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ABSTRACT The Total Generalized Variation (TGV) model proves effective in removing texture and
background patterns in natural images while suppressing the staircase effect introduced by traditional
Total Variation (TV) regularization. Nevertheless, TGV falls short in preserving structural features due to
its lack of consideration for such structural features. This paper introduces Overlapping Group Sparsity
(OGS) regularization into the TGV model with the specific aim of enhancing denoising, particularly in
textured images. By leveraging prior knowledge of sparse structures discernible from first-order and second-
order gradients, this model surpasses the conventional TGV models in achieving superior denoising and
staircase effect elimination. The model proposed employs a fast split Bregman iteration method to address
the L1 regularization problem within the complex TGV model combined with OGS. The experimental
results comparing various state-of-the-art denoising TV- and TGV-based models highlight a significant
improvement in the denoising performance of the proposedmodel. Specifically, in comparison to the average
values of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) obtained from
other state-of-the-art models, the proposed model demonstrated improvements of 3.5% in PSNR and 3.4%
in SSIM.

INDEX TERMS Total generalized variation, overlapping group sparsity, texture denoising, split Bregman.

I. INTRODUCTION
Texture typically denotes surface patterns that share similar-
ities in appearance and local statistics [1]. These patterns can
generally be categorized as regular, near-regular, or irregular.
Textured materials such as paper or fabric find applica-
tion in the printing industry for security and anti-counterfeit
purposes. The smoothening of texture ensures that any mod-
ifications to prints, inked characters, or writing become
easily detectable, thereby guaranteeing the authenticity and
originality of the content. Security printing on textured
materials found its application in passbooks, including their
covers, internal pages, and check papers. Figure 1 illustrates
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instances of printed characters on a passbook cover and an
internal page. Automated recognition of these printed charac-
ters or writing enhances the level of automation in inspection
processes and improves authentication accuracy. However,
owing to the surface complexity of textured materials, print-
ing conditions, the similarity of adjacent regions or patterns
(e.g., guilloche patterns or watermarks), and variations in illu-
mination, the segmentation of printed characters or writing
remains a persistent challenge, potentially compromising the
accuracy of character recognition [2], [3], [4]. Consequently,
effective denoising becomes paramount before undertaking
character segmentation and recognition.

Efficient character segmentation methods for textured
images can be generally categorized into two classes:
deep learning-based methods [5] and variational-based
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FIGURE 1. Characters printed on: (a) a passbook cover, (b) an internal page of a passbook.

methods [6]. Deep learning methods are usually complex
and require substantial datasets and high computational capa-
bilities for training and fine-tuning. In contrast, variational
methods are generally more straightforward. The effective-
ness of variational methods relies heavily on the precise
representation of prior knowledge regarding the texture
model and the assumptions of symmetry and regularity within
that model. Therefore, these methods often yield unsatisfac-
tory results when applied to general and randomly textured
images.

The widespread application of variational methods in
image processing can be traced back to Rudin’s research
in 1992 [7]. Subsequent algorithms have enhanced Rudin’s
total variation (TV) algorithm by incorporating various
regularization terms tailored to diverse application scenar-
ios. Nevertheless, any modifications or improvements must
address the convex optimization problem, a computational
challenge known for its sluggishness. Traditional TV regular-
ization assumes images to be piecewise constant functions,
which often leads to the staircase effects in solutions [8].
To overcome this limitation, representative enhancements to
TV model have surfaced, including non-local total varia-
tion [9] and total generalized variation (TGV) [10]. These
models have consistently demonstrated commendable out-
comes. The TGV model, introduced by Bredies et al. [10],
harnesses the benefits of both first-order and multi-order
regularization. effectively maintaining smooth and gradient
regions in the image and notably mitigating the staircase
effect. However, it is essential to acknowledge that the
TGV model overlooks the structural similarity within the
image [11]. Earlier studies have effectively removed textures
from useful information using TGV-based models, affirm-
ing the viability of TGV in textured image processing [12],
[13], [14].

In recent years, overlapping group sparsity (OGS) reg-
ularization term has been proposed by Liu et al. [8] and
Chen et al. [15], [16]. Subsequently, it is combined with the
TV regularization term to constitute the TV-OGS regular-
ization term [17]. This term adeptly exploits the structured
sparseness in the image gradient. However, the TV model
lacks the constraint of higher-order difference, and the incor-
poration of sparse gradients in TV has limited efficacy in
suppressing the staircase effect.

This paper introduces an enhanced solution for TGV,
which leverages the OGS convergence operator (TGV-OGS),

which is employed for the removal of texture and background
patterns. The challenge in denoising textured images lies
in the conflict between preserving edges and removing tex-
tures. In image processing, high-order gradient constraints
can control the continuity of low-order gradients [18], which
is crucial for image reconstruction. The proposed model
attempts to achieve effectiveness in simultaneously elimi-
nating the influence of noise and texture while maintaining
image edges. Additionally, the proposed model allows for
exploring image pixel-level neighborhood information. Con-
sidering the rapid convergence properties associated with
the split Bregman iteration technique [19], [20] for partial
differential equations involving the L1 norm [19], this study
employs the split Bregman technique to minimize the pro-
posed energy equation. To further enhance the efficiency of
the split Bregman iteration, we incorporate a fast Fourier
transform (FFT) [21] to solve the OGS convergence method
within the proposed model.

The subsequent sections of the paper are structured as
follows. In the upcoming section, we provide comprehensive
definitions and reviews of TV, TGV, OGS, split Bregman,
and alternating direction method of multipliers (ADMM).
Section III offers an in-depth explanation of the proposed
algorithm utilizing the fast split Bregman method to address
the proposed model. In Section IV, we present experimen-
tal results that illustrate the applicability and effectiveness
of our proposed approach. Finally, Section V serves as
the conclusion summarizing our work and providing final
remarks.

II. RELATED WORK
A. TOTAL VARIATION
Rudin et al. [7] conceptualize an image’s noise or texture
structure as a model characterized by a small gradient ampli-
tude at each pixel. It is noted that the total variation of a
noise-polluted image surpasses that of a noiseless one. Con-
sequently, constraining total variation effectively mitigates
noise. Rudin solved the Euler-Lagrange equation for a TV
model using the gradient descent method. The traditional TV
denoising model introduced by Rudin et al. [7] is shown as
follows:

u = argmin
u

λ

2
∥u− f ∥22 + RTV (u)

= argmin
u

λ

2
∥u− f ∥22 + ∥∇hu∥1 + ∥∇vu∥1 , (1)
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where f denotes the observed image containing noise, while
u represents the target image. ∇hu and ∇vu denote horizontal
and vertical differential matrix. (1) comprises two primary
components. The term ∥u − f ∥22 is the data fidelity compo-
nent, ensuring that the resulting image closely approximates
the original image. The term RTV (u) is the TV regularization
component, primarily for image smoothing. λ is a parameter
balancing the data fidelity term and the regularization term.
∥•∥2 represents the Euclidean norm (short for L2 norm).
∥•∥1 represents the Manhattan norm (short for L1 norm).
The TV model achieves image denoising by minimizing
the energy function (1), ultimately achieving the desired
denoising results u.

B. TOTAL GENERALIZED VARIATION
TGV model leverages the benefits of both first-order and
multi-order regularization. It exhibits adaptive adjustment of
the gradient order based on the detailed information and local
edge features of different regions within an image, thereby
proving effective in simultaneously eliminating the influence
of noise and texture while suppressing the staircase effect.
It is noteworthy that the TGV model overlooks the structural
similarity of the image [11]. Consequently, various enhance-
ments to the TGV model have been consistently proposed.

Ren and Qiu [22] substituted the Lp norm for the L1
norm in the TGV regularization term. In comparison to
the L1 operator, the Lp contraction operator introduces
an additional degree of freedom, allowing for a more
accurate representation of sparse gradient information in
the image. However, this enhancement comes at the cost
of increased computational complexity [23], [24], [25].
Ban et al. [26] introduced a non-local self-similarity in
the transform domain as a prior TGV information, incor-
porating a multi-directional TGV regularization constraint
calculated within the eight-neighborhood space to safeguard
the structural characteristics of the image. Fractional order
differentiation, an extension of integer order differentiation,
was effectively utilized by Xie et al. [27] who combined
the fractional gradient operator with the TGV regularization
term, thereby enhancing the details of the target image.

For simplicity, we assume the image is a square matrix.
Second-order TGV is the most commonly used form. Higher-
order TGV model has been demonstrated to cause exces-
sive blurring of image edges [28]. The second-order TGV
denoising model can be defined as (2) [29]:

u = argmin
u

{
1
2
∥u− f ∥22 + τTGV2

α(u)
}

=argmin
u,v

{
1
2
∥u− f ∥22+τα0∥∇u−v∥1 + τα1∥ε(v)∥1

}
,

(2)

where u∈RN is the discrete vectorization of the denoising
image u. The term ∥u − f ∥22 representing the data fidelity
term, and TGV2

α (u) denotes second-order TGV regulariza-
tion. The parameter τ balances the data fidelity and TGV

regularization. The non-negative gradient weights α0 and α1
are employed to manage the first-order and second-order
gradients. ∥ ∇u − v∥1 represents the total magnitude of the
first-order gradient, while ∥ε (v) ∥1 signifies the total mag-
nitude of the second-order gradient. The gradient operator
∇u =

[
∇xu;∇yu

]
∈ RN ,2 includes the horizontal differen-

tial operator ∇xu and vertical differential operator ∇yu. The
vector v =

[
vx;vy

]
∈ RN ,2 constrains the sparsity of the first-

order gradient, where vx and vy are the horizontal and vertical
differentials of v. The symmetric gradient derivative ε (v) is
as follows:

ε (v) =
∇v+∇vT

2
=

[
∇xvx 1

2

(
∇xvy + ∇yvx

)
1
2

(
∇xvy + ∇yvx

)
∇yvy

]
(3)

Thus, the following equation can be derived:

(u, v) = argmin
u,v

1
2

∥ u− f ∥
2
2 +τα0(∥ ∇xu− vx ∥1

+ ∥ ∇yu− vy ∥1) + τα1(
∥ ∇xvx ∥1 + ∥ ∇xvy + ∇xvy ∥1 + ∥ ∇yvy ∥1

)
.

(4)

C. OVERLAPPING GROUP SARSITY
Traditional TV processes the gradient of each pixel in isola-
tion, neglecting its neighborhood information, which results
in the ineffective separation of pixels with high noise pol-
lution from the edge of the image. Liu et al. [8] introduced
a TV model based on the OGS regularization term. This
regularization term not only accounts for the sparsity of
the image difference domain but also exploits neighborhood
difference information for each pixel, thereby enhancing the
distinction between smooth and boundary regions and signif-
icantly reducing the occurrence of staircase artifacts. Later
studies [11], [30] have integrated OGS with high-order TV to
further diminish the staircase effect. Regrettably, this model
has led to increased blurring of edges.

The OGS shrinkage as formulated by Liu et al. [8] is
expressed as follows:

u = argmin
u

λ

2
∥u− f ∥22 + RTVOGS (u)

= argmin
u

λ

2
∥u− f ∥22 + ϕ (∇hu) + ϕ (∇vu) (5)

where RTVOGS(u) represents the TV-OGS regularization
term, two-dimensional image u∈ Rn×n, ũi,j,k,k is the over-
lapping group matrix, which is defined as follows:

ũi,j,k,k =


ui−Kl ,j−Kl ui−Kl ,j−Kl+1 . . . ui−Kl ,j+Kr
ui−Kl+1,j−Kl ui−Kl+1,j−Kl+1 . . . ui−Kl+1,j+Kr

...
...

. . .
...

ui+Kr ,j−Kl ui+Kr ,j−Kl+1 . . . ui+Kr ,j+Kr


∈ Rn×n, (6)

where Kl= ⌊(K−1)/2⌋,Kr= ⌊K/2⌋, ⌊x⌋ represents the
rounding operator. From (6), it can be seen that the OGS
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regularization term considers the neighborhood gradient
information of K ×K pixels within an image. In this context,
K is also referred to as the group size of the neighborhood
pixels. The overlapping group gradient of the processed pixel
is as follows:

ϕ (u) =

K∑
i=1

K∑
j=1

∥ũi,j,k,k∥2. (7)

Using the majorization-minimization (MM) method [31], (5)
can be easily solved. The iterated solution is as follows:

u(k+1)
=

[
I + γΛ2

(
u(k)

)]−1
f (8)

I∈RN
2
×ÁN 2

represents the unit matrix. Λ ∈ RN
2
×ÁN 2

is a
diagonal matrix.

D. SPLIT BREGMAN AND ADMM
In addition to investigating regularization terms for effective
denoising, addressing computational complexity in varia-
tional models stands out as another major focus. Numerous
efficient and effective algorithms have emerged since Rudin’s
initial suggestion to employ the gradient descent algorithm.
Notably, the split Bregman [19], [20] and ADMM algo-
rithms [32] have gained popularity and have been introduced
to address the intricate computational challenges associated
with TV-based variational models.

Ren et al. [33] introduced a second-order TGV model for
image deblurring. To address the associated computational
challenges, the split Bregman iteration was devised to solve
the Euler-Lagrange equation of the TGV model. Simulta-
neously, Liu et al. [8] employed the split Bregman method
to seek a solution for the TV-OGS in the proposed image
deblurring model. In a related vein, Chen et al. [34] incor-
porated the split Bregman iteration framework to address
the partial differential equation of the TV-OGS denoising
model. These models showcase enhanced efficiency through
the application of the split Bregman iterationmethod for solv-
ing TV-related models. Later in 2019, Chen et al. [35] further
extended this approach by integrating the OGS concept into
the TGV regularization term for seismic signal analysis. The
work introduced the ADMM to solve the proposed model
specifically for Gaussian noise denoising.

Both ADMM and Split Bregman are iterative methods
designed for convex optimization. The ADMM method is a
more general-purpose method applicable to a wider range of
optimization problems [32]. In general, split Bregman is a
specialized form of ADMM tailored for problems involving
L1 norm regularization, offering efficiency advantages in
scenarios where sparsity is a key feature [19], [20]. Typi-
cally, regularization terms like the L1 norm in ADMM are
managed through auxiliary variables and Lagrangian multi-
pliers, rather than direct implementation of L1 regularization.
However, the Split Bregman algorithm directly incorporates
the L1 regularization term into its variable update step,
enhancing efficiency, especially for problems where sparsity

is a crucial characteristic. As a result, it finds predomi-
nant use in TV-based models and other applications where
sparsity is a desired property. The Split Bregman algorithm
exhibits rapid convergence, particularly in specific problem
instances [36], while the convergence of ADMM can be
sluggish in certain cases [37]. Nevertheless, the broad appli-
cability of ADMM contributes to commendable performance
across diverse problem domains. For a better understanding,
the procedures of both ADMM and Split Bregman in solving
the TV model as in (1) are demonstrated in Appendix A.

III. THE PROPOSED MODEL
A. TGV-OGS (FAST SPLIT BREGMAN)
The TGV model generally excels in alleviating the staircase
effect, yet its efficacy in preserving weak edges and details
may be inadequate [38]. Both TV and TGV, along with their
enhanced variations [27], serve as global regularity priors,
focusing on overall image regularity without accounting for
diverse local structures within the image. In contrast, the OGS
regularization term enhances distinctiveness between smooth
gradient and edge gradient regions. Noting that the TV-OGS
model only considers first-order combined gradients and
neglects higher-order gradients, we propose an extension
from TGV to the TGV-OGSmodel. This new model incorpo-
rates the similarity of first-order and second-order gradients,
ensuring a more comprehensive regularization method. The
aforementioned studies suggest that employing TGV and
OGS for image denoising in textured images holds promise
and is feasible. Nevertheless, the inclusion of OGS introduces
shortcomings, notably the high computational complexity
associated with L1 regularization and a decrease in algorithm
efficiency concerning speed.

By applying OGS to the TGV regularization term, the
proposed denoising model is as follows.

u = argmin
u

1
2
∥u− f ∥22 + τTGV 2

α−OGS (u)

= argmin
u,v

1
2
∥u− f ∥22 + τα0[ϕ(∇xu− vx) + ϕ(∇yu− vy)]

+ τα1[ϕ(∇xvx) + ϕ(∇yvy) + ϕ(∇xvx + ∇yvy)] (9)

where TGV 2
α−OGS (u) denotes the second-order TGV

regularization term after adding OGS regularization.
Compared to the typical TGV model shown in (4), the

proposed model is more suitable to depict the structural sim-
ilarity prior and the high-order gradient sparsity prior.

B. NUMERICAL ALGORITHM
The solutions for image denoising in (9) involve optimization
problems with multiple L1 norms. The non-smooth nature of
the L1 norm introduces challenges when implementing the
proposed model in conjunction with the FFT [21]. To address
this, we employ the fast split Bregman iteration framework
to solve (9). Drawing inspiration from [8], [33], and [34],
this paper employs the following steps in the equation-solving
process:
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First, introducing auxiliary variables Sx , Sy, Lxx , Lxy, Lyy.
(9) can be written as follows.

(u, v) = argmin
u,v

1
2

∥ u− f ∥
2
2 +τα0[ϕ (∇xu− vx)

+ ϕ
(
∇yu− vy

)
]

+ τα1[ϕ (∇xvx)+ϕ
(
∇xvy + ∇xvy

)
+ ϕ

(
∇yvy

)
]

s.t. Sx = ∇x u− vx ,Sy = ∇y u− vy,Lxx = ∇xvx ,

Lxy = ∇xvx + ∇yvy,Lyy = ∇yvy. (10)

According to the principle of split Bregman [19], the
Lagrangian multipliers and quadratic penalty terms are
needed to establish the augmented Lagrangian function.
Therefore, we have the following:(

uk+1, vk+1,Sk+1,Lk+1
)

= arg min
u,v,S,L

{
1
2
∥u− f ∥22 + τa0

[
ϕ (Sx) + ϕ

(
Sy

)]
+ τa1

[
ϕ (Lxx) + ϕ

(
Lyy

)
+ ϕ

(
Lxy

)]
+

λ1

2

∥∥∥Sx − (∇xu− vx) − dkx
∥∥∥2
2

+
λ1

2

∥∥∥Sy −
(
∇yu− vy

)
− dky

∥∥∥2
2

+
λ2

2

∥∥∥Lxx − ∇xvx − dkxx
∥∥∥2
2

+
λ2

2

∥∥Lxy −
(
∇yvx + ∇xvy

)
−dkxy

∥∥∥2
2
+

λ2

2

∥∥∥Lyy − ∇yvy − dkyy
∥∥∥2
2

}
(11)

where λ1 and λ2 are non-negative penalty parameters.
dx , dy, dxx , dxy, and dyy are the Lagrange multipliers, these
auxiliary variables can be updated as follows:

dk+1
x = dkx +

(
∇xuk+1

− vk+1
x − Sk+1

x

)
dk+1
y = dky +

(
∇yuk+1

− vk+1
y − Sk+1

y

)
dk+1
xx = dkxx + ∇xvk+1

x − Lk+1
xx

dk+1
xy = dkxy +

(
∇xvk+1

y + ∇yvk+1
x

)
− Lk+1

xy

dk+1
yy = dkyy + ∇yvk+1

y − Lk+1
yy (12)

According to reference [19], it can be inferred that as the
Lagrange multipliers approach zero, the optimization prob-
lem presented in (11) converges to the solution of the original
problem outlined in (9).
To efficiently address (12), the Split Bregman algorithm

commences its iteration to update each variable, namely, u,
v, Sx ,Sy,Lxx ,Lxy , and Lyy in (11) by iteratively minimizing
the equation. This iterative process can be decomposed into
several sub-problems for optimization.
The solution for the sub-problem u can be mathematically

expressed as follows in (13).

uk+1
= argmin

u

{
1
2
∥u− f ∥22

+
λ1

2

∥∥∥Sx − (∇xu− vx) − dkx
∥∥∥2
2

+
λ1

2

∥∥∥Sy −
(
∇yu− vy

)
− dky

∥∥∥2
2

}
. (13)

By sorting out the objective function of the above equation
and finding the gradient of u, we obtain:(
1 + λ1∇

T
x ∇x + λ1∇

T
y ∇y

)
u

= f + λ1∇
T
x

(
vkx + Skx − dkx

)
+ λ1∇

T
y

(
vky + Sky − dky

)
(14)

Under the assumption of periodic boundary conditions, the
above equation can be solved using the FFT as follows.

uk+1
= F−1

F
[
f+λ1∇

T
x
(
vkx+S

k
x−d

k
x
)
+λ1∇

T
y

(
vky+S

k
y−d

k
y

)]
F

(
1+λ1∇T

x ∇x+λ1∇T
y ∇y

) (15)

Among them, F is the two-dimensional Fourier transform
operator, and F−1 is the inverse two-dimensional Fourier
transform operator. Similarly, the solution for the sub-
problems vx and vy can be mathematically expressed in (16).

(vk+1
x , vk+1

y ) = argmax
vx ,vy

{
λ1

2
∥Skx−(∇xuk+1

− vx)−dkx∥
2
2

+
λ1

2
∥Sky −

(
∇yuk+1

− vy
)

− dky∥
2

2

+
λ2

2
∥Lkxx − ∇xvx − dkxx∥

2
2

+
λ2

2
∥Lkxy −

(
∇yvx + ∇xvy

)
− dkxy∥

2
2

+
λ2

2
∥Lkyy − ∇yvy − dkyy∥

2
2
} (16)

The sorting process is the same as sub-problem u. We can
obtain a system of linear equations about vx and vy:[

I + τ1∇
T
x ∇x + τ1∇

T
y ∇y

]
vx + τ1∇

T
y ∇xvy

= τ1∇
T
x

(
Lkxx − bkxx

)
+ τ1∇

T
y

(
Lkxy − bkxy

)
+ ∇xuk+1

− Skx + dkx[
I + τ1∇

T
x ∇x + τ1∇

T
y ∇y

]
vy + τ1∇

T
x ∇yvx

= τ1∇
T
y

(
Lkyy − dkyy

)
+ τ1∇

T
x

(
Lkxy − dkxy

)
+ ∇yuk+1

− Sky + dky (17)

Among them, τ1 =
λ2
λ1
. Let:

A1 = I + τ1∇
T
x ∇x + τ1∇

T
y ∇y

A2 = τ1∇
T
y ∇x

Bk1 = τ1∇
T
x

(
Lkxx − bkxx

)
+ τ1∇

T
y

(
Lkxy − bkxy

)
+ ∇xuk+1

− Skx + dkx ,

Bk2 = τ1∇
T
y

(
Lkyy − bkyy

)
+ τ1∇

T
x

(
Lkxy − bkxy

)
+ ∇yuk+1

− Sky + dky (18)
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using the two-dimensional FFT operator F , (18) can be
written as:{

FA1. ∗ Fvx + FA2. ∗ Fvy = FBk1
FAT

2 . ∗ Fvx + FA1. ∗ Fvy = FBk2
(19)

The symbol .∗ represents the corresponding dot product
between vector elements, which the following equations can
quickly solve:

vk+1
x = F−1

[
FA1 ∗ FBk1 − FAT

2 ∗ FBk2
FA1 ∗ FA1 − FAT

3 ∗ FA3

]

vk+1
y = F−1

[
FA1 ∗ FBk2 − FAT

2 ∗ FBk1
FA1 ∗ FA1 − FAT

2 ∗ FA2

] (20)

Lastly, the solution for the sub-problems Sx ,Sy can be
mathematically expressed in (21) as the following.

Sk+1
x = arg(min)

Sx

{
τa0ϕ (Sx) +

λ1

2
∥Sx

−

(
∇xuk+1

− vk+1
x

)
− dkx∥

2
2

}
Sk+1
y = arg(min)

Sy

{
τa0ϕ

(
Sy

)
+

λ1

2
∥Sy

−

(
∇yuk+1

− vk+1
y

)
−dky∥

2
2

}
(21)

According to Eqs. (5) and (8), the updated formula for
Sx and Sx can be obtained as:

S(k+1)
x(n+1) =

[
I +

τα0

λ1
Λ2

(
S(k+1)
x(n)

)]−1

S(k+1)
x(0)

S(k+1)
y(n+1) =

[
I +

τα0

λ1
Λ2

(
S(k+1)
y(n)

)]−1

S(k+1)
y(0)

(22)

where S(k)
x(n) and S

(k)
y(n) represent the k updated by the (k) th

outer loop and the (n) th inner loop iteration (group sparse
convergence iteration cycle), and Sk+1

x(0) = ∇xuk+1
− vk+1

y +

dkx , S
k+1
y(0) = ∇yuk+1

− vk+1
k + dky . Similarly, the updated

formula for Lxx ,Lxy,Lyy.

L(k+1)
xx(n+1) =

[
I +

τα1

λ2
Λ2

(
L(k+1)
xx(n)

)]−1

L(k+1)
xx(0)

L(k+1)
yy(n+1) =

[
I +

τα1

λ2
Λ2

(
L(k+1)
yy(n)

)]−1

L(k+1)
yy(0)

L(k+1)
xy(n+1) =

[
I +

τα1

λ0
Λ2

(
L(k+1)
xy(n)

)]−1

L(k+1)
xy(0)

(23)

where, Lk+1
xx(0) = ∇xvk+1

x + dkxx , L
k+1
yy(0) = ∇yvk+1

y + dkyy,
Lk+1
xy(0) = ∇xvk+1

x + ∇yvk+1
y + dkxy.

The pseudocode for the algorithm described in this work,
based on fast split Bregman iteration for solving (9) is as
follows:

Algorithm 1 Pseudo-Code of TGV-OGS
Input: Observed image f , model parameters
τ, α1, α2, λ1, λ2, convergence parameters ϵ, OGS group
size K .
Initialize: u0 = f ,L0 =

[
L0xx ,L

0
xy,L

0
yy

]
= 0,S0 =[

S0x ,S
0
y

]
= 0,

(
d0x , d

0
y

)
= 0,

(
d0xx , d

0
xy, d

0
yy

)
= 0,K= 3.

k=1
while ∥uk−uk−1

∥
2
2

∥uk∥22
≤ ϵdo

1. Execute (15) to obtain the solution of u sub-problem.
2. Execute (20) to obtain the solution of (vx , vy)

sub-problem.
3. Execute (22) and its changing forms to obtain the

solution of (Sx ,Sy) sub-problem.
4. Execute (23) and its changing forms to obtain the

solution of (Lxx ,Lxy,Lyy) sub-problem.
5. Execute (12), Update auxiliary variables

d0x , d
0
y, d

0
xx , d

0
xy, d

0
yy.

k = k + 1.
end while.
Output: Denoising image u.

IV. EXPERIMENT
A. EXPERIMENTAL SETUP
This study conducted two experiments to assess the perfor-
mance of the proposed model under varying noise conditions.
The first experiment utilized a grayscale ‘‘peppers’’ image
(Figure 2(a)), and its contaminated version with synthetic
texture (Figure 2(b)). The regions enclosed by red rectangles
in both images were designated as regions of interest for
observation post-denoising. These images were employed to
evaluate the proposed model’s efficacy in removing strong
synthetic textures.

To quantitatively assess the quality of denoising results
across different models, we utilized three key metrics: Peak
signal to noise ratio (PSNR), Structural similarity index
(SSIM), and processing time [39] The PSNR quantifies the
ratio of peak signal energy to the average noise energy.
A higher PSNR indicates a lower level of noise or distortion
in the denoised image. The expression of PSNR is expressed
in (26).

PSNR (X,Y) = 10 lg 2552
1
N2

∑N
i=1

∑N
j=1(X ij−Y ij)

2 (24)

The SSIM assesses the similarity between two images, con-
sidering factors such as brightness, contrast, and structural
details. It serves as an objective standard for gauging image
distortion and noise suppression. A higher SSIM value signi-
fies a more remarkable similarity between the denoised and
original images with SSIM values bounded between zero and
one. The expression of SSIM is expressed in (27).

SSIM (X,Y)

=

(
2uXuY + (255k1)2

) (
2σXY + (255k2)2

)(
u2X + u2Y + (255k1)2

) (
σ 2
X + σ 2

Y + (255k2)2
) (25)
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FIGURE 2. (a) the ‘‘peppers’’ image, (b) the ‘‘peppers’’ image imposed with synthetic textured noise, (c) the cover page of a passbook, (d) the passbook
page.

In this context, X represents the original image. Y represents
the restored image; uX and uy represents the mean of images
X and Y, respectively. u2X and u2Y represents the variance of
images X and Y, respectively. σXY signifies the covariance
between X and Y.

The stopping criteria for all models were standardized.
It required that the relative difference between successive iter-
ations of the denoised image satisfy the following inequality:

∥Fk+1
− Fk∥2

∥Fk+1
∥2

≤ 1×10−4 (26)

where Fk and Fk+1 respectively represent the current itera-
tion and the next iteration of an image.

The second experiment employed two realistic images
(Figure 2(c) and 2(d)) to assess the denoising model’s per-
formance concerning the preservation of weak edges and fine
details against various noise types, such as those arising from
natural fabric texture and watermark patterns. Figure 2(c)
displays a passbook cover featuring noise induced by the
natural fabric texture and printed characters of varying sizes.
Figure 2(d) exhibits an internal passbook page with a back-
ground adorned with watermark patterns, incorporating both
printed and handwritten characters of different sizes. The
contrast between some characters or foreground elements
and the background texture in both Figure 2(c) and 2(d) is
relatively low. To enhance the visualization of differences
between the original and denoised images, an adaptive thresh-
olding method [40] was applied for image binarization. This
method aimed to standardize binarization across denoised
images, utilizing a fixed kernel size and threshold value
computed based on the local neighborhood. This approach
ensured a more accurate reflection of the denoising effect on
local regions within the image.

As there is no standard or noise-free reference image for
Figure 2(c) and 2(d), conventional performance metrics like
PSNR and SSIM, employed in the initial experiment, are
not applicable. Consequently, line intensity profiles were
extracted for in-depth analysis. By comparing these pro-
files at specific locations within the images before and after
the denoising operation, it becomes possible to assess the
effectiveness of preserving edges and fine details. Typically,

small and repetitive fluctuation patterns observed in the hori-
zontal direction within a line intensity profile represent the
textured regions in an image. The abrupt changes in the
line intensity profile signify the presence of edge features.
Therefore, a smaller fluctuation in the line intensity profile
within the textured region after denoising indicates improved
texture elimination. Additionally, a larger value of the peak-
to-valley height retained after denoising suggests better edge
protection.

Several state-of-the-art denoising models, namely TV [7],
TGV [10], TV-OGS [8], and TGV-OGS (ADMM) [35], were
employed for comparative analysis of their denoising effects
and ability to eliminate the staircase effect. These models and
the proposed one were developed using MATLAB 2022b and
implemented on a laptop computer with a processing CPU of
4.6 GHz and RAM of 16 GB.

B. COMPARISON OF ALGORITHM PERFORMANCE
Figure 3 displays enlarged image patches before and after
denoising operations. Specifically, Figure 3(a) and 3(b) cor-
respond to the original image patch in Figure 2(a) and the
image patch with imposed synthetic texture in Figure 2(b).
In this context, the group size K was standardized to three
for all OGS-based models, as suggested in [8] for optimal-
ity. Figure 3(c) to 3(g) depict the texture removal effects
of TV, TGV, TV-OGS, TGV-OGS (ADMM), and the pro-
posed model, respectively, on the same image patches shown
in Figure 2(b). While all TV- and TGV-based models can
generally remove synthetic textures, the observed staircase
effects vary across models. Notably, in the regions enclosed
by a green rectangle, Figure 3(c) demonstrates a significant
staircase effect when using the TV model for denoising.
Figure 3(d) and 3(e), processed with TGV and TV-OGSmod-
els, respectively, still exhibit minor residual staircase effects
in the green rectangular box area.

Simultaneously, slight remnants of texture noise persist,
particularly within the region enclosed by the green rect-
angle. This observation indicates that TGV and TV-OGS
exhibit a certain degree of efficacy in mitigating the stair-
case effect. However, these models fall short of complete
removal of robust textures, leaving behind residual artifacts.
In Figure 3(f) and 3(g), both images were denoised using
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FIGURE 3. a) image of ‘‘peppers’’ patch enlarged without texture, (b) image of ‘‘peppers’’ patch enlarged with synthetic texture noise, (c)
denoised image patch enlarged using TV model, (d) denoised image patch enlarged using TGV model, (e) denoised image patch enlarged
using TV-OGS model, (f) denoised image patch enlarged using TGV-OGS(ADMM) model, (g) denoised image patch enlarged using TGV-OGS
(split Bregman) model.

TABLE 1. Performance metrics of the different denoising models.

TGV-OGS models but with distinct solvers. Notably, the
residual noise in the green rectangular area was effectively
eliminated, while the presence or elimination of staircase
artifacts was not apparent.

Table 1 presents a comprehensive overview of these mod-
els’ performances in the conducted experiment, evaluating
PSNR and SSIM concerning denoised images in comparison
to the original image depicted in Figure 3(a). Additionally,
the table includes the time and iteration number required for
the denoising operations. The results indicate that TGV incor-
porating the OGS regularization term consistently achieved
higher PSNR and SSIM values than their counterparts.
This suggests that, despite the varied solvers employed
by TGV-OGS models, they demonstrated more effective
suppression of textural noises and background patterns, min-
imizing or eliminating staircase effects. However, due to the
complexity of these models, their computational costs are
relatively higher compared to TV, TGV, and TV-OGSmodels.
Nevertheless, the proposed TGV-OGS model in this study
surpasses the TGV-OGSwith ADMMsolvers in terms of pro-
cessing time. The proposed model demonstrated a two-thirds
reduction in processing time compared to the TGV-OGSwith
ADMM solver while maintaining similar denoising effects.

FIGURE 4. The convergence curves of TGV-OGS (ADMM) and TGV-OGS
(split Bregman).

Moreover, the proposed model required fewer iterations than
the TGV-OGS with the ADMM solver. According to Table 1,
the average PSNR and SSIM values for the other three
comparison models are 22.73dB and 0.7333, respectively.
The PSNR and SSIM values for the proposed model sur-
pass the average values by 0.8dB (3.5%) and 0.0252 (3.4%),
respectively.

The convergence curves depicted in Figure 4 were utilized
to assess the efficiency of the TGV-OGS model employing
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FIGURE 5. (a) Original image of a passbook cover and (b) denoised image using TV model, (c) denoised image using TGV model, (d) denoised image
using TV-OGS model, (e) denoised image using TGV-OGS (ADMM) model, (f) denoised image using TGV-OGS (split Bregman) model, (g)- (l) are binarized
version of image 6(a)-(f).

FIGURE 6. (a) Original image of a passbook page and (b) denoised image using TV model, (c) denoised image using TGV model, (d) denoised image
using TV-OGS model, (e) denoised image using TGV-OGS (ADMM) model, (f) denoised image using TGV-OGS (split Bregman) model, (g)- (l) are binarized
version of image (a)-(f).

the ADMM solver in comparison to the proposed model
utilizing a fast split Bregman solver. Notably, it is observed
that the TGV-OGS model, when integrated with the fast split
Bregman solver, exhibits a superior convergence speed com-
pared to its ADMM counterpart. Specifically, the TGV-OGS
with a fast split Bregman solver demonstrates a more advan-
tageous starting point for convergence, registering 0.7 in
contrast to the ADMM solver’s starting point of 0.25. Con-
sequently, the TGV-OGS model with a fast split Bregman
solver requires less time and fewer iterations to achieve
convergence.

Figure 5 and 6 depict the denoising effects applied to
the images in Figure 2(c) and 2(d) using various models,
including TV, TGV, TV-OGS, TGV-OGS (ADMM), and the
proposed model. Specifically, Figure 5(a) presents the origi-
nal cover page image of a passbook, while Figure 5(b) to 5(f)

exhibit the denoising outcomes achieved by various models,
respectively. Additionally, Figure 6(a) displays the original
image of an internal passbook page with background pat-
terns, and Figure 6(b) to 6(f) showcase the denoising results
using various models, respectively. Visual differentiation of
denoising effects among the models is challenging; hence,
binarized versions were generated using the thresholding
method [40]. Figure 5(g) to 5(l) represent the binarized ver-
sions corresponding to Figure 5(a) to 5(f), while Figure 6(g)
to 6(l) depict the binarized versions for Figure 6(a) to 6(f),
respectively.

Figure 5(g) reveals the binary representation of the original
passbook cover, exhibiting a substantial presence of textural
noise necessitating removal. Despite the denoising operations
carried out by various models, which effectively mitigated
textural noises, complete elimination was not achieved.
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FIGURE 7. Line profile of a passbook cover and (b) line profile of the denoised image using TV model, (c) line profile of the denoised image using TGV
model, (d) line profile of the denoised image using TV-OGS model, (e) line profile of the denoised image using TGV-OGS (ADMM) model, (f) line profile
of the denoised image using TGV-OGS (split Bregman) mode.

FIGURE 8. (a) Line profile of a passbook page and (b) line profile of the denoised image using TV model, (c) line profile of the denoised image using
TGV model, (d) line profile of the denoised image using TV-OGS model, (e) line profile of the denoised image using TGV-OGS (ADMM) model, (f) line
profile of the denoised image using TGV-OGS (split Bregman) mode.

Figure 5(h) to 5(l) emphasize the presence of minimal resid-
ual noise. Notably, the consistent level of residual noise
across all images indicates the uniform impact of denoising
models in addressing textural noise. This observation under-
scores the overall effectiveness of the denoising models in
managing textural noise

Examining the characters ‘‘ A’’ and ‘‘95588’’ enclosed
in the blue rectangle in denoised images, along with their
enlarged versions, allows for the observation and compar-
ison of the edge protection capabilities of each denoising
model. Generally, TGV-OGS models exhibit superior edge
protection capabilities compared to other denoising mod-
els, as illustrated in Figure 5(k) and 5(l) in contrast to
Figure 5(h) – 5(j). Notably, the TGVmodel displays the least

edge protection capability, as depicted in Figure 5(i), where
the images reveal the most disruptions in the characters.

Similar observations can be made regarding the characters
‘‘21001’’ and ‘‘ ’’ enclosed in the blue rectangle in
Figure 6(h) – 6(i), and their enlarged versions in binarized
images after denoising. The TGV-OGS models demonstrate
superiority over other denoising models in edge protection
and textured noise removal.

Figure 5 and 6 illustrate that the smaller the character size,
the more challenging the edge protection, and the poorer
the performance of each model in protection. Line intensity
profiles were generated from each image to delve further
into the denoising effect of each model and validate the
observations. The red lines in each denoised image in Figure 5
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and 6 represent the line intensity profiles extracted for tex-
ture removal observation (Figure 7) and background pattern
removal (Figure 8)
In Figure 7(a) and 8(a), regions containing textures and

background patterns in the image patches are delineated with
green rectangular boxes. These patterns significantly com-
promise the clarity of characters within the designated area.
A comparative analysis of the plots in Figure 7(e) and 7(f),
derived from images denoised by TGV-OGS models, with
those in Figure 7(b) - 7(d), obtained from images processed
by alternative models, reveals a reduction in residual tex-
ture noises, as indicated by the diminished high-frequency
fluctuations within the regions. Moreover, Figure 7(e), 7(f),
8(e), and 8(f) demonstrate that character edges, identifiable
as abrupt changes in intensity profiles, are well preserved,
exhibiting higher peak-to-valley height values. These values
tend to be lower in plots extracted from images denoised
by other models, given their reliance on individual pixels as
processing units and iterative isolation. Notably, the proposed
model addresses and rectifies this weakness. The character
edges exhibit a reduced peak-to-valley height value in the
plots of Figure 7(c) and 8(c) due to the TGV regulariza-
tion term, which imparts more pronounced smoothing effects
compared to the TV regularization term. Consequently, weak
and fine edges are more susceptible to blurring in this context.

The foregoing results and observations lead to the conclu-
sion that both TGV-OGS denoising models adeptly eliminate
textural and background patterns deemed as noise. Overall,
they exhibit superior performance in terms of residual noise
reduction and protection capability compared to other TV and
TGV models. Moreover, as depicted in Table 1 and Figure 4,
the proposed TGV-OGS model with the fast split Bregman
solver demonstrates significant enhancements in speed and
efficiency in contrast to its counterpart utilizing the ADMM
solver, all while maintaining the anticipated performance
levels in denoising and edge protection.

V. CONCLUSION
This work proposes and demonstrates a combined second-
order TGV-OGS model for image denoising. Leveraging the
L1 norm property in the energy equation of the proposed
model, we employ a fast split Bregman iterative algorithm to
tackle L1 norm regularization. This transformation facilitates
the resolution of the original problem through a series of sub-
problems, each with easily solvable and closed solutions. The
efficiency and denoising performance of the proposed model
surpasses those of existingmodels, particularly in the removal
of textural and background patterns. The experimental find-
ings yield the following conclusions: (1) The proposed model
enhances the time efficiency of image denoising and compu-
tational efficiency compared to TGV-OGS with the ADMM
solver. (2) The denoising efficacy of the proposed model
outperforms state-of-the-art variational denoising models,
especially for images marked by substantial noise and tex-
tured regions. One drawback of the proposed model is
the manual determination required for the regularization

parameter. Further research could focus on the study ofmech-
anisms or algorithms to adaptively adjusting these parameters
based on the analysis of diverse texture characteristics in
images.

APPENDIX A
We separately employ the ADMM and split Bregman solvers
to address (1), aiming to illustrate the distinctions between
them.

Firstly, the steps for solving with ADMM are as follows.
Introducing auxiliary variables dx , dy, v. (1) can be written as
follows.

argmin
dx ,dy,uu,v

λ
(
∥dx∥1 +

∥∥dy∥∥1) +
1
2
∥v− f ∥2

s.t. dx = ∇hu, dy = ∇vu, v = u. (27)

The Lagrangian multipliers and quadratic penalty terms are
needed to establish the augmented Lagrangian function.
Therefore, we have the following:

L
(
dx , dy,u, v, µ

)
≡

1
2
∥v− f ∥2 + λ

(
∥dx ∥1 + ∥dy ∥1

)
+

µ

2
∥u− v− b∥2 +

µ

2(
∥dx − ∇hu− bx∥2+ ∥dy − ∇vu− by ∥

2
)

(28)

whereµ is a non-negative penalty parameter. b, bx , and by are
the Lagrange multipliers. The solution for the sub-problem u
can be expressed as follows.

u(k+1)

= argmin
u

1
2
∥v− f ∥22

+
µ

2

(∥∥∥dxk − ∇hu− bxk
∥∥∥2 +

∥∥∥dyk − ∇vu− byk
∥∥∥2)
(29)

The solution for the sub-problem v can be expressed as
follows.

v(k+1)
=

{
1
2
∥v− f ∥22 +

µ

2
∥uk − v+ bk∥2

}
(30)

The solution for the sub-problem dxanddy can be expressed
as follows.

dx (k+1)
= argmin

dx
λ ∥dx∥1 +

µ

2

∥∥∥dx − ∇huk − bxk
∥∥∥2

dy(k+1)
= argmin

dy
λ

∥∥dy∥∥1 +
µ

2

∥∥∥dy − ∇vuk − byk
∥∥∥2

(31)

The solution for the sub-problem b, bx , and by can be
mathematically expressed as follows.

b(k+1)
= b(k) + v(k+1)

− u(k+1)

bx (k+1)
= bx (k) + ∇hu(k+1)

− dx (k+1)

by(k+1)
= by(k) + ∇vu(k+1)

− dy(k+1)
(32)
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The following section describes the steps for solving (1)
using the split Bregmanmethod. Firstly, introducing auxiliary
variables dx , dy. (1) can be written as follows.

argmin
dx ,dy,u,v

λ
(
∥dx∥1 +

∥∥dy∥∥1) +
1
2
∥u− f ∥2

s.t. dx = ∇hu, dy = ∇vu (33)

The Lagrangian multipliers and quadratic penalty terms are
needed to establish the augmented Lagrangian function.
Therefore, we have the following:

L
(
dx , dy,u, µ

)
≡

1
2
∥u− f ∥2 + λ

(
∥dx ∥1 + ∥dy ∥1

)
+

µ

2

(
∥dx − ∇hu− bx∥2+ ∥dy − ∇vu− by ∥

2
)

(34)

where µ is a non-negative penalty parameter. bx , and by are
the Lagrange multipliers. The solution for the sub-problem u
can be expressed as follows.

u(k+1)
= argmin

u

1
2
∥u− f ∥22

+
µ

2

(
∥dkx − ∇hu− bkx∥

2
+ ∥dky − ∇vu− bky∥

2
)

(35)

The solution for the sub-problem dx and dy can be expressed
as follows.

dx(k+1)
= argmin

dx
λ ∥dx∥1 +

µ

2

∥∥∥dx − ∇huk − bxk
∥∥∥2

dy(k+1)
= argmin

dy
λ

∥∥dy∥∥1 +
µ

2

∥∥∥dy − ∇vuk − byk
∥∥∥2

(36)

The solution for the sub-problem b, bx , and by can be
mathematically expressed as follows.{

bx (k+1)
= bx (k) + ∇hu(k+1)

− dx (k+1)

by(k+1)
= by(k) + ∇vu(k+1)

− dy(k+1).
(37)

By comparing the two solvers employed for solving the TV
model, it becomes evident that ADMM integrates the data
fidelity and regularization terms during iteration, whereas
split Bregman separates the L1 regularization and L2 data
fidelity terms in the TV model. This separation contributes
to a simpler and more efficient solution.
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