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ABSTRACT Android malware recognition is the procedure of mitigating and identifying malicious software
(malware) planned to target Android operating systems (OS) that are extremely utilized in smartphones
and tablets. As the Android ecosystem endures to produce, therefore is the risk of malware attacks on
these devices. Identifying Android malware is vital for keeping user data, privacy, and device integrity.
Android malware detection utilizing deep learning (DL) signifies a cutting-edge system for the maintenance
of mobile devices. DL approaches namely recurrent neural network (RNN) and convolutional neural
network (CNN) are best in automatically removing intricate designs and behaviors in Android app data.
By leveraging features such as application programming interface (API) call sequences, code patterns, and
permissions, these approaches are efficiently differentiated between benign and malicious apps, even in the
face of previous unseen attacks. This study presents an Intelligent Pattern Recognition using an Equilibrium
Optimizer with Deep Learning (IPR-EODL) Approach for Android Malware Recognition. The purpose of
the IPR-EODL approach is to properly identify and categorize the Android malware in such a way that
security can be achieved. In the IPR-EODL technique, the data pre-processing step was applied to convert
input data into a compatible setup. In addition, the IPR-EODL technique applies channel attention long short-
term memory (CA-LSTM) methodology for the recognition of Android malware. To enhance the solution
of the CA-LSTM algorithm, the IPR-EODL system employs the Equilibrium optimization (EO) algorithm
for the hyperparameter tuning method. The experimentation evaluation of the IPR-EODL model can be
verified on a benchmark Android malware database. The extensive results highlight the significant result of
the IPR-EODL approach to the Android malware detection process.

INDEX TERMS Artificial intelligence, pattern recognition, android malware, security, deep learning.

I. INTRODUCTION
In the present scenario, Cybersecurity has become a primary
area for computer scientists and network engineers that

The associate editor coordinating the review of this manuscript and

approving it for publication was Dr. Mueen Uddin .

provide satisfactory solutions to numerous problems [1].
As the outcome of the fast developments in technological
growth and their essential integrations in every form of our
lives, a miscellany of malware features and their expected
goals have become recognized as well as studied [2]. Among
the malware diversity, the Android malware has received
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attention lately which is found to occupy considerable
attention globally. Android is a common operating system
(OS) when compared to other that controls the OS market.
Malware attacks are familiar situations that can be recognized
as an attack on Android [3]. Numerous descriptions for
malwarewere proposed by various researchers that depend on
the damages caused. The decisive significance of themalware
lies inmalicious apps using different forms of encryptionwith
the aim of gaining unauthorized access. It is aimed to perform
actions that are neither authorized nor appropriate during a
security breach. The three core regulations in security are
namely: privacy, availability, and integrity [4].

Malware associated with smart systems can be recognized
in three contexts as threats such as objectives & attitude,
sharing and infection routes, and privilege acquisition modes.
Scams, junk e-mails, information thievery, and abuse of
websites can be stated as hazardous aims and behavioral out-
looks. Software, browsers, markets, systems, and networks
can be recognized as the sharing and infected directions [5].
Procedural exploitation and employer management like
social engineering are enumerated in the privilege and
acquisition means. Malware especially associated with an
Android OS has been recognized as Android malware that
damages or takes information in an Android-based mobile
device [6]. These are considered ransomware, adware, botnet,
spyware, worms, backdoors, and Trojans.

Google defines malware as possibly malicious fea-
tures [7]. They categorized malware as commercial
and non-commercial privilege escalation, spyware, phish-
ing, and kinds of frauds like Trojans, backdoors toll fraud,
and SMS fraud. To reduce the threat via Android malware,
several researchers approached and developed it so far. The
malware identification methods are divided into two types
namely dynamic and static analysis-based classification [8].
Dynamic analysis has the benefit that it is likely to control
malicious features that employ complicated methods like
code packing or encryption. Both machine learning (ML)
and DL methods have shown effectiveness in the malware
detection process, especially in the context of Android
feature analysis and broader areas of cybersecurity [9].
DL methods are found to be highly efficient over traditional
ML methods for Android malware recognition. Static
analysis, based on algorithms, applies linguistic features
that can be eliminated with no implementation of a feature,
while dynamic analysis-based methods utilize semantic
features observed when an application is executed in specific
environments [10].
ML and non-ML approaches grapple with problems

like restricted efficiency in developing malware patterns
and a superior incidence of false positives. Afterward,
DL approaches were determined useful, highlighting their
ability to automatically extract intricate features and rec-
ognize difficult patterns, preparing them more capable of
tackling the dynamic nature of Android malware. By concen-
trating on this feature, the research endeavors to improve the
performance of Android malware detection, assisting in more

correct and effective solutions in the ever-evolving landscape
of cybersecurity attacks.

This study presents an Intelligent Pattern Recognition
using an Equilibrium Optimizer with Deep Learning (IPR-
EODL) Approach for Android Malware Recognition. The
main purpose of the IPR-EODL system is to properly identify
and categorize Android malware in such a way that security
can be achieved. In the IPR-EODL technique, the data pre-
processing step was executed to change input data into a
compatible setup. In addition, the IPR-EODL methodology
applies channel attention long short-term memory (CA-
LSTM) algorithm for the recognition of Android malware.
To enhance the solution of the CA-LSTM algorithm,
the IPR-EODL approach employs the EO algorithm for
the hyperparameter tuning procedure. The experimentation
evaluation of the IPR-EODL methodology can be tested on a
benchmark Androidmalware database. The key contributions
of the study are listed as follows.

• Establish an IPR-EODL algorithm for Android mal-
ware detection, presenting a new technique to address
the problems in this field. The main objective of
the IPR-EODL algorithm is to accurately detect and
classify Android malware, demonstrating the impact of
robust security measures.

• Utilizes CA-LSTM approach for efficient analysis and
detection of Android malware. It depicts conventional
approaches by capturing long-term dependencies and
concentrating on important features with channel
attention.

• Combines the EOmethod for optimizing hyperparame-
ters of the CA-LSTM algorithm. This optimizer models
efficiency and potentially boosts accuracy related to
fixed or manually tuned parameters.

II. LITERATURE REVIEW
The authors in [11] proposed an intelligent hyperparameter-
altered DL-based malware detection (IHPT-DLMD)
approach. Also, the Bi-directional Long Short-TermMemory
(BiLSTM) methodology has been deployed for the classi-
fication and recognition of Android malware. Finally, the
glowworm swarm optimization (GSO) approach has been
presented to enhance the hyperparameters of the BiLSTM
method. The proposed model is assessed by a standard
dataset. The authors in [12] presented an ML-based system
for Androidmalware recognition. Also, the devised technique
makes use of the Information Gain model. They make use
of various integrations of API Calls, contextual features, and
authorizations. These integrations were fed into different ML
models. The authors in [13] presented a new technique for
recognizing malware in Android apps by GRU, which is a
type of RNN technique.

In [10], an ML-based recognition technique that makes
use of hybrid analysis-based Particle swarm optimization
(PSO) and an adaptive genetic algorithm (AGA) is proposed.
Primarily, feature selection (FS) was done by employing PSO
to the features. Then, the demonstration of XGBoost and
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FIGURE 1. The overall flow of IPR-EODL algorithm.

random forest (RF) using ML identifiers is enhanced by the
AGA. The author in [14] projected a structure employing
image-based malware depictions of Android Dalvik Exe-
cutable (DEX) files. The structure utilizes the EffectiveNetB0
convolutional neural network (CNN) for feature abstraction,
which was then delivered over a worldwide average pooling
layer and provided in a stacking identifier. The author in [7]
projects a Rock Hyrax Swarm Optimizer with a DL-based
Android malware detection (RHSODL-AMD) approach.
Moreover, the Adamax enhancer with attention recurrent
autoencoder (ARAE) technique has been used for Android
malware recognition.

In [15], a pre-trained CNN technique in Android malware
recognition is projected. An EfficientNet-B4 CNN-based
method has been developed to recognize Android malware.
These features are transferred by a worldwide average
pooling layer and provided as a softmax identifier. The
authors [16] presented a novel DL-based technique. Primary,
it visualization a portable executable (PE) file as a colored
image. Then, it identifies malware that relies on deep features
employing support vector machine (SVM). The projected
model integrates DL with ML methods and is observed by
using benchmark datasets.

III. THE PROPOSED MODEL
In this paper, we have proposed an innovative IPR-EODL
methodology for efficient and automatic Android Malware
Detection. The purpose of the IPR-EODL technique is to
properly identify and categorize the Android malware in
such a way that security can be achieved. In the IPR-EODL
technique, a three-stage process is involved namely data pre-
processing, CA-LSTM-based Android malware recognition,
and EO-based hyperparameter tuning. Fig. 1 portrays the
complete workflow of the IPR-EODL system.

A. DATA PRE-PROCESSING
In the IPR-EODL technique, the data pre-processing step
has been applied to transform input data into an attuned
format. In classification, it can be essential to elect features
for signifying the class the novel record would affect [13].
According to this, the permit and API calls have been elim-
inated from every Android app. Androguard [17] suggests

a comprehensive package device intended to connect with
Android files and controlled only by Python environments.
The Androguard device has been deployed for investigating
Android Package Kit (APK) files by separately eliminating
the DEX file permit for every APK file. Therefore, it can
create a data frame involving rows (apps) and columns
(features), but every column suggests particular permits or
API calls with dual values, and then rows refer the both
benign and malware APK files.

B. DETECTION USING THE CA-LSTM MODEL
In this phase, the pre-processed data is passed into the CA-
LSTM algorithm for the Android malware detection process.
The CA-LSTM technique excels in capturing long-range
dependencies and intricate patterns in the sequential data,
making it very suitable for the dynamic and developing
nature of Android malware. The combination of channel
attention mechanisms improves the model’s concentration on
salient features, enabling it to recognize subtle variations that
can represent malicious behavior. Moreover, the CA-LSTM
approach’s ability to automatically adjust to distinct levels of
significance in various channels improves its robustness in
detecting various features of Android malware. By leveraging
the strengths of CA-LSTM, the IPR-EODL method drives
to attain a sophisticated and effectual detection model able
to handle the difficult and developing landscape of Android
malware attacks.

LSTM network is developed as a new approach to address
the problem of RNN [18]. This network constructs on RNN
with the long-time delay process that could efficiently capture
the relationship among longer series, helping to alleviate the
gradient explosion or gradient disappearance. The LSTM
exploits stored data to learn long-term dependency that is
read, saved, and written via three gating processes like forget
input, and output gates. The input gate is used to manage
the data entering the network, the forget gate is used to
regulate the retention ofmemory cells, and the output gate can
be employed to regulate the output of the network. Among
them, the forget gate is the most prominent; decides whether
memory in the network will be maintained or removed which
gives a long-term memory function. During the iteration
procedure of a lithium-ion battery’s charge or discharge cycle,
there is often a capacity rebound process. But, the forget gate
selectively forgets the memory, making the capacity rebound
model improve the predictive performance and have a lesser
effect on the training of the model.

The equation for the forget gate is given below:

ft = σ
(
wf ·

[
ht−1′xt

]
+ bf

)
(1)

First, we splice the existing time step input xt with prior
time step output ht−1 to attain [ht−1, xt ] and later convert it
through the fully connected (FC) layer. Lastly, by activating
the sigmoid function, we attain the memory decay coefficient
ft . The sigmoid function is used to compress the output within
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[0,1] and regulate the value that flows by the network.

it = σ (wi · [ht−1, xt ] + bi) (2)

C̃ = tanh (wc · [ht−1, xt ] + bc) (3)

Afterward, a sequence of alterations from the FC layer
attains the learned memory decay co-efficient , attained by
stimulating the sigmoid function. In Eq. (3), it attains the
input for the existing time-step xt merged with prior time-step
output ht−1 to attain [ht−1, xt ]. Next, [ht−1, xt ] is transformed
via the FC state. Finally, the present layer of learned memory
C̃ is attained by the tanh function. The tanh activation
function is used to compress the output within [−1, 1], which
limits the value flow by the network.

The equation for the cell layer upgrade is given below:

Ct = ft ·Ct−1 + it ·C̃ (4)

By multiplying the decay co-efficient ft through the
memory state Ct−1 of the prior time step, theCt memory now
is attained, besides the present memory decline co-efficien t
by the presently learned memory C̃ .

ot = σ
(
w0

[
ht−1′xt

]
+ b0

)
(5)

ht = ot · tanh (Ct) (6)

The output gate co-efficient 0t is attained by the sigmoid
function. In Eq. (6), the output ht of a single cell of the LSTM
model now is attained.

In recent times, the attention mechanism (AM) has the
considerable advances in DL. The attention-based method
has become more popular in academia and industry for
its effectiveness and interpretability. Initially, AM is based
on the study of human vision. It is well developed that
humans have a restricted capability for data processing in the
field of cognitive science, thus selectively attending to any
accessible data while avoiding the rest. Integrating AM with
the technique makes it quickly detect higher value data from
a great deal of data, decreases the effect of insignificant data,
and optimizes the significance of data.

The study exploits the channel attention (CA) module
squeeze and excitation (SE) block. The CA model could
vigorously perfect the weight of features by absorbing
the significance of feature networks and weighted the
combination of features in dissimilar networks. Thus, the
CA model enables to focus more on significant features and
alleviates the effects of unimportant or redundant features.
During the prediction of lithium battery RUL, the CA
model could efficiently alleviate the effects of capacity and
simultaneously enhance the use of features when data are
restricted:

The CA model is split into three different stages namely
squeeze operation, excitation operation, and scale operation.

At first, the squeeze function removes global spatial
features from the network, which compress the spatial data
into channel descriptors, and employing global average
pooling, it creates statistics for all the channels. The equation

for the squeeze operation is given in the following:

Zc = Fsq (uc) =
1

H×W

H∑
i=1

W∑
j=1

uc (i, j) (7)

Next, the excitation operation completely captures the
dependency for all the channels. The equation for the
excitation operation is given below:

s = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (Wz)) (8)

At last, the scale operation is used to multiply the weighted
coefficients learned from all the channels with a novel feature
to attain the weighted feature, which gives the model a
detection capability for all the features. The equation for scale
operation is given below:

x̃c = Fscale (uc, sc) = scuc (9)

C. HYPERPARAMETER SELECTION USING THE EO
ALGORITHM
Finally, the EO selects the hyperparameter values of the
CA-LSTM approach. This amalgamation proposes to strike
a balance among model complexity and performance by
optimizing the CA-LSTM hyperparameter and making sure
that the DL method efficiently captures intricate patterns
and dependencies in Android malware data. The EO with its
iterative optimizer procedure, adjusts the CA-LSTMmethod,
permitting it to modify the unique features of the Android
malware detection task.

The EO approach simulates the mass balance formula in a
control volume in a physical standard and tries to determine
the stability condition of systems [19]. EO is an effective
optimization once resolving optimizer issues because of its
upgrading process containing 3 stages such as initialization,
equilibrium pool, and concentration upgrade.
Step 1: Initialization. During this stage, the position of all

the particles can be assumed to the attention of control volume
(C), but a group of particles has been created arbitrarily
among the boundaries as:

Ci,j = cmin,j + r
(
cmax,j − cmin,j

)
, i = 1,K , n j = 1,K , d

(10)

whereas Ci,j signifies the position from the jth size of the ith

particle, r denotes the random amount among (zero and one),
cmin,j, and cmaxj denotes the boundaries of all the particles
from jth size. The fitness values (FVs) can be estimated and
the particles can be arranged, the generation of initialization
particles for constructing an equilibrium pool.
Step 2: Equilibrium candidate and pool. To determine the

last equilibrium state, distinct best-far elements are needed
to improve the population range. Hence, an equilibrium pool
has been generated. Moreover, the average place of the above
4 particles has been computed and stored in the equilibrium
pool. Next all the iterations, the 5 candidates were upgraded
depending on the above process. The equilibrium pool was
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expressed as:

Ceq,pool =
{
Ceq(1),Ceq(2),Ceq(3),Ceq(4),Ceq(ave)

}
(11)

whereas Ceq,pool denotes the equilibrium pool, Ceq(i)(i =

1, 2, 3, 4) are 4 candidates with best so far FVs, and
Ceq(ave) implies the average position of 4 candidates that are
formulated as:

Ceq(ave) =
Ceq(1) + Ceq(2) + Ceq(3) + Ceq(4)

4
(12)

During all the iterations, the candidate has been chosen
arbitrarily in the equilibrium pool as the optimum element
from the existing iterations. It can be observed that all the
candidates from the equilibrium pool have a similar proba-
bility to chosen, offering optimum diversity in population.
Step 3: Concentration upgrade. For updating the particle

concentrations, the 2 major terms are assumed in the EO
approach, generation rate (G) and exponential term (F). The
termF challenge is tomanage the stability among exploration
as well as exploitation:

F = a1sign (r1−0.5)
[
exp (−r2tEO) − 1

]
(13)

In which, r1 and r2 represent the arbitrary vectors in the
range of zero and one ; a1 denotes the constant for controlling
the exploration capability, and tEO implies the co-efficient of
EO that can upgraded in all the iterations:

tEO = (1−T/Miter )(a2T/Miter ) (14)

whereas, Miter indicates the maximal iteration, T stands for
the existing iteration, and a2 implies the constant adjusting
of the exploitation capability. Once the a1 is superior, the
exploration of the EO approach is enhanced. Also, if a2 is
higher, the exploitation of EO is improved. During the
primary EO approach, a1 and a2 denote the set as 1 and 2,
correspondingly.

The rate of generation (G) is another essential term
for upgrading in the EO system, it can be employed for
transferring exact performance with improving exploitation.
The mathematical process of the rate of generations (G) has
been formulated as:

G = −P
(
Ceq − r2Ci

)
F, i = 1,K , n (15)

P =

{
0.5rd1 · u rd2 ≥ GP
0 rd2 < GP

(16)

In which, Ceq denotes the elected candidate from the
equilibrium pool; Ci stands for the position of ith particle;
rd1 and rd2 stand for the arbitrary numbers among zero and
one; u implies the unit vector; andGP refers to the generation
possibility that influences the exploitation and exploration are
equivalent to 0.5.

So, the upgrading rule in EO is recognized as:

Cnew
i = Ceq +

(
Ci − Ceq

)
F +

(1 − F)G
r3V

(17)

whereas Cnew
i denotes the upgrading position of an ith

particle, r3 defines the random vector from the array of zero,

and one, V is equivalent to 1. Then the upgrading phase of EO
checks the border of the upgraded locations and computes its
FVs after deploying the memory-saving process for adopting
optimum particles from the upgraded performances.

The EO algorithm develops a fitness function (FF) to
undertake the optimum classifier result. It states an optimistic
integer for implying the optimal solution of the candidate
outcome. In this case, the reduction in classifier error rate has
been regarded as FF, as written in Eq. (18).

fitness (xi) = Classifier Error Rate (xi)

=
number of misclassified samples

Total number of samples
∗100) (18)

IV. RESULTS AND DISCUSSION
In this part, the Android malware recognition outcome of the
IPR-EODL methodology is verified using the database [20],
[21], containing 7500 instances as defined in Table 1.
A group of measures utilized for examining the classification
outcomes is accuracy (accuy), precision (precn), recall
(recal), and F-score (Fscore).

TABLE 1. Details on database.

Precn evaluates the proportion of accurately predictive
positive instances out of every instance that is forecasted as
positive.

Precision =
TP

TP + FP
(19)

Recal computes the proportion of positive instances appro-
priately classified.

Recall =
TP

TP + FN
(20)

Accuy measures the proportion of properly classified
instances (positives and negatives) against the total instances
(no. of instances classified).

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

Fscore is an estimate integrating the harmonic mean of precn
and recal .

F − score =
2TP

2TP + FP + FN
(22)

Fig. 2 represents the confusion matrices generated by the
IPR-EODL model below 80:20 and 70:30 of the training
phase (TRAP)/testing phase (TESP). The results indicate the
efficacious detection of the benign and malware samples
below all classes.

In Table 2 and Fig. 3, the Android malware recognition
result of the IPR-EODL technique is tested under 80:20 of
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FIGURE 2. Confusion matrices of (a-c) TRAP of 80% and 70% and (c-d)
TESP of 20% and 30%.

TABLE 2. Android malware recognition outcome of IPR-EODL
methodology at 80:20 of TRAP/TESP.

the TRAP/TESP. The experimental values emphasized that
the IPR-EODL model appropriately categorizes benign and
malware samples. Additionally, on 80% of the TRAP, the
IPR-EODL method provides an average accuy of 99.18%,
precn of 99.10%, recal of 99.04%, Fscore of 99.07%, and
MCC of 98.14%. Besides, with 20% of the TESP, the IPR-
EODL technique delivers an average accuy of 99.07%, precn
of 98.95%, recal of 99.03%, Fscore of 98.99%, and MCC of
97.98% respectively.

In Table 3 and Fig. 4, the Android malware recognition
study of the IPR-EODL method is definite at 70:30 of the
TRAP/TESP. The outcome values stated that the IPR-EODL
approach appropriately categorizes benign and malware
samples.

Moreover, on 70% of the TRAP, the IPR-EODL method
provides an average accuy of 98.95%, precn of 98.91%, recal
of 98.73%, Fscore of 98.82%, andMCC of 97.64%. Also, with

FIGURE 3. Average of IPR-EODL methodology at 80:20 of TRAP/TESP.

FIGURE 4. Average of IPR-EODL methodology at 70:30 of TRAP/TESP.

TABLE 3. Android malware recognition outcome of IPR-EODL
methodology at 70:30 of TRAP/TESP.

30% of the TESP, the IPR-EODL model delivers an average
accuy of 98.80%, precn of 98.64%, recal of 98.67%, Fscore of
98.65%, and MCC of 97.30% correspondingly.

To estimate the performance of the IPR-EODL method
under 80:20 of TRAP/TESP, TRA, and TES accuy curves
are shown, as represented in Fig. 5. The TRA and TES
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FIGURE 5. Accuy curve of IPR-EODL methodology at 80:20 of TRAP/TESP.

FIGURE 6. Loss curve of IPR-EODL methodology at 80:20 of TRAP/TESP.

accuy curves exhibit the solution of the IPR-EODL system
over plentiful epochs. The figure delivers noteworthy details
regarding the learning tasks and generalized capabilities of
the IPR-EODL model. With a raised epoch amount, it is
observed that the TRA and TES accuy curves acquired
increased. It is evidenced that the IPR-EODL methodology
gets enhanced testing accuracy which can classify the designs
in the TRA and TES data.

Fig. 6 illustrates the complete TRA and TES loss values
of the IPR-EODL method at 80:20 of the TRAP/TESP over
epochs. The TRA loss indicates the model loss is decreased
over epochs. Primarily, the loss values are decreased as the
model adjusts the weight to lessen the predictive error on
the TRA and TES data. The loss curves reveal the amount
to which the method fits the TRA data. It is perceived that the
TRA and TES loss is gradually minimized and represented
that the IPR-EODL model effectively learns the patterns
demonstrated in the TRA and TES data. It is also clear that
the IPR-EODL method adjusts the parameters to reduce the
alteration among the forecast and original TRA labels.

The precision-recall (PR) curve of the IPR-EODL
approach under 80:20 of TRAP/TESP is exhibited by
plotting accuracy beside recall as determined in Fig. 7. The
experimental values confirm that the IPR-EODLmethod gets

FIGURE 7. PR curve of IPR-EODL methodology at 80:20 of TRAP/TESP.

FIGURE 8. ROC curve of IPR-EODL methodology at 80:20 of TRAP/TESP.

improved precision-recall values on all 2 class labels. The
figure describes that the model learns to recognize dissim-
ilar class labels. The IPR-EODL methodology completes
enriched results in the recognition of positive instances with
fewer false positives.

The receiver operating characteristic (ROC) curves offered
by the IPR-EODL model under 80:20 of TRAP/TESP
are established in Fig. 8, which can separate the classes.
The figure states valuable visions into the trade-off among
the TPR as well as FPR rates over various classification
thresholds and changing amounts of epochs. It offers the
accurate forecast performance of the IPR-EODL technique
on the identification of all 2 class labels.

In Table 4 and Fig. 9, an extensive comparison result
of the IPR-EODL technique is provided [22]. The results
indicate the supremacy of the IPR-EODL technique. Based
on accuy the IPR-EODL technique offers an increased accuy
of 99.18% while the J48, RF, decision tree (DT), Naıve
Bayes (NB), Multilayer Perceptron (MLP), AdaBoostMI,
and Automated Android Malware Detection using Optimal
Ensemble Learning Approach for Cybersecurity (AAMD-
OELAC) models obtain decreased accuy of 96.80%, 97.80%,
94.60%, 69.10%, 98.10%, 88.40%, and 98.93% respectively.
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FIGURE 9. Comparative outcome of IPR-EODL methodology with other
systems.

TABLE 4. Comparative outcome of IPR-EODL methodology with other
systems [22].

Meanwhile, based on precn the IPR-EODL method gives
raised precn of 99.10% whereas the J48, RF, DT, NB, MLP,
AdaBoostMI, andAAMD-OELAC techniques getminimized
values precn of 95.20%, 96.60%, 91.60%, 61.00%, 97.10%,
81.70%, and 99.05%. Eventually, based on recal the IPR-
EODL approach provides higher values recal of 99.04%
but the J48, RF, DT, NB, MLP, AdaBoostMI, and AAMD-
OELAC models acquire reduced values recal of 97.42%,
97.22%, 97.52%, 96.92%, 97.90%, 91.83%, and 98.93%
separately.

TABLE 5. Comparative outcome of IPR-EODL methodology with other
systems.

In Table 5 and Fig. 10, the computation time (CT) cost
analysis of the IPR-EODL technique with present models

FIGURE 10. Comparative outcome of IPR-EODL methodology with other
systems.

has been demonstrated. The results highlighted that the
IPR-EODL method gains a lower CT of 0.04s. On the
other hand, the J48, RF, DT, NB, MLP, AdaBoostMI, and
AAMD-OELAC models accomplish increased CT values
of 0.68s, 2.48s, 0.28s, 1.19s, 0.95s, 0.45s, and 0.08s
respectively. Therefore, the IPR-EODL technique exhibits
better performance than other models.

V. CONCLUSION
In this paper, we mainly concentrated on and developed an
innovative IPR-EODL method for effectual and automatic
Android Malware Recognition. The purpose of the IPR-
EODL technique is to properly identify and categorize the
Android malware in such a way that security can be achieved.
In the IPR-EODL technique, a three-stage process is involved
namely data preprocessing, CA-LSTM-based Android mal-
ware detection, and EO-based hyperparameter tuning. In this
work, the IPR-EODL technique has exploited the CA-
LSTM model for the recognition of Android malware.
To enhance the performance of the CA-LSTM approach,
the IPR-EODL technique employs the EO algorithm for
the hyperparameter tuning method. The experimentation
evaluation of the IPR-EODL technique was verified on a
benchmark Android malware database. Extensive outcomes
highlight the significant performance of the IPR-EODL
technique on the Android malware detection process with a
maximum accuracy of 99.18%. Future work can focus on the
design of an ensemble classifier for an enhanced Android
malware detection process.
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