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ABSTRACT Load forecasting in Smart Grids (SG) is a major module of current energy management
systems, that play a vital role in optimizing resource allocation, improving grid stability, and assisting
the combination of renewable energy sources (RES). It contains the predictive of electricity consumption
forms over certain time intervals. Load Forecasting remains a stimulating task as load data has exhibited
changing patterns because of factors such as weather change and shifts in energy usage behaviour. The
beginning of advanced data analytics and machine learning (ML) approaches; particularly deep learning (DL)
has mostly enhanced load forecasting accuracy. Deep neural networks (DNNs) namely Long Short-Term
Memory (LSTM) and Convolutional Neural Networks (CNN) have achieved popularity for their capability
to capture difficult temporal dependencies in load data. This study designs a Short-Load Forecasting scheme
using a Hybrid Deep Learning and Beluga Whale Optimization (LFS-HDLBWO) approach. The major
intention of the LFS-HDLBWO technique is to predict the load in the SG environment. To accomplish this,
the LES-HDLBWO technique initially uses a Z-score normalization approach for scaling the input dataset.
Besides, the LFS-HDLBWO technique makes use of convolutional bidirectional long short-term memory
with an autoencoder (CBLSTM-AE) model for load prediction purposes. Finally, the BWO algorithm could
be used for optimal hyperparameter selection of the CBLSTM-AE algorithm, which helps to enhance the
overall prediction results. A wide-ranging experimental analysis was made to illustrate the better predictive
results of the LFS-HDLBWO method. The obtained value demonstrates the outstanding performance of the
LFS-HDLBWO system over other existing DL algorithms with a minimum average error rate of 3.43 and
2.26 under FE and Dayton grid datasets, respectively.

INDEX TERMS Energy management, short-term prediction, artificial intelligence, hyperparameter opti-
mization, bio-inspired algorithm.

I. INTRODUCTION an intelligent technology has attracted wide attention [1],
With the incorporation of digital control and information [2], [3]. The combination of these current technologies can
and communication (ICT) technologies, Smart grid (SG), have a high effect on managing and making decisions on
user energy consumption [4]. On the other hand, equalizing
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with higher performance [5]. Hence, particular focus is previ-
ously provided for carrying electricity load forecasting (ELF)
[6], [7]. While these approaches and techniques give satis-
factory outcomes. Still, the incorporation of unstable energy
resources because of the dynamic load demand patterns [8].
Market variations, it is quite a chance to enhance the per-
formance of these methods with respect to error-probability,
accuracy, complexity, and so on [9]. Besides, other aspects
namely unstable climate, humidity, temperature, social stan-
dards, calendar signs, and occupancy patterns also affected
the prediction accuracy [10], [11].

Accurate load forecast refers to both usability and provider
to increase their electricity rate savings because of spot
rate launch—most causes that usability indicate developing
attention towards SG application [12]. The involved usability
predictions of the future rate or load signal can depend on the
previous activity of the energy consumption of the users [13].
With respect to the estimated rates or load signals, the user
changes their energy consumption plans subjected to reduced
electrical energy rate and comfort levels [14]. Load predic-
tion depends on time to be categorized such as short-term,
medium-term, and long-term predictions. The prediction time
is usually over months in medium-term forecasting [15].
These methods are employed by usability for maintenance
scheduling, hydro reservoir management, and fuel prepara-
tion. Further, short-term load prediction is divided into very
short-term, and short-term forecasts [16]. In very short-term
prediction, a forecast time from minutes or seconds to hours
and model application in flow control. In short-term predict-
ing, it forecasts periods from hours to weeks and models
applications in modifying demand and formation, thus, uti-
lized to establish provides for the electricity market [17]. The
short-term prediction methods have been important in daily
activities, estimation of net exchange, unit commitments and
planning operation, and analysis of system security. In long-
term prediction, the forecast period is for years. Usability
employs these categories of methods for devising the capa-
bility of maintenance and grid planning [18]. With machine
learning (ML) technologies exploited widely in industries,
data-driven techniques are progressively utilized for predict-
ing and analyzing load data like support vector machine
(SVM), deep learning (DL), relevance vector machine (RVM)
and random forest (RF) methods [19]. Meanwhile, accurate
load prediction is required by usability to correctly devise
the current grid functions for effective controlling of their
resources, This study targets to accurate load forecasting
approach [20].

This study designs a Short-Load Forecasting scheme
using a Hybrid Deep Learning and Beluga Whale Opti-
mization (LFS-HDLBWO) approach. The main aim of
the LFS-HDLBWO system is to predict the load in the
SG environment. To accomplish this, the LFS-HDLBWO
technique initially uses a Z-score normalization method
for scaling the input dataset. Besides, the LFS-HDLBWO
methodology makes use of convolutional bidirectional long
short-term memory with an autoencoder (CBLSTM-AE)
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model for load prediction purposes. Finally, the BWO
algorithm is used for optimal hyperparameter selection of the
CBLSTM-AE algorithm, which helps to enhance the over-
all prediction results. A wide-ranging experimental analysis
was made to show the improved predictive outcomes of the
LFS-HDLBWO technique. In short, the key contributions are
summarized as follows.

¢ An automated LFS-HDLBWO technique comprising
Z-score normalization, CBLSTM-AE-based prediction,
and BWO-based hyperparameter tuning has been devel-
oped for load prediction in the SG environment. This
unique fusion controls the strengths of either DL or
optimizer approaches for enhancing load forecasting.

« By employing the CBLSTM-AE approach, the
LFS-HDLBWO method utilizes a sophisticated DL
structure that captures complex temporal dependencies
and designs from load data, enhancing the accuracy of
load forecasts.

e The BWO methodology was combined for opti-
mum hyperparameter selection of the CBLSTM-AE
approach. This optimizer step fine-tunes the DL
approach, contributing to higher load prediction
outcomes.

The rest of the paper is organized as follows. Section II
provides the related works and section III offers the pro-
posed model. Then, section IV gives the result analysis and
section V concludes the paper.

Il. RELATED WORKS
Motwakel et al. [21] introduced an innovative wild
horse optimizer technique with a DL-based STLF system
(WHODL-STLEFES) for SGs. This developed algorithm is
primarily employed to develop the WHO method for the
optimum choosing features. Moreover, attention-based long
short-term memory (ALSTM) is deployed for learning the
activities of electricity load demand. Lastly, an artificial algae
optimizer (AAO) method is implemented as the hyperparam-
eter optimization of the ALSTM technique. Alrasheedi and
Almalaq [22] designed hybrid DL algorithms to improve the
effectiveness of Saudi SG load forecasting. A benchmark
approach by various standard DL techniques comprising
LSTM, conventional neural networks (CNNSs), artificial neu-
ral network (ANN), gated recurrent unit (GRU), recurrent
neural network (RNN), and various actual databases are
utilized to confirm these developed techniques. In [23],
a novel hybrid clustering-based DL algorithm was presented
for STLF at the distributing transformer’s level with higher
scalability. A k-Medoid-based method could be exploited for
clustering while the predicting methods have been produced
for several clusters of load profiles. The clustering of the
distributed transformer is dependent upon the resemblance
in power utilization profiles. It contains 6-layers and utilizes
Adam optimizer through the TensorFlow model.

Chen et al. [24] suggested a hybrid framework depends
on ResNet and LSTM techniques. Primarily, the information
with the number of feature parameters has been recreated
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and input to ResNet to extract features. Secondarily, the
feature extraction vectors are employed as an input of LSTM
for short-term load prediction. Finally, a real-time model
has been employed for comparing this approach with other
methods. In [25], a hybrid architecture was designed by
integrating Feature Engineering and SAMF with the WNN
technique. Feature Engineering extracts the unrelated data
and superficial features to ensure higher computation effi-
ciency. Alternatively, the SAMF incorporates the wavelet
transform and time-frequency field characteristics as well
as modifies the WNN framework’s related features. In con-
clusion, the SAMF was employed for tuning the control
measurements of WNN. Zarei and Ghaffarzadeh [26] intro-
duced a multiobjective optimizer of the AC optimum power
flow (AC-OPF) issue corresponding to demand-response
(DR). The DR-based OPF method includes reducing the
system rate via the concurrent involvement of reactive and
active power in DR and improving the computation accuracy
by demand forecast dependent upon earlier data utilizing the
DL algorithm. Lastly, the better DR values were resolved by
utilizing the TOPSIS approach.

Chen et al. [27] designed a new ResNet-based technique
for the load forecasting of the next 24 hr. This developed
approach consists of a backbone network, ensemble model,
feature extraction method, and ResNet. The multiscale fea-
tures could be extracted from raw data to provide them into
one snapshot paradigm that has been modelled with a back-
bone network and a ResNet. In [28], the authors developed a
multi-output Gaussian processes (MOGP) regression method
for forecasting 24 load values of the following days accord-
ing to aspects like temperature, dew, and load point values
of earlier days. The effectiveness of this presented MOGP
technique was studied and compared to the determination and
multi-linear regression techniques.

Ali et al. [29] present a control technique that concen-
trates on a sophisticated FL. method. Advanced fuzzy control
takes overloading and difference from demand profile as
input that mitigates these disturbances by integrating opti-
mum power dispatch of renewable energy resources (RERs).
Hong et al. [30] examine a short-term residential load fore-
casting structure that creates usage of the spatio-temporal
correlation present in appliances’ load data by the DL
method. In addition, this technique dependent upon DNN
and iterative ResBlock has been presented for learning
the correlation among distinct power consumption behav-
iors for STLF. In [31], it has been decided that the load
spatial-temporal distribution and the load can be applicable in
the SG, and the influence of load spatial-temporal distribution
was assumed in the forecasting model. It sifted multi-variate
load series extremely appropriate to forecast points with cor-
relation analysis and modeled the load sequences from the
perspective of time with LSTM.

lll. THE PROPOSED MODEL
In this study, we have designed an automated load pre-
diction using the LFS-HDLBWO approach on the SG
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environment. The main aim of the LFS-HDLBWO technique
is to predict the load in the SG platform. To accomplish
this, the LFS-HDLBWO method includes Z-score normal-
ization, CBLSTM-AE model, and BWO-assisted hyperpa-
rameter tuning. Fig. 1 demonstrates the total flow of the
LFS-HDLBWO system.

Smart Grid Environment

Data Pre Processing

(Z-Score Normalization) T
Load Prediction Process
I Load Prediction Process I Hyperparameter Tuning Process

using using
Beluga Whale Optimization Algorithm

Convolutional Bi-LSTM with Autoencoder
Performance Measures:

L Input: Training Dataset —bI

Load Average Error Rate MAPE

FIGURE 1. Overall flow of LFS-HDLBWO algorithm.

A. DATA PRE-PROCESSING

To pre-process the input, Z-score normalization is utilized.
Z-score normalization, otherwise called standardization, is a
statistical approach used to standardize and transform arith-
metical data by modifying it to a combined scale. This
procedure includes computing the Z-score for all the data
points that characterize how many standard deviations a data
point is additionally the mean of the database. The equation to
calculate the Z-score of data point x with standard deviation
o and mean p is shown below:

ey

B. LOAD PREDICTION USING THE CBLSTM-AE MODEL
For the prediction of the load in the SG environment, the
CBLSTM-AE model is used. The proposed model com-
prises numerous frameworks involving 2 CNN layers and
an AE model encompassing of LSTM layer as a decoder
and BLSTM as an encoder [32]. Fig. 2 illustrates the
infrastructure of the CBLSTM-AE approach.

1) CNN

CNN can store varied irregular trends and is mainly skilled
at extracting complex features. These features decrease the
parameters required to make predictions, thereby decreasing
the network computation. The CNN uses the concept of
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weight distribution in non-linear problems including ECP.
The CNN has a hidden layer comprising an activation func-
tion, a pooling layer, and a convolution layer. The convolution
layer converts input data into feature mapping. Next, the
pooling layer samples the mapping features for extracting
convolution features, thus decreasing the size of feature
mapping. The downsampling process and feature extrac-
tion of CNN decreases the computing time, which makes it
best-fitted for the model.

2) BLSTM-AE

The output layer of CNN can be provided as input to the
BLSTM layer that acts as an input to the AE layer. How-
ever, the CNN extract relevant features and the BLSTM-AE
layers are applied for sequence prediction and data anal-
ysis. BLSTM combines the data sequence in predicting
backwards and forward directions. At the same time, AE
is especially adapted for learning representation, to realize
unsupervised input in the feature vectors. It includes an
encoding and decoding model for encoding the input series
previously decoded with internal representation. Therefore,
the Bi-LSTM-AE is used to learn the temporal dependency
of the data, positively affecting the prediction outputs.

3) LSTM-AE

As opposed to the BLSTM of the encoder, an LSTM-AE has
been utilized as a decoder to decrease the complexity of this
developed architecture. Also, the single LSTM can able to
learn from the temporal dependency of the data. Before we
proceed to two FC layers, the data encoded in the output
of Bi-LSTM-AE could be decoded through a single layer of
LSTM-AE for the last prediction outputs. Consider the input
vector xlf” = {x1, x2, - -+ ,x,}, where x"* signifies the varied
input vectors, and provides the input vectors x;» into CNN
layers, the resultant output can be shown in Eq. (2).

yl]_a(berZwml X 11) )

m=1

where b}” refers to the bias for j feature maps and o denotes
the activation function. yg? shows the output vector xi’]'? of the
prior layer. m implies the index value of the filter, w denotes
the kernel weight, and Eq. (3) shows the output vector for the
k™ convolution layer.

mk) _ m(k) m(k) 0
yij ( + Z Wm] t+m],j) (3)

The pooling and convolution layers downsample the
activation from mapping features to lessen the network com-
putation costs and several parameters. The max-pooling layer
shown in (4) exploits the maximal value from the prior
layer for the down-sampling that helps to adjust the model
over-fitting.

*) _ k-1
P = MaX VixT+rj )
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In Eq. (4), T indicates the stride defining the length of
the input dataset and y denotes the pooling size. The output
from the max-pooling layer can be provided to the input of
Bi-LSTM layers via the gating unit. BLSTM encompasses
forget, input, and output gates in both directions, and all the
gates are activated once the memory cell updates the state
using the following expressions:

ir = 0 (Wpipr + Wiihi—1 + Wei - ¢i—1 + bi) (5)
fi =0 (Wypr + Wighi—1 + Wep - ci-1 + by) (6)
0y =0 (WpoPt + Whohi—1 + Weo - 1 + bo) @)

Here P; represents the output of the maxpooling layer at ¢
time. o represents the activation function, ¢; shows the cell
state, and b denotes to the bias. i; denotes the hidden layer of
BLSTM cells viz., updated at ¢ steps in both directions. iy, f;,
and o; correspondingly show the input, forget, and output
gates. The hidden and cell states are defined by the gating
units of the BLSTM as follows:

=fi-c—1+i-0 (Wpcpt + Wichi—1 + bc) 3
hl‘ =0t 0 (Ct) (9)

The output layer of Bi-LSTM is concatenated to these two
directions as follows:

_ =
y=o0 (Wyh, + by) (10)

where the resulting output y = a(W,h; + by) shows the input
to a 2 FC dense layers formulated in (11) for the last estimated
output. The output of Bi-LSTM ¥ is considered as an input of
decoded LSTM.

zw —1( (A" 1)+b" 1) 11

The Bi-LSTM-AE accept the feature from the CNN, and
the CNN layer extracts spatial features in the input dataset
for learning temporal dependency.

C. HYPERPARAMETER TUNING USING THE BWO
ALGORITHM

Finally, the BWO method can be utilized for the optimum
hyperparameter selection of the CBLSTM-AE method. BWO
is a new swarm-based metaheuristic approach based on the
behaviours of beluga whales in nature [33]. Like other meta-
heuristic techniques, BWO comprise of exploration stage
and the exploitation stage. The steps of basic BWO are
summarized below.

Initialization stage: The beluga whale is utilized as a
searching agent owing to the population-assisted BWO. All
the whales have been considered as a possible solution that
can be updated. The position of the searching agent can be
shown in the matrix form as follows:

X1,r X12 ... X1d
X211 X2 ... X2d

X=| . ) ) ) (12)
Xn, 1 Xn,2 Xn,d
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FIGURE 2. Architecture of CBLSTM-AE model.

In Eq. (12), n denotes the population size of searching
agents and d refers to the dimensionality of the problem. The
fitness value for beluga whales can be stored using the given
matrix:

f(xr1.x12, ... X1.4)
Fo=|f (21, %2, ....%.4) (13)
f (xn,lv Xn,2s - vxn,d)

The balance factor By is represented as:
B -5 (1 T ] >05,
T 2T T | <0,

In Eq. (14), Tmax shows the existing iterations , (7T') is the
maximal amount of iterations. In all the iterations, By refers
to randomly generated integers within [0, 1]. The variation
range of By is reduced at (0,1) to (0,0.5) as T rounds increase,
which shows the significant modification in possibilities for
the exploration and exploitation stages, whereas the probabil-
ities of the exploitation stage increase as T rounds increase.

Exploration phase: The exploration phase includes an
examination of the swimming behaviors of the beluga whale.
The location of the whale can be defined by the pair swim,
and this position is changed by the following expression:

exploration stage

0 exploitation stage
(14)

XZ/'H =xT 4+ (XT —xT ) (14 r)sin 2mry),

ipj r.p1 i.pj
Jj = even
1
X[ =xT 4 (XZ - Xifpj) (1 + r1) cos 2ra)
Jj=odd

15)

where T refers to the latest iteration, XiT.Jrl signifies the new
location of i beluga whale on the j* dimension, and p;
indicates the randomly generated value derived from the j
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set. The existing location for 7 and i are signified as XrT i
and XiTPj, correspondingly, » denotes the randomly chosen
beluga whale, | and r, are the randomly generated numbers
within [0, 1], and cos (27 r7) and sin(27 ) shows that the fin
of the mirrored face of the upward beluga whales.
Exploitation phase: This phase draws inspiration from the
hunting behaviors of beluga whales. They forage and migrate
together based on their closeness towards other whales.
Therefore, beluga whale hunts by sharing data regarding the
presented position for one another and selecting the best
candidate amongst them. Levy flight (LF) method is added to

the exploitation stage for improving convergence as follows:
X = iaxI — X7 + O L. (X,T - X,.T) (16)

In Eq. (16), X[ and X denote the existing location of the
i beluga whales and a random beluga whale, correspond-
ingly; XI.T‘H and XbTesz show the new location of i beluga
whales and the optimal location for the whole population;
r3 and ry4 is a randomly produced value within [0, 1]; and
C1 = 2r4(1—T /Tinax) shows the random jump strength.

The Ly, or LF function, is calculated by the following

expression:

uxo
X [
[v| /B

I' (14 B) x sin (”2—’8) Ve
7" F((Hz'—ﬁ))xﬁng 4

Now, B represents a constant as 1.5 and u and v indicate
the random value with uniform distribution.

Whale falls: Polar bears, killer whales, and people pose
a threat to beluga whales through foraging and migration.
Mostly, whales are very smart and avoid the dangers of
sharing data. Nonetheless, a few whales didn’t thrive and

Ly =0.05 (17)
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died in the Deep Ocean. This condition is named ‘whale
falls,” and provides food for the other creatures. The BWO
replicate the process of whale falls by choosing the possibility
of whale falls from the individual population. According to
the possibility of whale fall viz., selected to deal with the
changes in the group, it is assumed that the beluga whale
either fell into the deep sea or migrated. The step size and the
position of beluga whales where they fall are used to define
the updated location for keeping the population size constant.
The mathematical formula can be given as:

X = rsXT — 16X + r1Xs1ep (19)

In Eq. (19), 75, re and r; represent the random number lies
in [0, 1], and Xy, refers to the whale fall’s step size and is
formulated by Eq. (20):

C,T
Xyuep = (up — Ip) exp (— T2 ) (20)

max

Cy=2W; xn @21)

Now C, shows the step factor which relates to the pop-
ulation size and probability of whale falls, and u; and I,
indicate the upper and lower boundaries, correspondingly.
The boundaries of the design variable, the maximal amount
of iterations, and the iteration, each having an impact on C;.

In the BWO model, the possibility of a whale falling (W)
is computed as a linear function:

0.05T

Tmax

Wr=0.1- (22)
During the optimization process, the probability of whale
falls dropped from 0.1 to 0.05, representing the risk of beluga
whale reductions as they approach the food source.
The BWO determines the hyperparameter included in
the CBLSTM-AE algorithm. The MSE is regarded as an
objective function and is shown below:

1M, 2
MSE = 23" (v - d) (23)

j=1 i=1

whereas M and L correspondingly denote the resulting values
of layer and data, y} and djf show the obtained and proper

magnitude for hej™ unit from the resulting layer at ¢ time.

IV. PERFORMANCE VALIDATION
This section inspects the load predictive results of the
LFS-HDLBWO method on two datasets: the FE GRID
dataset and the Dayton GRID dataset. For comparative result
analysis, the proposed model is compared with existing mod-
els [21] such as FCRBM, AFC-ANN, Bi-level, MI-ANN, and
LSTM.

The commonly used measures to evaluate the performance
of the predictive results are defined as follows:

o Average Error Rate (AER) is a metric utilized for eval-
uating the outcome of a predictive method or system,
classically in the context of forecast or predictive tasks.
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TABLE 1. Predictive outcome of LFS-HDLBWO technique on FE Grid
dataset.

FE GRID Dataset

Load (kW)

(Thl;l:; slots Actual | LSTM 2;% BiLevel I]jII;SSI:BW 0
1 689 672 665 669 687
2 694 677 683 699 693
3 712 712 702 743 711
4 731 747 752 779 729
5 751 777 793 800 749
6 776 763 811 816 775
7 785 766 794 799 782
8 783 751 762 784 780
9 762 733 743 757 760
10 753 725 733 751 748
11 739 718 719 738 740
12 723 706 727 702 721
13 715 709 716 727 716
14 721 740 747 757 721
15 736 770 768 784 734
16 766 775 789 794 764
17 786 776 799 782 785
18 786 760 794 772 784
19 759 745 783 762 758
20 747 705 747 740 745
21 722 685 709 699 720
22 703 677 686 695 702
23 674 683 675 675 673
24 688 688 648 669 687

The AER has been computed by summing up the sep-
arate errors (variances between predictive and actual
values) and dividing by the total count of predictions.

o Mean Absolute Percentage Error (MAPE) is a gener-
ally utilized accuracy metric to evaluate the outcome of
forecasting methods, particularly in the context of time
sequence analysis and prediction. MAPE procedures the
average percentage difference between the predictive
and actual values.

« Execution Time (EXET) for load prediction refers to the
count of time it takes for a load-forecasting system to
create predictions.

Table 1 and Fig. 3 reveal the predictive outcomes of the
LFS-HDLBWO method on the FE Grid dataset [21]. The
outcomes show that the LFS-HDLBWO method accom-
plishes closer predictive values. On 1hr, the LFS-HDLBWO
technique predicted the load of 687kW with the actual
value of 689kW. Besides, on 10hr, the LFS-HDLBWO tech-
nique predicted a load of 748kW with an actual value of
753kW. Along with that, in 24 hours, the LFS-HDLBWO
technique predicted a load of 687kW with an actual value
of 688kW.

Table 2 and Fig. 4 reveal the predictive analysis of the

LFS-HDLBWO system on the DAYTON Grid dataset. The
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FE GRID Dataset

—&— Actual
820 LSTM
=t AFC-ANN

—4— Bi-Level
—&— LFS-HDLBWO

123456 7 8 910111213 14151617 18 1920212223 24
Timeslots (hrs)

FIGURE 3. Predictive outcome of LFS-HDLBWO technique on FE Grid
dataset.

TABLE 2. Predictive outcome of LFS-HDLBWO technique on DAYTON Grid
dataset.

DAYTON GRID Dataset
250

240

230

220

210

Load (kw)

200 -

190

—&— Actual
180 LSTM
—+— AFC-ANN

—4— Bi-Level
—&— LFS-HDLBWO

170

12345678 91011121314151617 181920212223 24
Timeslots (hrs)

FIGURE 4. Predictive outcome of LFS-HDLBWO technique on DAYTON
Grid dataset.

TABLE 3. EXET outcome of LFS-HDLBWO technique with other methods
on two datasets.

achieved outcome shows that the LFS-HDLBWO system
obtains closer predictive values. On lhr, the LFS-HDLBWO
method predicted the load of 191kW with the actual value of
192kW. Besides, on 10hr, the LFS-HDLBWO approach pre-
dicted a load of 231kW with an actual value of 230kW. Along
with that, on 24hr, the LES-HDLBWO method predicted the
load of 195kW with the actual value of 195kW.

In Table 3 and Fig. 5, a comparison execution time
(EXET) result of the LFS-HDLBWO system with other

23510

DAYTON GRID Dataset Execution Time (min)
Load (kW
Times(lots) AFC- ] LFS- Methods FE GRID Dataset BQLZ?N GRID
(hrs) Actual | LSTM ANN BiLevel HDLBWO FCRBM 7 =
1 192 182 188 187 191 AFC-ANN 193 137
2 189 187 180 181 188 -
3 183 | 177 | 180 | 177 185 Bilevel 172 1.76
4 186 174 196 179 189 MI-ANN 1.28 0.99
5 190 195 197 199 189 LSTM 1.11 1.08
6 200 205 206 207 201 LFS-HDLBWO | 0.30 0.19
7 218 211 218 226 218
8 226 221 235 239 226
9 230 228 227 234 232 . . . Lo
0 230 228 234 240 231 methodologies can be provided. The obtained outcome indi-
T 230 204 34 238 226 cates that the LFS-HDLBWO system achieves reduced
12 226 220 234 233 226 EXET values on two datasets. On the FE grid dataset,
13 217 221 219 214 216 the LFS-HDLBWO algorithm offers decreasing EXET
14 223 217 225 227 222 of 0.30min whereas the FCRBM, AFC-ANN, Bilevel,
15 213 210 221 216 214 MI-ANN, and LSTM techniques provide increasing EXET
16 208 210 210 206 211 of 2.72, 1.93, 1.72, 1.28, and 1.1 min respectively. Addi-
17 209 ] 203 |24 | 218 207 tionally, on the DAYTON grid dataset, the LFS-HDLBWO
18 210 202 212 218 209 technique offers decreasing EXET of 0.19min while the
19 211 1209 212 | 220 | 210 FCRBM, AFC-ANN, Bilevel, MI-ANN, and LSTM meth-
20 217 214 210 204 220 . .

ods provide increasing EXET of 1.73, 1.87, 1.76, 0.99, and
21 222 219 205 207 215 . .
2 216 215 207 232 206 1.08min correspondingly.
3 206 204 226 216 194 In Table 4 and Fig. 6, a comparison average error
04 195 185 193 188 195 rate (AER) result of the LFS-HDLBWO technique with

other models is provided. The outcomes indicate that the
LFS-HDLBWO method accomplishes reduced AER values
on both datasets. On the FE grid dataset, the LFS-HDLBWO
system offers a decreasing AER of 3.43 while the LSTM,
AFC-ANN, and Bilevel techniques provide increasing
AER of 20.98, 18.71, and 19.33 respectively. Addition-
ally, on the DAYTON grid dataset, the LFS-HDLBWO
system offers a decreasing AER of 2.26 whereas the
FCRBM, AFC-ANN, Bilevel, MI-ANN, and LSTM meth-
ods provide an increasing AER of 5.72, 6.98, and 8.78
correspondingly.
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FIGURE 5. EXET outcome of LFS-HDLBWO technique on two datasets.

TABLE 4. AER outcome of LFS-HDLBWO technique with other methods
on two datasets.

Avg. Error Rate
DAYTON

Methods FE GRID GRID

LSTM 20.98 5.72

AFC-ANN 18.71 6.98

BiLevel 19.33 8.78

LFS-HDLBWO 3.43 2.26
225

mm LSTM 3 Bi-Level

20.0 ] =3 AFC-ANN  [J LFS-HDLBWO

Avg. Error Rate

FE GRID

DAYTON GRID

FIGURE 6. EXET outcome of LFS-HDLBWO technique on two datasets.

The MAPE results of the LES-HDLBWO technique with
recent models under varying data sizes are reported in Table 5
and Fig. 7. The attained value shows that the LFS-HDLBWO
technique reaches the least MAPE values. On 60 sam-
ples, the LFS-HDLBWO technique offers reduced MAPE of
0.342% while the LSTM, AFC-ANN, and Bilevel methods
provide increased MAPE of 3.490%, 0.903%, and 3.018%
correspondingly. Also, on 420 samples, the LFS-HDLBWO
system offers a reduced MAPE of 0.264% but, the LSTM,
AFC-ANN, and Bilevel techniques provide maximum MAPE
of 2.832%, 0.617%, and 0.589% correspondingly. More-

VOLUME 12, 2024

TABLE 5. MAPE outcome of LFS-HDLBWO technique with other methods
under varying data size.

MAPE (%)
222;355 LST™M i};\r(; BiLevel HDIiFBS\-VO
60 3.490 0.903 3.018 0.342
120 3.479 0.821 2.768 0.273
180 3.391 0.787 2.731 0.258
240 3.192 0.633 2.696 0.251
300 3.152 0.670 2.632 0.228
360 2.948 0.708 2.654 0.230
420 2.832 0.617 2.589 0.264
480 2.810 0.651 2.533 0.266
540 2.734 0.585 2.595 0.216
600 2.709 0.623 2.553 0.254
660 2.796 0.619 2.537 0.242
720 2.485 0.458 2.392 0.059
4.0
—§- LSTM —t— Bi-Level
. AFC-ANN  —4— LFS-HDLBWO

3.0
as -\\\__—\Av\

0.5
—— . .

"
v v v \ A 4

0.0 T T T T T T T T T T
60 120 180 240 300 360 420 480 540 600 660 720
Data size (samples)

FIGURE 7. MAPE outcome of LFS-HDLBWO technique under varying data
size.

over, on 720 samples, the LFS-HDLBWO method offers a
reduced MAPE of 0.059% however, the LSTM, AFC-ANN,
and Bilevel methods provide increased MAPE of 2.485%,
0.458%, and 2.392% correspondingly.

The EXET results of the LFS-HDLBWO method with
current techniques under varying data sizes are reported in
Table 6 and Fig. 8. The experimental outcome shows that
the LFS-HDLBWO technique reaches the least EXET val-
ues. On 60 samples, the LFS-HDLBWO technique offers
reduced EXET of 0.31s whereas the LSTM, AFC-ANN,
and Bilevel approaches provide increased EXET of 2.19s,
1.93s, and 3.53s correspondingly. Also, on 420 samples, the
LFS-HDLBWO technique offers reduced EXET of 0.33s
whereas the LSTM, AFC-ANN, and Bilevel approaches
provide increased EXET of 2.34s, 1.97s, and 3.58s respec-
tively. Moreover, on 720 samples, the LFS-HDLBWO tech-
nique offers a reduced EXET of 0.49s whereas the LSTM,
AFC-ANN, and Bilevel approaches provide maximum EXET
of 2.43s, 2.16s, and 3.72s correspondingly.
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TABLE 6. EXET outcome of LFS-HDLBWO technique with other methods
under different data size.

Execution Time (sec)
Data size AFC- .
(samples) LSTM ANN BiLevel | LFS-HDLBWO
60 2.19 1.93 353 0.31
120 2.16 1.94 3.53 0.34
180 2.23 1.92 3.58 0.32
240 2.27 1.96 3.58 0.33
300 2.29 1.96 3.60 0.34
360 2.29 1.95 3.58 0.32
420 2.34 1.97 3.65 0.33
480 2.32 2.00 3.63 0.33
540 2.34 2.04 3.73 0.41
600 2.39 2.05 3.72 0.44
660 243 2.12 3.72 0.44
720 243 2.16 3.72 0.49
4.5
—§—- LSTM —+— Bi-Level
4.0 1 AFC-ANN  —¢— LFS-HDLBWO
3.5 _M
o
830
o
E 2.5
L M
§ 20
-
=
© 151
X
w
1.0
0.5 4 —————
0.0

60 120 180 240 300 360 420 480 540 600 660 720
Data size (samples)

FIGURE 8. EXET outcome of LFS-HDLBWO technique under varying data
size.

These outcomes highlight the greater performance of
the LFS-HDLBWO technique on the load predictive
system.

V. CONCLUSION

In this study, we have designed an automated load prediction
using the LFS-HDLBWO approach on the SG environment.
The major intention of the LFS-HDLBWO technique is
to predict the load in the SG environment. To accomplish
this, the LFS-HDLBWO method includes Z-score normal-
ization, CBLSTM-AE model, BWO based hyperparameter
tuning approach to scale the input dataset. Finally, the BWO
algorithm could be used for optimal hyperparameter selection
of the CBLSTM-AE algorithm, which helps to improve the
overall prediction results. A wide-ranging experimental anal-
ysis was made to illustrate the better predictive outcomes of
the LFS-HDLBWO system. The outcome value indicates the
outstanding performance of the LFS-HDLBWO model over
other existing DL algorithms. The demonstrated potential of
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this hybrid approach suggests its significance in addressing
short-term load forecasting challenges within the smart grid
domain, paving the way for improved load management and
energy efficiency strategies. Through extensive experimen-
tation, it has demonstrated superior predictive capabilities,
outperforming existing deep learning models. Further work
can focus on real-time load forecasting, enabling immediate
decision-making and dynamic grid management. Leveraging
data from the Internet of Things (IoT) devices and sensors
can provide additional real-time information for improved
load forecasting. Besides, combining LFS-HDLBWO
with other forecasting models and techniques, such as
ensemble methods, may lead to even more accurate
predictions.
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