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ABSTRACT The burgeoning popularity of community question-answering platforms as an information-
seeking strategy has prompted researchers to look for ways to save response time and effort, among which
question entailment recognizing, question summarizing, and question tagging are prominent. However, none
has investigated the implicit relations between these tasks and the benefits their interaction could provide.
In this study, ReQuEST, a novel multi-task model based on bidirectional auto-regressive transformers
(BART), is introduced to recognize question entailment, summarize questions respecting given queries, and
tag questions with primary topics, simultaneously. ReQuEST comprises one shared encoder representing
input sequences, two half-shared decoders providing intermediate presentations, and three task-specific
heads producing summaries, tags, and entailed questions. A lightweight fine-tuning technique and a
weighted loss function help us learn model parameters efficiently. With roughly 187k learning parameters,
ReQuEST is almost half the size of BARTlarge and is two-thirds smaller than its multi-task counterparts.
Empirical experiments on standard summarization datasets reveal that ReQuEST outperforms competitors on
Debatepedia with a Rouge-L of 46.77 and has persuasive performance with a Rouge-L of 37.37 onMeQSum.
On MediQA-RQE as a medical benchmark for entailment recognition, ReQuEST is also comparable in
accuracy with state-of-the-art systems without being pre-trained on domain-specific datasets.

INDEX TERMS Community question answering systems, multi-task learning, query-focused question
summarization, question entailment, tag generation.

I. INTRODUCTION
Over the last couple of decades, community question-
answering (CQA) platforms have gained prominence as
reliable places to acquire knowledge. Stack Overflow, Quora,
and iCliniq are three examples of CQA platforms. Compared
to general question-answering (QA), aiming to answer short
and factoid questions automatically [1], CQA allows infor-
mation seekers to post their questions in natural language
with any amount of peripheral details and receive descriptive
answers from human experts [2], [3], [4], [5]. Nevertheless,
many questions may not be answered immediately or even
remain unanswered forever. This issue may arise from the
proliferation of newly arrived questions [6], too long or
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ambiguous questions that fail to appeal to relevant experts [7],
[8], [9], improper categorization of questions or users [10],
[11], [12], and the like. Hence, researchers have strived to
enhance CQA platforms from various aspects and make them
more efficient.

Among various techniques for improving CQA platforms,
three tasks are more pivotal. The first task is recognizing
question entailment (RQE) which identifies archived ques-
tions whose answers are also complete or partial answers to
the input question [13]. The second task is question summa-
rization (QS) which is an intricate task in natural language
processing (NLP). QS aims to shorten the input question
and generate a brief human-readable question comprising the
vital information of the original one [14]. The third task is
tag generation (TG) which provides a short list of keywords
or phrases describing the question and its principal topics.
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Twomain questions may arise here: 1) Why are these tasks
essential in CQA? 2) Is it possible to learn them jointly?
Answering the first question requires an explanation of the
applications of these tasks in CQA. Using RQE, one can
redirect the questioners to entailed questions [15], generate
answers automatically [13], [16], [17], or refine or supple-
ment the input questions [18]. Besides, as questions in CQA
are usually multi-sentence and complex with unnecessary
details, QS enables experts to quickly discover the intent of
the question [3], [19]. Further, TG helps organize questions,
link similar ones, and attract pertinent experts to answer [20],
[21], [22].

As for the second question we should say that most schol-
ars have considered these tasks independent. However, a few
have argued that they are interrelated and can benefit each
other [3], [4], [23], [24], [25], [26], [27]. There are a number
of reasons behind this argument. One reason is that although
transformer-based QS models can produce fluent summaries,
they do not assure the factual correctness of them [2], [28],
[29]. Therefore, interacting with RQE can be fruitful since
it ensures the generated summaries are logically entailed by
their source texts [23], [28], [29], [30]. Another reason is
that generating concise summaries requires a greater focus
on the main topics of questions, which existing QS models
often fail to do [27]. Consequently, while duplicate informa-
tion are repeatedly given attention, essential phrases may go
unnoticed [26], [27]. Therefore, as tags are good indicators
for the main topics of questions, joint learning of TG and
QS would provide the model with essential information in
encoding layers [31]. The third reason is related to the com-
plexities that RQE models confront, e.g., lengthy questions,
lexical heterogeneity between questions, and the presence of
specialized expressions. These complexities make questions
hard to understand [3], [32], [33]. Thus, it could be beneficial
to engage QS and TG to compress and simplify questions to
abstract versions conveying pivotal information.

In this paper, we aim at boosting the RQE, QS, and TG
performance by exploiting their interrelations. In particu-
lar, motivated by substantial performance gains achieved by
multi-task deep neural networks over a broad range of NLP
tasks [3], [34], [35], [36], [37], [38], [39], we have devised a
multi-task model called ReQuEST based on encoder-decoder
transformers. ReQuEST is planned to classify an input pair of
questions in entailment or not-entailment classes, summarize
questions by focusing on a set of thematic tags, and generate a
sequence of tags stating question’s main topics. It comprises
one BART encoder [40] representing input sequences, two
BART decoders reconstructing summary or tag sequences,
and three neural network heads generating task-specific out-
puts. Moreover, the goal is to optimize the weighted sum of
losses from all tasks while making a compromise between
them. It is noteworthy that among a variety of transformers,
BART1 might be a more fitting choice given its state-of-the-
art performance on several summarization benchmarks.

1We use BARTBase instead of the large variant.

Joint learning of RQE and QS was also explored by
Mrini et al. in [3]. They proposed a multi-task model
involving one collaborative encoder and two decoders. The
decoders were neither fully shared nor fully independent but
gradually shared, meaning that the parameter sharing was
slowly abated from the first to the last layers. There are
four main differences between their effort and ReQuEST:
1) In addition to RQE and QS, ReQuEST learns another
related task at the same time, which is TG. 2) The RQE
decoder is omitted from ReQuEST in favor of a multi-layer
neural network with fewer parameters. 3) Instead of gradu-
ally sharing the parameters between TG and QS decoders,
we share only the first three layers between them and
leave the remainder independent. 4) In ReQuEST, the loss
coefficients in the objective function can differ depending
on which component parameters are updating. However,
Mrini et al. considered the coefficients constant throughout
fine-tuning.

For further evaluations, a large dataset composed of
question pairs, thematic tags, and entailment labels is
needed. Therefore, we manipulate the well-known CQADup-
Stack dataset [41] and introduce a new dataset named
CQAD-ReQuEST in two sizes, small and large. Subse-
quently, several evaluation scenarios are conducted. First,
the superiority of co-learning of multiple tasks over
single-task learning is investigated over the small size of
CQAD-ReQuEST. Second, the model sensitivity regarding
to hyperparameters is analyzed. Third, the ReQuEST per-
formance on the large size of CQAD-ReQuEST is explored.
Finally, the efficiency of ReQuEST on three real-world
datasets, including MeQSum [32], MediQA-RQE [42], and
Debatepedia [43], is examined.

Results of the first scenario demonstrate that apart
from low learning parameters, exploiting latent interactions
between the related tasks brings an improvement in output
quality with respect to single-task learning. The second sce-
nario shows that ReQuEST performance does not depend
highly on the initial values of hyperparameters. Finally,
the experimental results in the last two scenarios confirm
the generalizability of ReQuEST to other datasets, even
in other domains, such as the medical domain. In a nut-
shell, the following two contributions are realized in this
article:

1) Presenting ReQuEST, a novel compact multi-task
model with few setting and learning parameters for
RQE, QFQS, and TG tasks.

2) Modeling the TG task with a sequence generation
method by considering it a particular type of summa-
rization task at a relatively high granularity.

The remainder of this paper is organized into four sec-
tions. Section II covers the background and related work. The
proposed method is then detailed in Section III. Section IV
conveys the experimental studies, and in the end, Section V
draws a conclusion and recommends research directions for
the future.
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II. BACKGROUND AND RELATED WORK
This section describes related work in three groups, including
recognizing question entailment, text summarization, and tag
recommendation.

A. RECOGNIZING QUESTION ENTAILMENT
According to the definition rendered by Abacha and Demner-
Fushman [13], an entailment relation from question Q to P
implies that every correct answer to P is either a complete
or incomplete response to Q. In this way, RQE empowers
CQA platforms to automatically answer an input question by
quickly finding similar frequently asked questions (FAQs),
re-ranking the corresponding answers, and selecting the top
ones [42]. Therefore, it saves both the waiting time of the
question asker and the effort of the answerers.

Mrini et al. [3] proposed a multi-task model using
BARTLarge for joint learning of RQE and QS. On top of
the shared encoder, their model contained two decoders on
which a gradually soft parameter-sharing was applied. Fur-
thermore, they evidenced an equivalence between RQE and
QS in the medical domain. Correspondingly, they proposed a
data augmentation approach to facilitate simultaneous multi-
task learning. The empirical analysis verified that RQE helps
question summarizers identify salient information from extra-
neous details and generate more informative summaries.

Kumar et al. [34] proposed an MT-DNN model for RQE
and Natural Language Inference (NLI). They also augmented
the training dataset with domain-specific data to adapt the
model to specialized domains. Moreover, they used their
NLI and RQE models to re-rank candidate answers in a QA
task. The reported results indicated the effectiveness of their
proposed data augmentation technique.

Sarrouti et al. [38] presented an MT-DNN model for rel-
evance ranking, single sentence classification, and pairwise
text classification (i.e., RQE). The basic idea was that using
different but related datasets could improve the RQE per-
formance by better capturing critical features. They also
proposed an innovative data augmentation approach relying
on contextualized word embedding to overcome data scarcity.
They found both the RQE model and the data-augmentation
scheme effective.

Zhou et al. [39] introduced an adversarial multi-task net-
work for joint learning of RQE and QA. The model was
composed of one shared BioBERT for text embedding, one
shared interactive transformer for input representation, and
two classifiers for QA and RQE. Additionally, a task dis-
criminator was employed to exclude task-specific features
from semantic representations through adversarial learning.
Experimental analysis exhibited the outstanding performance
of their proposed model.

B. TEXT SUMMARIZATION
Automatic text summarization is the process of generating
an abridged form of the input text that encompasses its
overall meaning. Summarization approaches can be either

extractive or abstractive. In the former, summaries are pro-
duced by selecting a few tokens from the original text without
modifying them. In the latter, the input text is paraphrased
more coherently using intermediate conceptual representa-
tions [14], [44], [45], [46]. Abstract summaries are qualita-
tively close to human-written ones. Hence, generating them
requires advanced NLP techniques and large-scale annotated
data [46]. In recent years, research on abstractive summariza-
tion evolved from single-document to multi-document and
from generic to query-focused. A query-focused abstractive
summarization (QFAS) model produces a short summary
that contains critical information relevant to a user-defined
query [26], [47], [48].

Su et al. [47] proposed a BART-based pipeline to sum-
marize a single document based on a query such that the
generated summaries are highly-correlated with the answers
provided by a QA module. They explicitly incorporated
word-level answer relevance scores in the decoding process.
Results showed that the use of answer relevance significantly
mitigates the likelihood of copying irrelevant spans of the
source text.

Laskar et al. [48] used transfer learning to overcome the
need for large-scale datasets for QFAS. In the first step, they
trained a BERT-SUM model using a massive repository of
generic abstract summaries. In the next step, they fine-tuned it
with the target dataset while considering the query relevance.
Their proposed approach outperformed the state-of-the-art
models.

Xu and Lapata [49] proposed a multi-task model to
accomplish generic and query-focused summarization tasks
together. Basically, they saw generic summarization as a
specific variation of QFAS in which the query is hidden.
They decomposed the learning objective into conditional lan-
guage modeling and latent query modeling. Their proposed
method was made up of an encoder-decoder model with two
additional encoders in between. The two distinct encoders
generated query-focused and query-agnostic text representa-
tions based on which the summary was generated. This idea
allowed them to cope with the lack of QFAS data by utilizing
generic summarization datasets.

C. TAG RECOMMENDATION
Tag recommendation is the process of generating a collec-
tion of descriptive words for a piece of text [50]. Generally,
tag recommendation methods fall into two groups: person-
alized collaborative filtering and object-centered content-
based methods. While the former ignores the input content
and recommends several subjective tags based only on
users’ behavior history, the latter utilizes techniques such
as keyword extraction, topic modeling, or text classifica-
tion to determine some objective tags respecting the input
content [20], [50], [51].

Lei et al. [50] proposed a classification approach using
an attention-based capsule network. The capsule network
encoded the spatial relationships between high-level and
low-level features, then classified text entities. Meanwhile,
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TABLE 1. An overview of related work.

the attention mechanism helped distill the text’s central
information. Nonetheless, classification-based models often
disregard tags relations and treat them as distinct categories.
Besides, due to a fixed number of categories, they cannot
handle dynamic tags, e.g., emerging topics.

Shi et al. [20] presented a sequence-to-sequence model
to generate tags. It comprised an LSTM-based encoder to
capture sequential dependencies within input text and an
attention-based decoder to learn global semantic relations.
Generative models can predict tags without previously seeing
them in the training set, though some generated tags might be
meaningless.

He et al. [52] introduced a multi-label classification
method for recommending Stack Overflow tags. They uti-
lized pre-trained language models to derive feature vectors
from the question’s title, description, and code snippets.
These vectors were then combined to form a unified
representation of the post. In their evaluation of five models,

CodeBERT outperformed both a CNN-based approach and
Post2Vec.

Pal et al. [53] conducted a thorough analysis of user tag-
ging behavior across 17 StackExchange communities. They
devised a transformer-based tag prediction model using a
mask-filling approach with dual heads: one for predicting
popular tags and another for generating finer-grained tags
from user text. The model demonstrated superior perfor-
mance compared to traditional methods, as measured by the
Hit@k metric. An overview of related work is provided in
Table 1.

III. PROPOSED METHOD
ReQuEST, a transformer-based multi-task model, jointly
learns to recognize question entailment, summarize ques-
tions based on user-defined queries, and generate tags. Good
results of BART on abstractive summarization benchmarks
compared to other encoder-decoder models motivated us to
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use it as ReQuEST backbone. Therefore, as depicted in Fig. 1,
ReQuEST is made up of one BART-based shared encoder,
two partially shared decoders, and three task-specific heads.

As shown in Fig. 1, the RQE task comprises an encoder and
a multilayer neural network. It does not require any decoder
since they are usually employed for text generation, which is
of no significance in RQE. Besides, eliminating the decoder
causes a substantial decrease in RQE parameters without
compromising its performance. Fig. 1 also exhibits the QFQS
task, which contains the same encoder accompanied by a
decoder component and a linear head. It is expected that
sharing the encoder will result in better text representations
throughmulti-task learning. The third task illustrated in Fig. 1
is TG, whose components are identical to QFQS except for
the last decoder layers and the task-specific head. Indeed,
aside from the shared encoder, TG uses the first ℓ1 layers
of the decoder together with QFQS, which is hoped to be a
win-win partnership. On the one hand, TG is anticipated to
make the shared decoder layers focus more on keywords and
keep the generated sequence as short as possible. On the other
hand, QFQS is likely tomake the shared decoder layers attend
more to the meanings. In the meantime, the independent
decoder layers would allow them to realize their task-specific
objectives individually.

ReQuEST parameters are tuned by minimizing the
weighted addition of cross-entropy losses of all tasks. How-
ever, due to the prohibitive cost of fully fine-tuning the
pre-trained language models for downstream tasks, the num-
ber of learning parameters is decreased using lightweight
fine-tuning. More specifically, there are some recently devel-
oped techniques, such as adapter-tuning [54], in-context
learning [55], prefix-tuning [56], and lightweight fine-tuning,
which allow researchers to update only a small subset of
model parameters without degrading performance. This study
follows the last one and freezes the first three layers of
the shared encoder during fine-tuning. Yet, one could freeze
any number of encoder or decoder layers. The number of
parameters per task is itemized in Table 2.

A. FORWARD PROCEDURE
RQE:Suppose < Q1,Q2 > is a pair of questions that, once
taken by RQE, it should determine whether or not the correct
answer to Q2 can be a partial or complete correct answer to
Q1. To this end, RQE pursues two main steps: input represen-
tation and binary classification.

The former includes sequence tokenization, concatenation,
and representation. Precisely, Q1 and Q2 are first tokenized
as formulated by (1). Next, a single token sequence called
P is constructed by concatenating tokenized sequences and
adding special tokens, i.e., <bos> and <eos>.2 Then, the
shared encoder provides a contextualized representation of P,

2P is constructed as follows, < bos>tQ
1

1 tQ
1

2 · · · tQ
1∣∣Q1

∣∣ < eos >< eos >

tQ
2

1 tQ
2

2 · · · tQ
2∣∣Q2

∣∣ < eos >. Hence, the number of tokens in Pwould be
∣∣∣Q1

∣∣∣+∣∣∣Q2
∣∣∣ + 4.

FIGURE 1. The proposed multi-task method (ReQuEST).

TABLE 2. The number of trainable parameters in each task.

defined by (2).

Q1
: {t1i }

∣∣Q1
∣∣

i=1 ,Q2
: {t2i }

∣∣Q2
∣∣

i=1 (1)

HP
= { i}

∣∣Q1
∣∣+∣∣Q2

∣∣+4
i=1 (2)

here,
∣∣Q1

∣∣ and ∣∣Q2
∣∣ are the number of tokens in Q1 and Q2,

respectively.
In the latter, the RQE head predicts the label given the final

representation of the < bos > token in P, i.e., 0. In other
words, a multi-layer fully-connected network, equipped with
the Tanh activation function and a Softmax layer on top, learns
the complex nonlinear mapping between the question pair
embedding and the target label l ∈ {0, 1}. Accordingly, RQE
aims at minimizing the binary cross-entropy loss, calculated
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by (3).

LRQE = −
1
M

M∑
i=1

li log l̂i + (1 − li) log
(
1 − l̂i

)
(3)

where M is the total number of question pairs, and l̂i is the
predicted label for the ith pair.
QFQS: Let Q1 be the submitted question in a CQA plat-

form. Upon submission, a condensed version of Q1 must
be generated by QFQS in which contextual information is
included at both syntactic and semantic levels. Yet, preserving
coherence and integrity around the main topics remains a
challenge. One possible solution is to condition the summa-
rization task on several specific topics. Topics could also be
substituted by tags because tags in CQA platforms are usually
used to categorize questions topically. Thence, suppose that
a set of m tags is also specified for each question, with m
typically ranging from 0 to 5.

The proposed QFQS model is planned to summarize ques-
tions in five steps. In the first step, tags are joined together
by whitespace characters to build a single sequence called T .
As soon as Q1 and T are separately tokenized, a new token
sequence called Z is built in the second step by appending
them together with special tokens.3 In the third step, Z is
fed to the shared encoder to compute the contextualized word
representations, denoted by HZ in (4).

HZ
= { i}

∣∣Q1
∣∣+|T |+4

i=1 ( i ∈ R1×d ) (4)

where |T | denotes the number of tokens in the tag sequence.
During the fourth step, the decoding process is carried out

upon receipt of the shared encoder outputs. In this case, target
summaries must also be provided to the decoder for training
purposes. To this end, every question Q2 can be regarded as a
promising target summary for Q1 if and only if Q1 is longer
than Q2 and entails it. This idea comes from the study of
Mrini et al. in [3]. In the final step, d-dimensional vectors
from the last decoder layer are projected into -dimensional
spaces using the QFQS head, where indicates the vocabu-
lary size. In other words, for every position j in the sequence,
the goodness of each token t ∈ Vocab is measured. The more
the goodness score is, the more that token is preferred to be
placed in that position. As a point of note, during training, the
cross-entropy loss estimated based on (5) is adopted.

LQFQS = −
1
M

∑M

i=1

∑|Si|

j=1
tSij logt

Ŝi
j (5)

where the reference and generated summaries are respec-
tively shown by Si and Ŝi. Furthermore, tSij and t Ŝij indicate the
jth token in the reference summary and generated summary.
TG: With Q1 as the input question, the TG model should

automatically provide a short list of tags describing its key
topics. The proposed TG model is developed based on

3Z is constructed as follows, < bos > tQ
1

1 tQ
1

2 · · · tQ
1∣∣Q1

∣∣ < eos >< eos >

tT1 t
T
2 · · · tT

|T |
< eos >.

sequence-to-sequence methods because, compared to clas-
sification approaches, they can generate even unseen tags.
As such, the sequence of tags is treated like a sentence to be
generated. Moreover, a sequence of tags can also be viewed
as a summary at a relatively coarse granularity, which has
fewer details, limited length, no sequential dependencies, and
no grammar constraints. Consequently, an encoder-decoder
architecture analogous to QFQS is needed for the TG task.

Based on ReQuEST framework depicted in Fig. 1, TG also
takes advantage of the shared encoder to attain contextualized
word representations of Q1. The shared encoder outputs are
then fed to the decoder and go through its layers consec-
utively. Based on the above discussion on similarities and
differences between TG and QFQS, we propose to share
the first decoder layers between them and leave the rest
free. Hence, they could benefit each other while retaining
their independence to achieve their objectives. Indeed, once
reaching the ℓ1th layer, the path is separated from QFQS
towards (6 − ℓ1) exclusive layers. The outputs of the last
exclusive layer are finally passed to the TG head to reproduce
tag sequences. It is of note that all trainable parameters in TG
are optimized using the cross-entropy loss computed by (6).

LTG = −
1
M

∑M

i=1

∑|Ti|

j=1
tTij logt

T̂i
j (6)

where tTij implies the jth token in the reference tag sequence

and t T̂ij designates the corresponding generated token.

B. TRAINING PROCEDURE
The main advantage of multi-task learning is that multiple
related tasks can implicitly benefit each other by participating
in the regulation of shared parameters. Ergo, as formulated
by (7), multi-task models usually employ a linear weighted
sum of losses as the total loss for optimization.

LTotal =

∑
i∈{tasks}

αiLi (7)

where Li is the loss of task i, and αi is its corresponding
coefficient. However, this approach may pose a problem
because of identical loss coefficients throughout all layers.
To clarify, all learnable parameters contributing to task i,
whether in task-specific or shared layers, are updated based
on a single coefficient of Li. Consequently, using large coef-
ficients may cause the model to overfit quickly, and using
small ones may delay the convergence. In this study, the loss
coefficients are exclusively determined for each component,
and thus, the gradients have to be recalculated to update each
component. In particular, the weighted sum of losses of all
tasks, computed based on (8), is utilized for updating all train-
able parameters in the shared encoder component. Further,
as calculated by (9), shared decoder layers are optimized by
incorporating losses of TG and QFQS. Lastly, task-specific
parameters are tuned by back-propagating their correspond-
ing losses.

LEnc = αLRQE + βLQFQS + γLTG (8)
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FIGURE 2. CQAD-ReQuEST data formation steps.

TABLE 3. Some statistics about the datasets.

LSh_Dec = ρLQFQS + τLTG (9)

The coefficients α, β, γ , ρ, and τ are five real-valued hyper-
parameters whose best combination should be estimated
through trial and error.

IV. EXPERIMENTAL STUDY
There are four critical research questions (RQ) that should be
thoroughly explored:

• RQ1: How is the efficiency of simultaneous learning of
multiple tasks compared to single-task learning?

• RQ2: How sensitive is ReQuEST to changes in coef-
ficients? Which combination of coefficients yields the
highest performance in all tasks?

• RQ3: How well does ReQuEST perform on the whole
CQAD-ReQuEST dataset?

• RQ4: How efficient is ReQuEST on other datasets,
whether open domain or restricted domain?

Further in this section, datasets, model configuration, and
evaluation criteria are expounded on. Thereafter, respect-
ing four research questions, experimental analysis is per-
formed in four distinct scenarios: 1) comparing simultaneous
multi-task learning with single-task learning in terms of
F1-score and Accuracy for the RQE task, and Rouge-L and
BERTScore for QFQS and TG tasks, 2) analyzing the sensi-
tivity of ReQuEST performance to changes in coefficients,

3) analyzing ReQuEST performance on the large size of
CQAD-ReQuEST dataset, and 4) investigating the efficiency
of ReQuEST in comparison with some recently proposed
models over three well-known datasets.

A. DATA
The statistics of three public datasets on which the proposed
method is appraised are reported in Table 3. What emerges
from Table 3 is that these datasets are not only small in size
but also inappropriate for simultaneous multi-task learning
on RQE, QFQS, and TG. To address these issues, a new
dataset, hereafter called CQAD-ReQuEST, is also developed
by extracting the needed information from an existing dataset
named CQADupStack [41].
MediQA-RQE4 [42] is a medical dataset including pairs

of consumer health questions and frequently asked questions
labeled manually by medical experts. Note that the test set
greatly varies from the training set, and thus, many previous
studies have described their test results as unfavorable despite
achieving good results on validation data [8], [36], [57], [58].
Debatepedia5 [43] is the earliest large dataset for

query-focused abstractive summarization. It is comprised of

4https://github.com/abachaa/MEDIQA2019/tree/master/MEDIQA_
Task2_RQE

5https://github.com/PrekshaNema25/DiverstiyBasedAttention
Mechanism/tree/master/data
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TABLE 4. The values of setting parameters.

documents, queries, and summaries, extracted from a collec-
tion of pro and con quotations about debate issues. It is worth
noting that queries are formal natural language questions.
MeQSum 6 [32], consists of 1,000 questions collected from

the U.S. National Library of Medicine which are annotated
by summaries written by three medical experts. In addition
to the text of the message, for most questions, the subject is
also specified.
CQAD-ReQuEST7 is a dataset provided in this paper via

modifying CQADupStack,8 a public benchmark dataset for
community question answering. It is well-suited for joint
learning of RQE, QFQS, and TG tasks. In other words,
it enables us to optimize all the tasks concurrently, rather than
successively training them with distinct datasets.

As shown in Fig 2, CQAD-ReQuEST is constructed
through six steps. In the initial step, essential features, includ-
ing ID, body, title, tags, and duplicate question IDs, are
extracted for each question. The second step employs a
filtering mechanism to identify questions with fewer than
70 tokens, resulting in a refined collection of 202,304 ques-
tions with 7,346 duplicate pairs. The third step is to create
four samples per each question pair,Q1 andQ2. This involves
coupling their bodies, associating their titles, and pairing the
body ofQ1 with the title ofQ2, and vice versa. These samples
are then integrated into a new empty dataset. The fourth step
entails comparing the first sequence of each sample against
the second one, with a swap made if necessary to ensure that
the first sequence always stands as the longest. Henceforth,
they are referred to as the ‘‘long’’ and ‘‘short’’ text, respec-
tively. The fifth step enriches each sample by appending the
tags of both texts and the title of the long text. Finally, in the

6https://github.com/abachaa/MeQSum
7Our dataset is available onGitHub: https://github.com/SZAftabi/ CQAD-

ReQuEST
8http://nlp.cis.unimelb.edu.au/resources/cqadupstack/

last step, all samples are uniformly labeled as 1, denoting their
membership in the entailment class. The whole procedure is
then similarly applied to non-duplicate questions, albeit with
labels set to 0.

During simultaneous multi-task learning, the long and
short texts and their label are utilized for the RQE task.
Meanwhile, TG parameters are learned using long texts as
input sequences and long text tags as target sequences. For
QFQS purposes, if the label is 1, the long and short texts are
regarded as the input and target sequences; otherwise, long
texts and their titles are utilized. This study also introduces
CQAD-ReQuESTsmall, a downsized version with 7,992 train-
ing samples and 1,999 test samples, mirroring the test set in
the larger dataset.

B. CONFIGURATION AND SETTING PARAMETERS
We built the proposed method in Python using Huggingface
Transformers library and executed it on a Google Colab envi-
ronment with a Tesla T4 GPU and 12.68 GB RAM. Table 4
outlines the hyperparameters and their initial values used in
the experiments. It is of note that the maximum andminimum
lengths of generated sequences are set based on the statistics
in Table 3.

C. EVALUATION METRICS
We evaluate the performance of the QFQS and TG models
using the standard Rouge metric (Recall-Oriented Under-
study for Gisting Evaluation) [59] and BERTScore [60].
Moreover, the accuracy, which measures the ratio of correctly
classified samples, and the F1-score, which is the reciprocal
of the average of precision and recall, are used to assess
the RQE task. However, F1-score presents a better assess-
ment than accuracy when the data is highly imbalanced. This
section defines Rouge and BERTScore and argues about their
reasonability.

1) ROUGE
As an evaluation criterion for text summarization tasks,
Rouge is the most prevalent. Equation (10) formulates the
recall version of Rouge-N. Taking S as the original sequence
and Ŝ as the generated one, the numerator enumerates the
overlapping N -grams between them, and the denominator
counts the total of N -grams in S.

Rouge − N =

∑
gramN∈S Countmatch

(
gramN

)∑
gramN∈S Count

(
gramN

) (10)

Rouge-N values fall between 0 and 1, with closer values to
1 indicating more lexical overlap and a better quality of the
generated sequences. Although Rouge-N ensures the model
captures the reference sequence’s information as much as
possible, it does not consider the word order whenN is small.
In these cases, Rouge-L is recommended in which the longest
common sequence of words (LCS) that are not necessarily
consecutive is regarded, as calculated by (11). In this study,
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FIGURE 3. Comparison of model performance in the case of simultaneous multi-task learning and cases where the shared parameters are tuned based
on only one task. Each plot shows a competition among four systems based on a specific evaluation criterion during the training procedure.

Rouge-1, Rouge-2, and Rouge-L are reported.

Rouge − L =
LCS

(
gramN

)
|S|

(11)

2) BERTSCORE
One of the evaluation metrics for text generation tasks,
introduced in 2019, is BERTScore. In contrast to Rouge met-
rics that measure syntactic similarity, BERTScore compares
the reference sequence to the generated one semantically.
According to (12), first, the contextualized word embed-
ding of both sequences are obtained by passing them to a
BERT-based transformer model (i.e., ES and E Ŝ ). Second, for
every token in the reference sequence, the cosine similarity
relative to each token in the generated sequence is calculated.
Lastly, recall is computed by doing a greedy matching.

BERTScoreRecall =
1
|S|

∑
ei∈ES

max
êj∈E Ŝ

eTi êj (12)

Here, ei and êj, respectively, are the embedding of the ith
token in S and Ŝ.

D. MULTI-TASK LEARNING VS. SINGLE-TASK LEARNING
ReQuEST is able to perform three related tasks, i.e., RQE,
QFQS, and TG, using shared parameters. This section
addresses RQ1 (How is the efficiency of simultaneous learn-
ing of multiple tasks compared to single-task learning?) by

comparing the performance of ReQuEST when learning all
tasks simultaneously to when learning them individually. The
results are shown in Fig. 3, representing each task in a sepa-
rate column, with the horizontal and vertical axes indicating
the iteration and the evaluation criterion, respectively.

According to Fig. 3, four systems are evaluated on
CQAD − ReQuESTsmall. In system #1, the shared encoder
parameters are fine-tuned exclusively based on the loss of the
RQE task. Likewise, in system #2, all parameters contributing
to QFQS are updated solely based on the loss of the QFQS
task, and in system #3, only the TG loss is considered for
the participated parameters in the TG task. Note that, task-
specific heads receive updates across all systems tailored to
their individual task losses. System #4 follows the main idea
of ReQuEST, that is to adjust all trainable parameters with the
simultaneous contribution of all tasks. It is worth mentioning
that BERTScore and Rouge-L values are recall-oriented.

From the viewpoint of RQE performance, shown in
Fig. 3 (a), system #4 achieves competitive performance with
system #1 in terms of F1-score and Accuracy. Nonetheless,
the QFQS results depicted in Fig. 3 (b) reveal the superiority
of system #4 over system #1. In particular, system #1 fails
to adjust the shared encoder parameters in such a way that
also improves the QFQS performance. Hence, it witnesses a
decreasing trend in BERTScore and Rouge-L, while system
#4 achieves the best performance in the QFQS task. A similar
reasoning can also be applied to the results of the TG task
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TABLE 5. The performance comparison between single-task and multi-task learning in ReQuEST on CQAD − ReQuESTsmall test data.

FIGURE 4. Comparison of model performance for various compositions of coefficients. Each plot shows a competition among ten systems based on a
specific evaluation criterion during the training procedure.

presented in Fig. 3 (c). In the earliest iterations, system #4
exhibits performance on par with system #3 but gradually
overtakes it in the last iterations. Its supremacy is also evident
from the point of view of QFQS and RQE tasks. In addition
to systems #1 and #3, system #2 is also defeated by system
#4 due to poor performance in RQE and TG tasks.

Overall, the observations in Fig. 3 show that ReQuEST
outperforms individual models despite reducing the number
of trainable parameters significantly. Further, the general atti-
tude of most plots is increasing, underscoring the positive
impact of RQE on TG and TG on QFQS through latent
interactions. Table 5 also confirms this argument by reporting
the evaluation results on test data. Bearing in mind that BART
is pre-trained for sequence generation tasks such as text sum-
marization, increasing iterations may cause the QFQS task

to overfit. Hence, the training procedure is stopped after ten
iterations in all experiments.

E. SENSITIVITY ANALYSIS
In response to RQ2 (How sensitive is ReQuEST to changes
in coefficients? Which combination of coefficients yields the
highest performance in all tasks?), we measure the model
performance for different coefficients. Nevertheless, as coef-
ficients are real numbers (i.e., ∈ R), the number of possible
combinations is infinite. Thus, for simplicity, we set the coef-
ficients ρ and τ to 1 and designate the remaining coefficients,
i.e., α, β, and γ in such a way that they sum to 1. A selection
of the experimental results is exhibited in Fig. 4.

Fig. 4 illustrates the changes in model performance for
ten systems. Each task has its own column, with plots
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TABLE 6. Analysis of ReQuEST performance on test data of CQAD − ReQuESTsmall.

TABLE 7. Analysis of ReQuEST performance after training for ten iterations on CQAD-ReQuEST while having α = 0.7, β = 0.1, and γ = 0.2.

representing changes in corresponding evaluation metrics
over time. As demonstrated in Fig. 4 (a) there is intense com-
petition among different systems as to accuracy and F1-Score.
Even so, all systems eventually converge to roughly stable
F1 scores within the range [0.943, 0.960]. This phenomenon
indicates that ReQuEST performance in the RQE task is
relatively independent of the exact tuning of coefficients.
In Fig. 4 (b), upward trends in BERTScore and Rouge-L
results are evident for all systems, although the slopes dif-
fer. The final BERTScore values ranging in [0.909, 0.918]
indicate that semantic similarities are well preserved in all
systems. Furthermore, the broader range of Rouge-L val-
ues, i.e., [0.495, 0.542], implies that systems adhere more
to semantic than lexical similarity, which makes sense in
abstractive summarization. In a nutshell, Fig. 4 (b) reveals
that all systems have the potential to converge to efficient
results, though some do so faster, and some require more
time. A similar analysis can be made for the TG task based
on Rouge-L and BERTScore results exhibited in Fig. 4 (c).
Indeed, not a high γ coefficient necessarily means the
best proficiency in TG, but rather the alliance of the three
tasks. In conclusion, the sensitivity analysis verifies that
ReQuEST has stable performance under various coefficients,
and thus a wide range of coefficients can lead to expedient
outcomes.

Table 6 reports the final performance achieved by systems
on test data per task in detail. The mean and variance of
each evaluation metric over ten systems are also announced.
Table 6 implies that ReQuEST can achieve acceptable results

on all three of its tasks concurrently. Besides, variance values
close to zero confirm its stable behavior.

F. ANALYSIS OF REQUEST PERFORMANCE ON
CQAD-REQUEST
To answer RQ3 (How well does ReQuEST perform on the
whole CQAD-ReQuEST data?), we repeat training ReQuEST
using the existing 58k samples in the CQAD-ReQuEST
dataset. Accordingly, a combination of coefficients must first
be chosen for training, even though ReQuEST performance
is almost independent of them. Based on Table 6, we pick
the coefficients of system #13 (i.e., 0.7, 0.1, and 0.2) because
of its superior performance in both RQE and TG tasks and
achieving the second-best outcomes in QFQS. The evaluation
results are presented in Table 7. Furthermore, to illustrate
whether an improvement is attained, the difference between
each value and the corresponding result obtained by system
#13 is displayed in parentheses. It is worth mentioning that
this scenario utilizes the same test data as the second scenario
to make results comparable. Moreover, the number of iter-
ations remains unchanged as our large-scale dataset makes
training iterations more time-consuming.

The evidence in Table 7 supports the claim that ReQuEST
performs all its tasks fairly well. It also implies that the
data distribution in CQAD-ReQuEST is sufficiently homo-
geneous. For more justification, negative differences reported
for the training data are mainly attributed to the early stopping
of the training procedure. Indeed, as the dataset is large-scale
and diverse, ReQuEST needs more iterations to become
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TABLE 8. Comparative analysis of some recently developed models on the MediQA-RQE test set based on the accuracy metric. The F1-score is also
reported in parenthesis.

TABLE 9. The performance comparison of some recently developed models on MeQSum test set in terms of Rouge-L (F1), Rouge-1 (F1), Rouge-2 (F1), and
BERTScore (F1). Recall-based values are also reported in parentheses for our proposed method.

TABLE 10. The performance comparison of some recently developed models on Debatepedia test set. All Rouge values are recall-based except the ones
in parenthesis, which are F1-based.

proficient in all tasks. Nonetheless, the TG performance on
test data is improved by about 11% and 2% in Rouge-L and
BERTScore metrics, respectively. Furthermore, the test accu-
racy and F1-Score are both 1% enhanced. In addition, despite
a slight degradation in the QFQS performance in terms
of Rouge-L, the BERTScore criterion declares preserving
the semantic quality of produced summaries. In conclusion,
ReQuEST is expected to become more efficient by tuning
more and reaching a compromise between tasks.

G. ANALYSIS OF REQUEST PERFORMANCE ON OTHER
DATASETS
To answer RQ4 (How efficient is ReQuEST on other datasets,
whether the open domain or restricted domain?), the per-
formance of ReQuEST on three well-known datasets is
compared with some recent approaches. MediQA-RQE is
utilized for the RQE task, while MeQSum and Debatepedia
are used for generic and query-focused abstractive summa-
rization tasks. The test results are presented in Tables 8 to 10.
It is worth noticing that aside from test data, each dataset
includes training data on which ReQuEST parameters are

trained. Moreover, those advanced approaches employing
models pre-trained on in-domain data or incorporating spe-
cialized knowledge through data augmentation techniques are
exempt from competition.

Table 8 summarizes the assessment results on the
MediQA-RQE dataset. As Table 8 indicates, even pre-trained
transformers on biological data, i.e., BioBERT, are beaten by
the ReQuEST. However, the 1% supremacy of [61] suggests
that the quality of text representation directly influences clas-
sifier performance.

Table 9 compares the performance of ReQuEST on the
MeQSum dataset with several recent models. It signifies the
superiority of ReQuEST over BART, PEGASUS, and their
ensemble model in terms of BERTScore and Rouge metrics.
In addition, gaining great BERTScore values indicates that
summaries are well-generated, conveying the meaning of
target sentences. Overall, the evidence confirms the effec-
tiveness of multi-task learning for the QS task. In addition,
it is hoped that incorporating domain-specific information
or other question characteristics, such as question focus or
question type, will improve the performance of ReQuEST.

17148 VOLUME 12, 2024



S. Z. Aftabi et al.: ReQuEST: A Small-Scale Multi-Task Model for CQA Systems

Table 10 illustrates a performance comparison between
ReQuEST and some competitors using the Debatepedia
dataset. It is evident from this table that ReQuEST ranks the
best in terms of Rouge-L. In addition, due to the simulta-
neous high values of Rouge-L and Rouge-1, it appears that
ReQuEST can recover a considerable fraction of reference
tokens in the same order. At the same time, Rouge-2 is
less than a third, which means ReQuEST does not oblige
itself to capture adjacent words. In contrast, it brings up to
90% BERTScore, which informs the high semantic qual-
ity of the created summaries. It is worthwhile to say that,
though Debatepedia queries are sentences rather than sets
of tags, ReQuEST handles them in the QFQS task. Besides,
it generates them simultaneously through its TG task, result-
ing in approximately 55.7% Rouge-1, 38.6% Rouge-2, 53%
Rouge-L, and 89.8% BERTScore metrics. In summary, the
analyses signify that ReQuEST performs plausibly on dif-
ferent benchmarks. It is also anticipated that infusing more
information will improve its performance.

V. CONCLUSION AND FUTURE WORK
In this paper, a transformer-based multi-task model called
ReQuEST has been proposed to handle three essential tasks
in community question-answering platforms, including ques-
tion entailment recognition (RQE), question summarization
(QS), and tag generation (TG). Leveraging BART as its back-
bone, ReQuEST predicts the entailment label of an input pair
of questions and summarizes the first question in light of
its tags. Meanwhile, it generates a sequence of tags for the
first question, describing its main topics. Indeed, ReQuEST
tends to minimize the total loss of all tasks while also mak-
ing a compromise between them. Moreover, significantly
reducing the number of parameters without depreciation
of model performance is of great importance in the cur-
rent research. Additionally, to the best of our knowledge,
ReQuEST is the first effort that involves the TG along-
side RQE and QFQS. As a consequence, more prosperous
input representations are acquired by sharing the encoder
component between all tasks. Besides, sharing the first lay-
ers of the decoder component between TG and QS allows
them to benefit each other during reconstructing sequences.
The experimental results on real-world datasets have
indicated that ReQuEST can accurately predict the entail-
ment relation and generate high-quality summaries and tag
sequences.

In future work, we will address the following enhance-
ments to the current study:

1) Assessing the effectiveness of other transformer mod-
els such as Longformer, T5, and DistillBART.

2) Identifying the best composition of coefficients by
implementing an ML-based model.

3) Defining larger values for coefficients beyond the range
of [0,1] to accelerate convergence.

4) Defining rouge-based objective functions instead of
cross-entropy loss to better match the problem
objectives.
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