total data rate and
fairness when the number of users and pahtloss exponent
were at 32 and 4.0, respectively, while the cell radius
expanded. The number of iterations in Proposed (1) and
Proposed (2) was set to 5000 and 20000, respectively.

FIGURE 15. Total data rate and Jain’s index obtained for the cell radius.
(a) Number of users and pathloss exponent λ were 32 and 3.0.
(b) Number of users and pathloss exponent λ were 32 and 4.0.

Proposed (1) had the best performance in terms of the data
rate at all cell radii. However, the fairness of Proposed
(1) decreased as the cell radius expanded. In contrast,
Proposed (2) attained a reasonable total data rate and fairness.
Specifically, the total data rate of Proposed (2) surpassed that
of MD-NOMA, and its fairness was inferior to MD-NOMA
but superior to those of other methods. These were caused
by the difficulty in increasing the total data rate while
maintaining fairness owing to the increased impact of path
loss.

Based on the aforementioned findings, we can conclude
that Proposed (1) is effective when prioritizing the total data
rate over fairness, even if it means compromising fairness to
some extent. This approach is suitable when the total data
rate must be maximized regardless of fairness considerations.
In contrast, Proposed (2) is effective in scenarios where
increasing the total data rate is important, but fairness must
be considered. This approach balances between total data
rate improvements and maintaining a certain level of fairness
among users.

VI. CONCLUSION
In this paper, we proposed and demonstrated a scalable
channel allocation principle for NOMA systems based on
the parallel array of laser chaos decision-makers. The
computational complexity associated with the combinatorial
explosion in channel allocation is reduced significantly.
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In other words, by assigning a dedicated laser chaos
decision-maker to each user and linking the reward to
the total data rate or aggregated logarithmic data rate
of all users, the scalability problem of managing an
increasing number of users, as observed in previous studies,
is effectively resolved. In addition, the use of logarithms in
terms of compensation was considered to improve fairness.
Simulation results showed that the proposed algorithm
achieves greater total throughput and better fairness than
conventional NOMA algorithms. In future research, we plan
to evaluate performance in several environments where users
and terminals are moving and have multiple base stations.
In addition, we will also incorporate new technologies to
further enhance the performance of the NOMA system, such
as the Stacked Intelligent Metasurface (SIM) technique [43].
The SIM offers substantial signal processing capabilities by
stacking an array of multiple programmable nearly passive
metasurfaces. The signal propagation in an SIM is at the
speed of light. As such, SIM can accomplish advanced
computation and signal processing tasks, such as MIMO,
as the electromagnetic (EM) wave propagates through the
multiple layers of the metasurface, which may further
effectively reduce the processing delay and improve the total
data rate for the NOMA system.
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