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ABSTRACT Mixup is a powerful data augmentation strategy that has been shown to improve the
generalization and adversarial robustness of machine learning classifiers, particularly in computer vision
applications. Despite its simplicity and effectiveness, the impact of Mixup on the fairness of a model has not
been thoroughly investigated yet. In this paper, we demonstrate that Mixup can perpetuate or even exacerbate
bias presented in the training set. We provide insight to understand the reasons behind this behavior and
propose GBMix, a group-balanced Mixup strategy to train fair classifiers. It groups the dataset based on
their attributes and balances the Mixup ratio between the groups. Through the reorganization and balance of
Mixup among groups, GBMix effectively enhances both average and worst-case accuracy concurrently. We
empirically show that GBMix effectively mitigates bias in the training set and reduces the performance gap
between groups. This effect is observed across a range of datasets and networks, and GBMix outperforms
all the state-of-the-art methods.

INDEX TERMS Mixup, fairness, data augmentation, bias, spurious correlation.

I. INTRODUCTION
Machine learning and deep learning have seen remarkable
success in recent years, particularly in computer vision.
However, since typical machine learning models aim to opti-
mize for average performance, there can still be significant
performance discrepancies between underrepresented groups
(which are at the tail of the data distribution) and those
with larger populations. This is particularly problematic when
spurious correlations exist in the data. A spurious correlation
refers to a relationship between attributes that holds in most
training examples but not in the test data, and it is typically
caused by noise or bias in the sampling procedure

An example of spurious correlation is shown in Figure 1.
In Figure 1, the number of samples in group Dark
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FIGURE 1. Bias amplification of Mixup in CelebA dataset. A spurious
correlation between hair color and gender exists in the data and Mixup
spreads out the bias to a larger part.

Hair-Male (Blond hair-Female) dominate the samples in
group Blond hair-Male (Dark hair-Female), implying a
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spurious correlation between hair color and gender. When
the task is to predict hair color, a model may achieve high
accuracy by learning spurious correlations (bias) between
hair color and gender. However, this can lead to poor
validation and test accuracy in groupswhere such correlations
do not exist. Furthermore, learning such correlations on
sensitive attributes such as race or gender may lead to the
production of an unfair model.

To enhance the performance of the model when the data is
imbalanced, various techniques have been suggested, often
referred to as imbalanced learning [2], [4], [5], [8], [13],
[22], [26], [27], [42], [46]. However, it has been known
in [41] and [44] that common data augmentation techniques
used for imbalanced data could not eliminate bias and
even exacerbate unfairness in real-world data. Mixup [51],
a famous and powerful data augmentation strategy, is not an
exception.Mixup is an augmentation strategy that is proposed
to train with interpolations of data samples. It reduces
overfitting to the training set and enhances robustness to
noise. However, when the dataset has spurious correlations
as in Figure 1, Mixup spreads the spurious correlation
to every data sample, resulting in the amplification of
bias.

In this paper, we aim to increase the fairness of a model by
enhancing the performance of the worst group. We first show
that Mixup trained model often shows worse performance
than the model trained with empirical risk minimization
(ERM), degrading the performance of groups with bias-
conflicting features. Then we demonstrate that this problem
can be handled by modifying a Mixup strategy and propose
GBMix, a group-balancing Mixup strategy that improves the
fairness of a model.
A. Contributions: Our main contributions are as follows.

• We empirically demonstrate that Mixup on a biased
dataset can aggravate unfairness. We also show that
this problem is even more exacerbated as the level of
spurious correlation in the dataset increases.

• We propose GBMix, a simple and effective Mixup
strategy that mitigates spurious correlation. GBMix
improves both the average accuracy and the accuracy of
the worst-performing group.

• We compare GBMix with nine baselines across various
datasets and architectures, and show that GBMix
outperforms state-of-the art (SOTA) methods.

B. Organization: The remainder of the paper is organized
as follows. In Section II, we introduce previous research
on mixup, machine learning fairness, and neural network
debiasing. In Section III, we formulate a classification
problem for fair machine learning. In Section IV, we show
that naive mixup can exacerbate the bias in the model and
explain the reason behind this problem. In Section V, we pro-
pose GBMix and explain the overall process of GBMix.
In Section VI we demonstrate the performance of GBMix
via extensive experiments. In Section VII, we conclude our
work.

II. RELATED WORK
A. MIXUP
Mixup [51] is a simple but powerful data augmentation
strategy that synthesizes new data samples by linearly
interpolating the paths between data samples. Empirical risk
minimization (ERM) optimizes the risk

RERM = E(x,y)∼P[ℓ(f (x), y)], (1)

where P is the empirical distribution over the training dataset.
On the other hand, Mixup performs a linear interpolation
between samples to generate synthesized data as

x̃ = λxi + (1 − λ)xj, ỹ = λyi + (1 − λ)yj, (2)

where xi and xj are two distinct samples randomly drawn from
training distribution and λ ∼ Beta(α, α). Mixup training
minimizes the risk from the interpolated samples

RMixup = E(x1,y1),(x2,y2)∼P[ℓ(f (x̃), ỹ)] (3)

instead ofRERM . By linearly interpolating andminimizing the
risk between data samples, Mixup reduces overfitting to the
training data and provides robustness to noise.

Due to its simplicity and efficacy, many variations
of Mixup have been suggested. For example, Manifold
Mixup [39] performs a linear interpolation in the embedding
space and provides further generalization by capturing high-
level information in the feature space. On the other hand,
CutMix [47] randomly samples patches from a sample and
pastes them on the other sample. CutMix improves the
performance of various tasks such as classification or object
detection by combining cutout and Mixup. Numerous studies
also proposed variations of Mixup that utilize GAN to
generate the label for mixed samples [37], uses saliency
information to select the mask for mixup [19], [23], and uses
Mixup as a regularizer to improve OOD robustness [30].
Moreover, strategies that incorporate Mixup for handling

imbalanced data have also been suggested. In [5], ReMix
utilizes different λ for x and y as λx and λy. It puts more
weight on y from minority groups more by controlling λy.
The authors of [8] suggested instance-based and class-based
sampling for Mixup, which improves the performance in
a highly imbalanced dataset. More recently, UniMix [43]
has been suggested to handle the long-tailed distribution
of the dataset and the authors of [53] have proposed a
method of mixing the data after oversampling to enhance the
performance of Mixup in long-tailed distribution.

On the other hand, FairMix has been suggested in [6]
to enhance fairness in machine learning. FairMix divides
the data samples based on their attributes and interpolates
between data samples from different groups. The Jacobian
of the interpolated sample is then used as a regularizer term
in addition to RERM . FairMix shows better generalization
for both accuracy and fairness in various datasets. However,
to the best of our knowledge, the effects of training a model
with the mixed data sample itself on the fairness of a model
have not been investigated thoroughly yet.
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B. MACHINE LEARNING FAIRNESS
Recently, many methods have emerged to tackle the issue
of unfairness within machine learning models. These meth-
ods can be classified into different categories based on
their approach (pre-processing, in-processing, and post-
processing) as well as the specific fairness metrics they target
(group fairness, individual fairness, and Rawlsian Max-Min
fairness).

Pre-processing methods [7], [15], [16], [50] modify the
training set to eliminate inherent biases, thereby enhancing
the efficacy of general methods. On the other hand, in-
processing methods [18], [34], [49] adjust the training
objective to cultivate fair models, while post-processing
methods [17], [31] refine the model prediction to ensure
fairness.

Group fairness [7], [11] considers the statistical measure-
ment of the whole dataset, while individual fairness [29],
[35], [48] measures the similarity of model outputs for
similar inputs. Individual fairness aims to ensure that similar
individuals get similar outputs. Lastly, Rawlsian Max-Min
fairness [3], [12], [21], [33] seeks to improve the performance
of the worst-performing group and narrow the performance
disparities between groups while maintaining the overall
performance.

In this paper, we target Rawlsian Max-Min fairness,
which aims to enhance the fairness models by increasing the
worst group performance and narrowing the performance gap
between groups, while maintaining the overall performance.

C. DISTRIBUTIONALLY ROBUST OPTIMIZATION AND
NEURAL NETWORK DEBIASING
In the literature, attempts to enhance the performance of
the most disadvantaged group have been addressed through
approaches such as Distributional Robust Optimization
(DRO) and network debiasing. One famous method is group
distributionally robust optimization (GDRO) [36]. GDRO
stems from distributionally robust optimization (DRO) [1],
[28] which aims to minimize the worst-case loss over the
set of possible test distributions. Since it is intractable to
minimize the risk over all possible test distributions, GDRO
focuses on optimizing the worst group performance over
the conditional distribution of data samples associated with
groups.

Additionally, several methods have focused on training
unbiased neural networks when working with datasets that
exhibit spurious correlations, which is called debiasing. The
authors of [45] have enhanced the robustness of the model
by selectively interpolating the samples, and sample-wise
reweighting was used in [10]. However, the relationship
between the utilization of Mixup and any potential decline
in model performance has yet to be thoroughly examined.

More recently, it has been discovered in [20] that retrains
only the last layer with a balanced dataset can remarkably
improve the worst group accuracy of a model. This high-
lights the importance of learning a robust feature space.

Furthermore, there have been studies to enhance the worst-
group accuracy without accessing sensitive attributes [24],
[32], [38], [52]. Nonetheless, these approaches still exhibit
inferior performance in comparison to those that leverage
sensitive attribute information.

III. PROBLEM STATEMENT AND OBJECTIVE
We now formulate our objective. In this paper, we consider
a classification problem that aims to predict target attribute
y ∈ Y from provided input features x ∈ X . Each
sample has a sensitive attribute s ∈ S which should not
affect the prediction on the target attribute ỹ. Our goal is
to train a fair classifier that performs well for all sub-
groups organized from all possible combinations of y and s.
Therefore, we divide the dataset intom (m = |Z| = |Y|×|S|)
groups, where Z = Y×S is a Cartesian product of Y and S,
and aim to minimize the risk of the worst-performing group
among m groups as follows

R(f ,D) = max
z∈Z

EPz [ℓ(f (x), y)]. (4)

Since we consider Rawlsian Max-Min fairness, we now
define two fairness metrics that have been used in many
fairness researches for RawlsianMax-Min fairness, which are
worst group accuracy and robust gap. Worst group accuracy
is the worst-case performance among all groups, and it can
be expressed as

min
z∈Z

EPz [I(f (x) = y)], (5)

where I denotes the indicator function that evaluates to 1 if
the classifier’s prediction matches the true label y. The robust
gap is the gap between the best and worst-performing groups
and can be expressed as

max
z∈Z

EPz [I(f (x) = y)] − min
z∈Z

EPz [I(f (x) = y)]. (6)

Therefore, it is desirable to maximize the worst group
accuracy, andminimize the robust gapwhilemaintaining high
average accuracy.

IV. LIMITATION OF MIXUP
In this section, we demonstrate that vanilla Mixup training
does not work well when there is a spurious correlation
in the training dataset. It fails to improve both the average
and the worst group accuracy of neural networks. Moreover,
in some cases, even increases the performance gap between
groups and degrades fairness. We use the neural networks
trained on three datasets (Waterbird [36], CelebA [25],
and UTKFace [54]) using ERM and Mixup objectives to
demonstrate this tendency.

Table 1 demonstrates that Mixup failed to improve the
average accuracy onWaterbird, and degraded the worst group
accuracy and robust gap for all three datasets. This implies
that Mixup cannot improve the generalization of neural
networks if a training set has a spurious correlation.

To further analyze the relationship between Mixup and
fairness, we adjust the CelebA dataset to provide artificial
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TABLE 1. Average accuracy, worst group accuracy, and robust gap of ERM
and Mixup trained models on three datasets.

imbalance ratios.We undersample the CelebA dataset to have
different ratios between gender and hair color from 1:2 to 1:8,
making different degrees of spurious correlation in a training
set.We train a neural network in these artificial scenarios, and
indicate the results in Table 2.1 Although Mixup can improve
the models when the imbalance ratio is relatively low (1 : 2),
it works poorly as the imbalance ratio increases.

TABLE 2. Average accuracy, worst group accuracy, and robust gap of ERM
and Mixup on three undersampled CelebA datasets.

When there is a severe spurious correlation in the
dataset, Mixup synthesizes more data samples inheriting this
correlation. Therefore, most of the mixed samples would
contain spurious correlation, which implies Mixup spreads
spurious correlation to the majority of data. If the dataset does
not contain spurious correlation, i.e., if the dataset is balanced
for all groups, mixup would not exacerbate bias and improve
generalizability. However, there may be limited amounts of
data for certain classes or categories depending on the specific
domain, so constructing a balanced dataset for all groups may
be impractical. Therefore, we propose GBMix, a simple and
effective mixup strategy that provides generalizability while
mitigating bias as well.

V. GBMix
To handle the bias-exacerbating problem of Mixup on
biased datasets, we now propose GBMix. The key idea of
GBMix is to control the mixup target and ratio between
groups. By generating mixed samples focusing on the worst-
performing group, GBMix can mitigate spurious correlation
in the dataset and learn a robust feature space. In this section,
we explain the process of GBMix in detail and the overall
process of GBMix is summarized in Figure 2.

A. TARGET GROUP DECISION
GBMix first decides the target group and conducts group-
balanced mixup based on the target group. The target group

1More detailed experimental settings are given in the Appendix.

is decided by the average loss of each group at each mini-
batch. GBMix first makes a mini-batch by sampling an equal
number of samples from each group to compute the loss of
each group accurately. Then, it divides the mini-batch into
groups based on attributes y and s and computes the average
loss for each group.

Since our goal is to boost the performance of the worst-
performing group, GBMix chooses the worst group (the
group with the largest loss among m = |Z| groups in the
mini-batch) as the target group and denotes it as

g0 = argmax
z∈Z

EPz [ℓ(f (x), y)]. (7)

The loss for every group is calculated in each mini-batch
iteration and g0 is determined at every mini-batch. Let us
denote the target attribute and sensitive attribute of data
samples in g0 as yt and st .

B. GROUP CATEGORIZATION
To boost the performance of the worst-performing group
by Mixup, GBMix uses group categorization before mixing
samples. The group categorization helps the network focus
on g0. After selecting the target group g0, the remaining
m − 1 groups are categorized into three larger groups as in
Figure 2. The groups with y = yt and s ̸= st are regrouped
as g1, and groups with y ̸= yt and s = st are regrouped as
g2. The other groups with y ̸= yt and s ̸= st are regrouped as
g3. Then possible Mixup sample combinations from the four
groups can be expressed as

x̃g(i,j) = λxgi + (1 − λ)xgj ,

ỹg(i,j) = λygi + (1 − λ)ygj ,

Rg(i,j) = EP[ℓ(f (x̃g(i,j) ), ỹg(i,j))]

∀i, j ∈ [0 : 3] and i > j, (8)

where λ ∼ Beta(α, α) and xgi and xgj are two samples
randomly drawn from gi and gj, respectively. By categorizing
the groups into four larger groups based on their attributes,
GBMix can manage non-binary attributes (when |Y| > 2 or
|S| > 2) effectively and allows the model to concentrate on
the worst-performing group.

C. BALANCING MIXUP
Let us assume that g0 is an underrepresented group that
suffers from spurious correlation in the training data. This
implies that there exists a spurious correlation between yt
and {st }c or st and {yt }c. To alleviate the effect of spurious
correlation during training, GBMix balances the number of
mixed samples between groups based on g0, and it can be
formulated as

|x̃g(i,j) | = k, ∀i, j ∈ [0 : 3] and i ≥ j, (9)

where k is a constant number that limits the number of
samples generated from Mixup. For large k , the samples
from the minority are required to be resampled for Mixup.
On the other hand, using small k will discard samples from

18880 VOLUME 12, 2024



S. Hong et al.: GBMix: Enhancing Fairness by Group-Balanced Mixup

FIGURE 2. Step-wise process of GBMix.

TABLE 3. Performance of GBMix and compared schemes on binary classification tasks.

the majority, and it corresponds to undersampling. In this
paper, we choose k as the average number of data samples
from each group.

GBMix mixes samples between groups that either share y
or s. By mixing samples that share one identical attribute and
one different attribute, GBMix can mitigate spurious correla-
tions between attributes that might exist in the data and pro-
vide generalization. The loss for GBMix can be expressed as

RGBMix = Rg(0,1) + Rg(0,2) + Rg(1,3) + Rg(2,3) . (10)

D. CLASSIFIER FINE TUNING
After training using RGBMix as a loss, we retrain the last
fully connected layer using a small and balanced set-aside
training dataset as in [20]. It was first observed in [20]
that retraining the last layer using a small-size dataset that
does not contain spurious correlation can mitigate the bias
of the neural networks, even when trained on datasets with
spurious features. This implies that if the network has learned
good feature space, bias can be easily mitigated by retraining
the classifier, pointing to the importance of learning a good
feature extractor. The balanced mixup strategy of GBMix
facilitates the acquisition of robust feature space, and by fine-
tuning the last layer, GBMix outperforms the state-of-the-art
method.

VI. EXPERIMENT
We now provide experimental results that demonstrate the
effectiveness of GBMix in mitigating bias. GBMix was
evaluated on four datasets, Waterbird, CelebA, UTKFace,
and FairFace. Waterbird and CelebA are binary datasets
which are commonly used as benchmarks for evaluating
the bias of models. We also used two non-binary facial
datasets, UTKFace and FairFace, which are commonly
used for fairness evaluation. For network architecture,
we use ResNet-50 initialized with weights pre-trained
on ImageNet following prior works [14], [20], [24].
We also experimented with two additional architectures
(ResNet-18 and MobilenetV2) and provide the results in the
Appendix A-A.
We compared GBMix with nine baselines, including ERM,

Mixup [51], SUBG [14], GDRO [36], JTT [24], DFR [20],
UniMix [43], OBMix [53], and FairMix [6]. Additionally,
we provide an ablation study to demonstrate the role of each
step in GBMix.

Datasets. First, we will briefly explain four datasets. The
detailed experimental settings are given in Table 5.
CelebA. CelebA is a dataset composed of faces of

celebrities with various attributes. We choose hair color y ∈

{blond, dark hair} as a target attribute y and gender
s ∈ {male, female} as a sensitive attribute s as in [9]
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TABLE 4. Performance of GBMix and compared schemes on non-binary classification tasks.

FIGURE 3. Performance gap between GBMix and ablation baselines.

TABLE 5. Experimental settings for the datasets.

and [36]. It should be noted that CelebA primarily focuses
on images of celebrities from the entertainment industry,
which may not represent a diverse range of appearances
and backgrounds. This lack of diversity can limit the

generalization of models trained on the dataset to other
demographics.
Waterbird. Waterbird is a dataset for simulating spu-

rious correlation created in [36] by combining bird
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photograph from CUB [40] dataset and background images
from Places [55] dataset. In waterbird, a bird y ∈

{waterbird, landbird} is placed in background
s ∈ {water background, land background} and
Waterbirds (Landbirds) appear more frequently against water
background (land background) than land background (water
background).
UTKFace. UTKFace is a facial dataset widely used

for multi-group classification benchmark. We set age as
target attribute y and race as the sensitive attributes s.
We use a multi-class classification setting (where target
attributes are non-binary) on the UTKFace dataset. The age
distribution in the dataset is not perfectly balanced, with
more samples available for certain age groups than others.
This class imbalance can affect the performance of machine
learning models, particularly when attempting to classify
less-represented age categories.
FairFace. FairFace is a balanced facial dataset that includes

a similar number of samples for attributes. The dataset
includes images of people from different racial and ethnic
groups, and it is balanced for gender and race. We use race
as target attribute y and age as sensitive attribute s. We also
use amulti-class classification setting on the FairFace dataset.

Considering that both the UTKFace and FairFace datasets
are non-binary, achieving high performance on these datasets
is crucial for applying the debiasing method in real-world
scenarios, where most of the lables are non-binary.

Training information. We use ResNet-50 with pre-
trained ImageNet weights, and all models are trained with
Stochastic Gradient Descent (SGD). We train for 200 epochs
for Waterbird, 25 epochs for CelebA, and 80 epochs for
UTKFace and FairFace. More detailed experimental settings
are given in the Appendix.

A. COMPARISON
We first conduct experiments on binary-classification tasks,
using Waterbirnd and CelebA datasets. The results are
presented in Table 3. InWaterbirds and CelebA, we report the
results from the original paper for SUBG, LISA, GDRO, JTT,
andDFR, andwe report themean±std over three independent
runs for Mixup, OBMix, UniMix, and GBMix.

GBMix demonstrates significant performance improve-
ment on both datasets, improving worst group accuracy and
narrowing the performance gap. More specifically, GBMix
achieves the highest worst group accuracy and the lowest
performance gap among all the baselines in both datasets
and also achieves the best average accuracy on Waterbirds.
On CelebA, Mixup achieves better average accuracy (3.9%
higher) than GBMix, but shows much lower worst group
accuracy (44.1% lower) and higher performance gap (47.8%
higher) than GBMix.

We also conduct experiments on multi-group classifi-
cation tasks using UTKFace and FairFace. The results
are summarized in Table 4. Unlike Waterbird or CelebA
where y is binary and the number of groups is relatively
small (4 in Waterbird and CelebA), UTKFace and FairFace

have a non-binary attribute and thus have a larger number
of groups. Unlike other mixup schemes that only focus
on balancing the data subpopulation, GBMix focuses on
the worst group and providing diverse samples for them.
By interpolating and synthesizing the samples adaptively
based on the worst-performing group, GBMix can enhance
the worst group accuracy effectively. Specifically, GBMix
achieves the highest worst group accuracy and the lowest
performance gap in both of the datasets.

To further evaluate the performance of GBMix and
compare with the baselines, we make a ranking for the
average accuracy, worst group accuracy, and worst gap
for four datasets and compute the average ranking for
binary and non-binary datasets. The average rankings are
indicated in Table 6. It should be noted that, while SOTA
methods such as GDRO and DFR show good performance
on binary classification tasks, their effectiveness substantially
diminishes when applied to non-binary classification tasks,
where most previous studies have not focused on. In contrast,
mixup-based strategies such as OBMix and UniMix demon-
strate superior performance compared to DFR and GDRO
in non-binary classification tasks by synthesizing samples
for underrepresented groups. However, their performance
diminishes in binary classification tasks. On the other hand,
GBMix consistently achieves the best-worst group accuracy
and the lowest performance gap across both binary and
non-binary datasets, all while maintaining a high average
accuracy, demonstrating the superiority of GBMix.

TABLE 6. Average ranking of GBMix and baselines on binary and
non-binary datasets.

B. ABLATION STUDIES
In order to gain a deeper understanding of the role of
GBMix, we conduct an ablation study. GBMix has three
major components, which are group categorization, balancing
mixup, and fine-tuning the last FC-layer. To isolate the benefit
of each step in GBMix, we compare GBMix with i) without
group categorization which uses vanilla Mixup without
group categorization into four larger groups, ii) without
balancing mixup that uses group categorization but does not
use mixup training, and iii) without fine-tuning that does not
fine-tune the last FC-layer.

We set the x-axis as the performance of GBMix to
show the performance change of GBMix, and indicate
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FIGURE 4. Performance of GBMix and baselines on ResNet-18 network.

the performance gap between GBMix and the ablated
methods in Figure 3. Negative average accuracy change or
worst group accuracy change indicates that the considered
method has deteriorated (smaller) average or worst group
accuracy compared to GBMix, and a Positive robust gap
change indicates that the considered method has deterio-
rated (larger) robust gap compared to GBMix. Therefore,
if an ablated method has a larger change than others,
it implies that the missing component in the ablated
method is the essential component for the performance of
GBMix.

On binary classification tasks (Waterbirds or CelebA),
fine-tuning is the most important component that affects the
performance of GBMix, while balanced mixup and fine-
tuning are the primary source of performance enhancement
on non-binary classification tasks. By using both balanced
mixup and fine-tuning, GBMix can outperform SOTA
methods in both cases. This finding is similar to the results
in Section VI-A, where DFR (which uses fine-tuning) shows
relatively low performance in non-binary datasets and mixup
based strategies show relatively low performance in binary
datasets. Notably, Group categorization enhances the worst
group accuracy to a large extent on non-binary datasets,
effectively making the model focus on the worst-performing
group.

VII. CONCLUSION
In this paper, we demonstrate that Mixup may exacerbate
bias in training data and result in unfair models. To address
this issue, we propose GBMix, a group-balanced Mixup
strategy that effectively mitigates bias and narrows the
performance gap between groups. GBMix categorizes groups
into four larger groups and balances the mixup ratio between
them. GBMix mitigates bias and improves performance
by balancing the mixup ratio for categorized groups and
preventing overfitting in minority groups. Our experimental
results in various scenarios demonstrate the effectiveness
of GBMix, and an ablation study is provided to isolate
and explore the role of each component in GBMix. Future
work includes extending GBMix to settings where multiple
sensitive attributes exist, and using the mixup ratio adaptively
depending on the imbalance structure of the data. Moreover,
using GBMix when the sensitive attribute s is not known
would be an interesting research topic.

APPENDIX A
SUPPLEMENTARY EXPERIMENTAL RESULTS
A. EXPERIMENTS ON VARIOUS NETWORK
ARCHITECTURES
In Section VI-A, we only presented the experimental results
for Resnet-50. We now provide additional experimental

18884 VOLUME 12, 2024



S. Hong et al.: GBMix: Enhancing Fairness by Group-Balanced Mixup

FIGURE 5. Performance of GBMix and baselines on Mobilenet-V2 network.

TABLE 7. Experimental settings for binary classification task in Table 3.

results of four datasets across two additional network
architectures (ResNet-18 andMobilenetV2).We use the same
settings as Section VI-A, which are given in Appendix B-C,
and indicate the results in Figure 4 and 5. Our experimental
results indicate that GBMix consistently achieves the best
performance across various network architectures, indicating
the superiority of GBMix in enhancing the fairness of a
model.

APPENDIX B
EXPERIMENTAL DETAILS
A. COMMON SETTINGS
For every method, we sweep over learning rates {1e-3, 1e-
4, 1e-5}. However, since GDRO requires additional tuning of
weight decay and adjustment parameters, we set the weight
decay to 1 for Waterbird, 0.1 for CelebA following [27], and
swept over {0.1, 1} for UTKFace and FairFace. For all other

methods except GDRO, we used a weight decay of 1e-4.
In addition, we conducted a sweep over adjust parameters
{1, 3, 5} for GDRO, and a parameter γFairMix (which balances
RERM and RFairMix) {1, 3, 5} for FairMix method.

We kept the batch size fixed to 64 and repeated all
experiments three times. To evaluate the effectiveness of the
different methods, wemeasured their average accuracy, worst
group accuracy, and robust gap across all datasets. We select
the model with the best worst group accuracy on a valid
dataset as a criterion.

B. SETTINGS FOR EXPERIMENTS IN SECTION IV
For ERM and Mixup comparison experiments in Section IV,
we use the target attribute and sensitive attribute following
Table 7. Furthermore, we undersample the CelebA dataset to
make a spurious correlation between hair color and gender.
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TABLE 8. Number of training data samples in each group of undersampled CelebA dataset used for the experiments in Table 2.

We also indicate the distribution of the undersampled CelebA
training dataset in Table 8.

C. SETTINGS FOR EXPERIMENTS IN SECTION VI-A
In Section VI-A, we demonstrate the performance of GBMix
on binary classification tasks and multi-label classifica-
tion tasks. For binary classification tasks (Waterbirds and
CelebA), we used the same target and sensitive attribute set-
tings with experiments in Section IV, which are summarized
in Table 7. For multi-label classification tasks (UTKFace and
FairFace), we set age as target attribute y and use race as
sensitive attribute s and race as target attribute y and use age
as sensitive attribute s, respectively.
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