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ABSTRACT Graph neural networks (GNNs) are powerful tools for handling graph-structured data. However,
their design often limits them to learning only higher-order feature interactions, leaving low-order feature
interactions overlooked. To address this problem, we introduce a novel GNN method called explicit
feature interaction-aware graph neural network (EFI-GNN). Unlike conventional GNNs, EFI-GNN is a
multilayer linear network designed to model arbitrary-order feature interactions explicitly within graphs.
To validate the efficacy of EFI-GNN, we conduct experiments using various datasets. The experimental
results demonstrate that EFI-GNN has competitive performance with existing GNNs, and when a GNN is
jointly trained with EFI-GNN, predictive performance sees an improvement. Furthermore, the predictions
made by EFI-GNN are interpretable, owing to its linear construction. The source code of EFI-GNN is
available at https://github.com/gim4855744/EFI-GNN.

INDEX TERMS Graph neural networks, feature interactions, interpretable AI.

I. INTRODUCTION
Graphs are ubiquitous in the real world. Molecules, social
networks, citation networks, and natural languages are
representative examples. Directly analyzing such complex
graphs is challenging, and embedding graphs(or nodes) into
real vectors is necessary for applying machine learning
techniques. As a result, graph-representation learning has
emerged as a crucial task in recent years.

Graph neural networks (GNNs) are attracting great atten-
tion across various domains due to their remarkable ability to
handle graph-structured data [9], [15], [18]. GNNs aggregate
input features and the representations of neighboring nodes
in nonlinear ways utilizing an activation function. This
approach enables the implicit learning of higher-order feature
interactions, which can be advantageous in capturing intricate
patterns. However, some valuable patterns can be captured
from low-order feature interactions (e.g., 1st-, 2nd-, or
3rd-order interactions) [6], [12], [24]. By focusing solely on
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higher-order feature interactions, GNNs might miss essential
patterns, potentially resulting in a degradation of predictive
performance.

Explicitly learning feature interactions- a way humans
can understand how features are combined and identify the
influence of these interactions on output values- has been
widely studied [6], [12], [24], [35]. To learn low-order feature
interactions, existing methods employ linear regression [6],
factorization [12], [28], or feature crossing [17], [24], [35].
They have also shown that combining low-order and
higher-order feature interactions can enhance predictive
performance in tasks like recommendations [12], [24] and
regression [17]. However, to the best of our knowledge,
there are no explicit feature interaction methods that can
directly handle graphs. In addition, although explicit methods
are inherently interpretable, their interpretability has been
neglected in the previous literature.

To overcome the aforementioned problem, we propose a
novel GNN method named explicit feature interaction-aware
graph neural network (EFI-GNN), which can explic-
itly learn arbitrary-order feature interactions on a graph.
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EFI-GNN is a multilayer linear network. Specifically,
EFI-GNN performs graph convolution [18] without an acti-
vation function and multiplies the sum of 1st-order features
across each layer, which we refer to as feature crossing.
Therefore, the interaction order of EFI-GNN escalates with
the increase in its number of layers. For instance, 2- and
4-layer EFI-GNNs can learn 2nd- and 4th-order feature
interactions, respectively. In addition, EFI-GNN is inherently
interpretable due to its linearity.

We conduct experiments using various citation net-
work datasets to validate the effectiveness of EFI-GNN.
The experimental results demonstrate that EFI-GNN has
competitive predictive performance with existing GNNs.
Moreover, jointly training an existing GNN with EFI-GNN
can improve predictive performance. To determine the
efficacy of learning multiple feature interactions in graphs,
we conduct further experiments across various joint-learning
scenarios using open graph benchmark (OGB) datasets. The
experimental results demonstrate that combining multiple
feature interactions leads to performance improvements. This
implies that sophisticated techniques, previously proposed
for learning feature interactions to improve recommenda-
tion or regression performances, may be potent for graph
applications. In addition, to interpret the prediction of EFI-
GNN, we visualize 1st- and 2nd-order feature interactions as
heatmaps.

II. RELATED WORKS
A. GRAPH NEURAL NETWORKS
GNNs are a special form of deep neural networks tailored for
graph-structured data. Vanilla graph neural network (Vanil-
laGNN) [30] extends recurrent neural networks (RNNs)
[29] to make them applicable to more general graphs,
like undirected cyclic graphs. Gated GNN (GGNN) [21]
improves VanillaGNN by using gated recurrent unit (GRU)
[7]. These RNN-based GNNs can be classified into Recurrent
GNNs (RGNNs). Planetoid [39] is a semi-supervised node
embedding framework trained to predict node class labels and
subgraph contexts simultaneously through a neural network.
Recently, graph convolutional network (GCN) [18] and its
variants [13], [34] have achieved great success in the node
embedding task. One problem with spectral methods like
GCN is over-smoothing. To alleviate the over-smoothing
problem and train a deep GCN, several methods utilizing
residual connections have been proposed [19], [20]. Jumping
knowledge network (JKNet) [38] concatenates all hidden
layers of GCN tomake predictions. This strategy can alleviate
the over-smoothing problem. Subgraph sampling techniques
for fast training and inference of GCN have been pro-
posed [3], [15]. Simple graph convolutional network (SGC)
[36] is a straightforward and linear version of GCN using
powers of the adjacency matrix. Link prediction methods for
bipartite graphs utilizing GNNs have been proposed [1], [41].
Graph transformer [40] automatically generates meta-paths
and effectively deals with heterogeneous graphs. All the

aforementioned methods except SGC implicitly aggregate
feature information. Thus, they only learn higher-order
feature interactions and cannot capture valuable patterns
occurring in low-order feature interactions.

B. FEATURE INTERACTION METHODS
Feature interactions refer to the combined effects of different
features on a given output value. Such interactions play a
crucial role in improving the performances of machine learn-
ing models [12], [28]. Traditionally, handcrafted features
have been widely used to learn feature interactions. However,
generating handcrafted features requires domain expertise
and is time-consuming. Recently, various methods have been
proposed for learning feature interactions without handcraft-
ing. One example is factorization machine (FM) [28], which
combines linear regression and factorization methods to learn
1st- and 2nd-order feature interactions simultaneously. Sim-
ilarly, Wide & deep learning [6] combines linear regression
and deep neural network (DNN) to learn 1st- and higher-order
feature interactions simultaneously. DeepFM [12] is a
joint learning method of FM and DNN. The aforemen-
tioned models learn only bounded-order feature interactions.
To overcome this problem, CrossNet [35] has been proposed.
It can learn arbitrary-order feature interactions based on its
number of layers. Compressed interaction network (CIN)
[24] and the explicit component of extreme interaction
network (XIN) [17] have extended CrossNet to vector-wise
operations.

C. FEATURE INTERACTIONS VIA GRAPHS
In recent years, several methods have been proposed for
learning feature interactions through GNNs [22], [23],
[25], [42]. These methods designate features as nodes and
employ GNNs to learn edge weights within the feature
graph. The learned edge weights indicate the interactions
between different features. However, they cannot handle
graph-structured data. FI-GNN [8] is a joint learning method
of GNN and the feature factorization module. However,
the feature factorization module cannot apply directly to
graph-structured data and only learns 2nd-order feature
interactions. In contrast, our proposed EFI-GNN can directly
handle graph-structured data and learn arbitrary-order feature
interactions.

III. EFI-GNN
A. PRELIMINARIES
1) FEATURE INTERACTION
Feature interactions are the influences of features to model
outcomes. 1st-order feature interactions indicate the influ-
ences of single features. Similarly, 2nd- and 3rd-order
feature interactions indicate the influences of 2nd- and
3rd-order features (e.g., user × movie, user × movie ×

date). More formally, feature interaction can be defined as
follows:
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FIGURE 1. EFI-GNN layer.

Definition 1: If a function h(·) holds the following condi-
tion, there are interactions between features x [33].

h (x1 + x2 + . . . + xm) ̸=

m∑
i=1

h (xi) . (1)

All deep learning models always hold the above condition
due to their non-linearity. Therefore, deep learning models
always and only learn interactions between all features
(i.e., higher-order feature interactions).

B. EFI-GNN LAYER
EFI-GNN has a multilayer architecture but is quite different
from existing GNNs. Each layer in EFI-GNN has a feature-
crossing term, which multiplies the sum of 1st-order features
instead of an activation function. In EFI-GNN, the sum of
1st-order features is defined as follows:

X(1)
= X(0)W(1), (2)

whereX(0)
∈ RN×M is the raw feature matrix,W(1)

∈ RM×K

is the trainable weight matrix,N is the number of nodes in the
graph, M is the number of features, and K is the projection
size. An EFI-GNN layer is defined as follows:

X(l)
= ÂX(l−1)W(l)

⊙ X(1), (3)

where Â = D̃−1/2ÃD̃−1/2, Ã = A + I, A ∈ RN×N is
the adjacency matrix, D̃ ∈ RN×N is the degree matrix of
Ã, W(l)

∈ RK×K is the trainable weight matrix in l th layer,
and⊙ indicates the Hadamard product. The adjacency matrix
Â is multiplied by the feature matrix X(l−1) to aggregate
the neighbor nodes’ information, and the sum of 1st-order
features is multiplied in each layer to learn high-order feature
interactions. Therefore, the order of feature interactions that
EFI-GNN learns gradually escalates with the number of
layers increases. Fig. 1 depicts the architecture of an EFI-
GNN layer.

Since each layer of EFI-GNN captures different feature
interactions, the output layer of EFI-GNN leverages these rich
feature interactions to enhance its predictive performance.

FIGURE 2. The architecture of GCN & EFI-GNN.

The final output layer of EFI-GNN is defined as follows:

Ŷ =

[
X(1)

∥ X(2)
∥ . . . ∥ X(L)

]
W(out), (4)

where ∥ is the concatenation operator, L is the number of
layers,W(out)

∈ RK ·L×O is the trainable output matrix, andO
is the output size.

C. EFI-GNN LAYER ANALYSIS
To reveal how the EFI-GNN layer captures feature interac-
tions, we present the vector-level representation of the layer.
In (2), X(1) represents the linear transformation of the input
features. In other words, X(1) indicates the weighted sum of
1st-order features. Therefore, we can express (2) at the vector
level as:

x(1)v =

(
x(0)v,1w

(1)
1 + x(0)v,2w

(1)
2 + . . . + x(0)v,Mw(1)

M

)
=

M∑
m=1

x(0)v,mw
(1)
m , (5)

where v denotes the node index. (5) shows that x(1)v
is the weighted sum of the input features of node v.
In (3), X(l) stands for the linear transformation of X(l−1),
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TABLE 1. Dataset statistics.

TABLE 2. Hyperparameter settings for the experimental datasets.

achieved through neighbor aggregation and feature-crossing.
Therefore, (3) can be expressed at the vector level as:

x(l)v =

(
ÂX(l−1)W(l)

)
v
⊙ x(1)v

=

∑
i∈N (v)

(
x(l−1)
i,1 w(l)

1 + x(l−1)
i,2 w(l)

2 + . . . + x(l−1)
i,K w(l)

K

)
⊙

(
x(0)v,1w

(1)
1 + x(0)v,2w

(1)
2 + . . . + x(0)v,Mw(1)

M

)
=

∑
i∈N (v)

K∑
k=1

x(l−1)
i,k w(l)

k ⊙

M∑
m=1

x(0)v,mw
(1)
m . (6)

In (6), the previous layer,
∑

i∈N (v)
∑K

k=1 x
(l−1)
i,k w(l)

k , is mul-
tiplied by the sum of 1st-order features,

∑M
m=1 x

(0)
v,mw

(1)
m .

This allows EFI-GNN layers to learn high-order feature
interactions gradually.

As highlighted above, feature crossing is a pivotal compo-
nent of our EFI-GNN. Standard linear models possess limited
expressive power regardless of their number of layers. This
limitation arises because they can only learn 1st-order feature
interactions and linear patterns. However, linear models with
feature crossing can learn high-order feature interactions, and
this strategy allows linear models to partially overcome the
limitation [24], [35].

D. INTERPRETABILITY
If an EFI-GNN layer is directly connected to the output
layer, we can obtain the influences of features within that
layer, leveraging the intrinsically linear nature of EFI-GNN.
We describe the procedure for obtaining feature influences
below. The influence of a 1st-order feature is defined

as follows:

a(1)n,i = x(0)n,iw
(1)
i , (7)

e(1)c,n,i = a(1)n,iw
(out)
:k,c , (8)

where a(1)n,i ∈ Rk is the representation vector for the 1st-
order feature i of the node n, w(1)

i ∈ Rk denotes the weight
vector for feature i, w(out)

:u,c ∈ Rk is the output weight vector
corresponding to the class c, k denotes the number of units
in the layer, and e(1)c,n,i indicates the influence value of the 1st-
order feature i in the node n for the class c. Analogously, the
influence of a 2nd-order feature is defined as follows:

a(2)n,i,j =

(
x(0)n,iw

(1)
i ⊙ x(0)n,jw

(1)
j

)
W(2)

=

(
a(1)n,i ⊙ a(1)n,j

)
W(2), (9)

e(2)c,n,i,j = a(2)n,i,jw
(out)
u:2·u,c, (10)

where a(2)n,i,j is the representation vector of the 2nd-order
feature i× j, and ec,n,i,j is the influence value of the 2nd-order
feature i× j for the class c. Therefore, we can generalize the
above equations as follows:

a(l)n,i,...,k =

(
a(l−1)
n,i,...,j ⊙ a(1)n,k

)
W(l), (11)

e(l)c,n,i,...,k = a(l)n,i,...,kw
(out)
l·u:(l+1)·u,c, (12)

where e(l)c,n,i,...,k indicates the influence value of a l th-order
feature.

E. JOINT LEARNING WITH GNNS
Our EFI-GNN can be jointly trained with another GNN.
In this section, we introduce a joint learning approach
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TABLE 3. Classification accuracies on the Cora, CiteSeer, PubMed, Amazon, and Actor datasets.

TABLE 4. Classification accuracies on the OGB datasets.

that combines EFI-GNN and an existing GNN. Each
layer of EFI-GNN explicitly learns different-order feature
interactions, while each layer of an existing GNN implicitly
learns higher-order feature interactions - with upper layers
capturing more complex patterns than lower layers. Since
both EFI-GNN and GNN capture different patterns at each
layer, utilizing these rich feature interactions can improve
predictive performances. The final representation matrices of
both EFI-GNN and GNN are defined as follows:

X(out)
efi =

[
X(1)
efi ∥ X(2)

efi ∥ . . . ∥ X(Lefi)
efi

]
, (13)

X(out)
gnn =

[
X(1)
gnn ∥ X(2)

gnn ∥ . . . ∥ X
(Lgnn)
gnn

]
, (14)

whereX(out)
efi ∈ RN×K ·Lefi andX(out)

gnn ∈ RN×K ·Lgnn are the final
representation vectors of EFI-GNN and GNN, respectively,
and Lefi and Lgnn are the numbers of layers of EFI-GNN and
GNN, respectively. The final output layer of the joint-learning
method is defined as follows:

Ŷ =

[
X(out)
efi ∥ X(out)

gnn

]
W(out), (15)

where W(out)
∈ RK ·(Lefi+Lgnn)×O is the trainable output

matrix. We use the cross-entropy as the loss function defined
as:

L = −

∑
i∈V

yilogŷi, (16)

where V = {v1, v2, . . . , vN } is the set of nodes.

IV. EXPERIMENTS
A. DATASETS
We compare the performance of the proposed EFI-GNN and
the joint-learning methods against other leading GNNs using
three citation network datasets: Cora, CiteSeer, and PubMed,
as well as the Amazon Computers [31] and Actor [27]
datasets. In the Amazon, nodes indicate products in the
Computers section and edges represent that two products are
frequently bought together. In the Actor, each node indicates
an actor, and an edge denotes the co-occurrence of two
actors on the same Wikipedia page. In addition, we conduct
experiments with two open graph benchmark (OGB) datasets
to explore whether combining multiple feature interactions
effectively improves predictive performance. The statistics
of the experimental datasets are outlined in Table 1. The
objectives of all datasets are to predict the classes of nodes.
The obgn-mag is a heterogeneous network. Thus, we convert
it to a homogeneous network by focusing solely on the
(paper, cites, paper) relationships. For the Cora, CiteSeer,
Amazon, and Actor, nodes’ features are zero/one encoded
vectors representing absent/present words. For the PubMed,
nodes’ features represent TF/IDF score vectors of the words.
For the obgn-arxiv and ogbn-mag, nodes’ features represent
the average of word2vec vectors of the present words.
All experimental datasets are publicly available. For the
Cora, CiteSeer, and PubMed, we split the datasets into
training/validation/test sets with the same scenario as [3].
For the Amazon and Actor, we randomly split the datasets
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FIGURE 3. tSNE results of EFI-GNNs’ final representations on the PubMed.

FIGURE 4. Ablation study on the number of layers for the Cora, CiteSeer,
and PubMed.

in training/validation/test sets with 60%/20%/20% ratio. For
the obgn-arxiv and ogbn-mag, we split the datasets into
training/validation/test sets with the same scenario as the
public OGB test.

B. EXPERIMENTAL SETUP
We implemented the proposed EFI-GNN and joint-learning
methods using PyTorch [26] and PyTorch Geometric [10].
We trained the EFI-GNN, GCN, and GCNII models on
an NVIDIA GTX 1080ti with 12GB VRAM, while the
remaining models, namely GAT, GATv2, and ASDGN, were
trained on an NVIDIAA100with 80GBVRAM. Training the

GAT, GATv2, and ASDGN models on the GTX 1080ti for
the ogbn-mag dataset is infeasible due to their high memory
usage. Specifically, our PyTorch Geometric implementations
of these models require 30GB, 42GB, and 18GB of VRAM,
respectively.

For all experiments, L2 penalty and dropout are
applied [32]. For the PubMed, ogbn-arxiv, and ogbn-
mag, batch normalization [16] is used. To expedite the
approximation speed of the models on PubMed, the residual
connection [14] is employed. We optimize hyperparameters,
including learning rate and number of units for the Cora,
CiteSeer, PubMed, Amazon, and Actor, using grid search.
For a fair comparison, we use the same model structure
and hyperparameters for ogbn-arxiv and ogbn-mag. All
experimental models were trained 200 epochs for Cora,
CiteSeer, and PubMed, while they were trained 1000 epochs
for the ogbn-arxiv and ogbn-mag. Cross entropy is used as
the loss function, and trainable parameters are optimized with
Adam optimizer. Table 2 shows the hyperparameter settings
for experimental datasets.

C. PERFORMANCE COMPARISON
We compare EFI-GNN with GCN [18], FastGCN [3],
GraphSage [13], ASGCN [15], GCNII [4], GAT [34],
GATv2 [2], and ASDGN [11] using the Cora, CiteSeer,
PubMed, Amazon, and Actor. Table 3 shows the test set
accuracies for experimental models. In the ‘‘reported’’ row
of Table 3, we have borrowed the reported performances
of GCN, FastGCN, GraphSage, ASGCN, and GCNII from
their original papers. In addition, we conducted our own
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experiments with GCN, GAT, GCNII, GATv2, and ASDGN.
We measured the accuracies of the experimental models with
10 random seeds and reported the average accuracies and
standard deviations. Our experimental models concatenate all
layers to make predictions. Although our EFI-GNN is linear,
it shows comparable performance to GCN. This demonstrates
that EFI-GNN can effectively learn feature interactions on
graphs. In addition, the predictive accuracies are consistently
improved in the all joint-learning settings. This shows that the
low-order feature interactions learned by EFI-GNN include
useful information that cannot be captured in higher-order
interactions.

We conduct an additional experiment on two OGB datasets
to examine whether combining multiple feature interactions
is effective. In this experiment, GCN, GAT, GATv2, and
ASDGN are used to learn implicit feature interactions, and
EFI-GNN is used to learn explicit feature interactions. Table 4
shows the test accuracies of the experimental models. GCN∗

and EFI-GNN∗ indicate GCN and EFI-GNN that make
predictions using only the last layer, respectively. GCN,
GAT, GATv2, and ASDGN use the concatenation of all
layers to make predictions. Thus, they can learn multiple
implicit higher-order feature interactions. EFI-GNN also
uses the concatenation of all layers to make predictions.
It can learn multiple various-order feature interactions. All
joint learning methods can simultaneously learn multiple
implicit higher-order and explicit various-order feature
interactions. For a fair comparison, we use GCN & GCN,
which is a joint-learning method of two GCNs, and EFI-
GNN & EFI-GNN, which is the joint-learning method of
two EFI-GNNs. They have the same number of trainable
parameters as GCN & EFI-GNN. GCN and EFI-GNN
outperform GCN∗ and EFI-GNN∗, respectively. This shows
that simultaneously learning multiple feature interactions
is effective for predictive performance. Furthermore, GCN
& EFI-GNN outperforms GCN & GCN and EFI-GNN
& EFI-GNN, and the performance of other joint learning
methods also consistently improved. This demonstrates that
simultaneously learning both explicit and implicit feature
interactions is more effective than learning only explicit or
implicit ones.

D. ABLATION STUDY
Deep spectral graph neural networks may cause the over-
smoothing problem. To investigate whether EFI-GNN faces
the same problem, we have assessed the performance
of EFI-GNN on the Cora, CiteSeer, and PubMed while
varying the number of layers. Fig. 4 shows the performance
changes as the number of layers changes. In the experiment,
we have observed no significant changes in performance.
In Fig. 3, we have visualized the tSNE results of the
EFI-GNNs’ final representations on the PubMed dataset.
Fig. 3 shows that EFI-GNN does not suffer from over-
smoothing problems. This stability can be caused by the
jumping knowledge mechanism and residual connections of
EFI-GNN. Some previous works have demonstrated that

the jumping knowledge mechanism and residual connections
help avoid the over-smoothing problem [4], [19], [20], [38].

FIGURE 5. Influences of 1st- and 2nd-order features.

FIGURE 6. First-order feature interactions with the different number of
units.

E. VISUALIZATION OF FEATURE INTERACTIONS
Our EFI-GNN is intrinsically interpretable, allowing us to
discern the influences of features from a trained model. Fig. 5
illustrates the influences of both 1st- and 2nd-order features
on node 1 with respect to class 1 in the Cora dataset. Since
the node has nine active features, we visualized the influences
of these particular features. In the figure, red cells represent
features with positive influences, while blue cells represent
features with negative influences. Positive features increase
the probability of the node label being 1, whereas negative
features decrease the probability.

We demonstrated the interpretability of our EFI-GNN
by visualizing its feature interactions. In this section,
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FIGURE 7. First-order feature interactions with the different number of
layers.

FIGURE 8. First-order feature interactions with the different random
seeds.

FIGURE 9. Second-order feature interactions with the different number of
units.

we additionally provide visualizations of 1st- and 2nd-order
feature interactions across various hyper-parameter settings.
Fig. 6, Fig. 7, and Fig. 8 show the 1st-order feature

interactions for different numbers of units, layers, and random
seeds, respectively. As shown in the figures, the 1st-order
interactions have a consistent trend across different hyper-
parameter settings. It indicates that EFI-GNN pays attention
to the same features and shows its reliability. On the other
hand, Fig. 9 shows the 2nd-order feature interactions across
different numbers of units. Unlike the consistent trends
observed in the 1st-order interactions, it is hard to find any
patterns in the 2nd-order interactions. We conjecture that the
node aggregation in EFI-GNN layer causes this problem. This
aggregation may make it more challenging to capture stable
patterns of feature interactions. Our future work is to find out
why this phenomenon is caused.

V. CONCLUSION
In this paper, we proposed EFI-GNN, a novel GNN
architecture. EFI-GNN is a linear and interpretable model
that can explicitly learn arbitrary-order feature interactions
on graphs. EFI-GNN showed comparable performance to
GCN, and combining EFI-GNN with another GNN further
enhanced predictive performance. In addition, we visualized
the influences of the 1st- and 2nd-order features through
heatmaps. We believe that EFI-GNN is a pioneering work for
learning feature interactions on graph-structured data.

The major limitations of EFI-GNN are as follows:
1) Interpreting feature interactions more than 2nd-order is
challenging due to neighbor aggregation. 2) EFI-GNN can
only deal with homogeneous graphs. 3) Analysis of EFI-GNN
behavior on homophilic and heterophilic graphs should be
conducted. Based on these limitations, our avenues for future
works include: 1) extending EFI-GNN to other domains
where feature interactions play an important role, such as
recommender systems; 2) incorporating sophisticated feature
interaction learning techniques into EFI-GNN; 3) deploying
EFI-GNN in high-stakes domains that necessitate inter-
pretable models; and 4) applying EFI-GNN to other types of
graphs such as heterogeneous or dynamic graphs.
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