
Received 10 January 2024, accepted 22 January 2024, date of publication 24 January 2024, date of current version 7 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3358209

Improved Unsupervised Deep Boltzmann
Learning Approach for Accurate Hand
Vein Recognition
RANA NOUR1, HOSSAM EL-DIN MOUSTAFA 2, (Senior Member, IEEE),
EHAB H. ABDELHAY 2, (Member, IEEE), AND MOHAMED MAHER ATA 3,4
1Department of Electronics and Communications Engineering, Mansoura Higher Institute for Engineering and Technology, Mansoura 35516, Egypt
2Department of Communications and Electronics Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
3School of Computational Sciences and Artificial Intelligence (CSAI), Zewail City of Science and Technology, 6th of October City, Giza 12578, Egypt
4Department of Communications and Electronics Engineering, Misr Higher Institute for Engineering and Technology, Mansoura 35511, Egypt

Corresponding author: Mohamed Maher Ata (mmaher844@yahoo.com; momaher@zewailcity.edu.eg)

ABSTRACT Dorsal hand vein (DHV) recognition is a burgeoning biometric technology that has recently
garnered considerable attention. This article uses image processing and deep learning to present a novel
DHV recognition approach. It involves detecting and identifying the unique patterns present in the DHV.
The proposed system begins with the preprocessing mechanism that is applied to enhance the quality of
the acquired images, including contrast enhancement and noise reduction, by using some filters such as
Median and Contrast Limited Adaptive Histogram Equalization (CLAHE). Next, a deep learning model,
such as a convolutional neural network (CNN), is employed to automatically abstract discriminative features
from the preprocessed vein images. The empirical outcomes prove the influence and reliability of the
proposed technique for vein recognition, making it a promising solution for biometric authentication
systems. Compared with traditional CNN, the proposed approach shows good accuracy and classification
rate results. The suggested model achieved a high recognition rate accuracy, recall, precious, and f-score of
99.7%,97%,96%, and 96%, respectively, and a recognition time of about 1283.45 s. To enrich the model’s
capability for feature recognition and reduce recognition time, decrease the intricacy of learning and the
connectivity CNN structure, an alternative approach based on Restricted Boltzmann Machines (RBM) was
assessed. This strategy exhibits superior accuracy in comparison to other contemporary algorithms. The
proposed RBM achieved a high recognition rate accuracy, recall, precious, and f-score of 99.9%,99%,99%,
and 99%, respectively, and a recognition time of about 137.235s.

INDEX TERMS Biometrics, image processing, DHV, CNN, deep learning, RBM.

I. INTRODUCTION
DHV is a biometric authentication technique that leverages
the distinctive patterns of veins on the back of the hand to
distinguish and authenticate individuals. Biometric recogni-
tion automatically recognizes an individual’s properties based
on anatomic/behavioral features. Several biometric methods
have been proposed based on various anatomical and behav-
ioral characteristics. These include palm print, fingerprint,
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finger veins, hand veins, foot veins, palm veins, iris, voice
recognition, gait, palates, facial expression, heartbeat, sig-
nature, body language, DNA recognition, and face shape.
Applications that use biometrics are becoming more popular
as well as being used more commonly since they provide
security, accuracy, and quick performance. The dorsal hand
veins, which are located beneath the skin surface, have
a unique pattern and shape that can be used to identify
individuals accurately. We present in this work a method
for DHV authentication that combines deep learning and
image processing approaches, as illustrated in Figure 1.
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The improvement of deep learning processes has established
the ability of computer vision systems to recognize these
patterns. Using vast datasets of hand vein images, deep learn-
ing algorithms may be trained to recognize the complex
and frequently subtle patterns that differentiate one person’s
hand from another. These models can then be used to iden-
tify individuals in real-time based on a captured image of
their DHV patterns. One major advantage of using DHV
recognition over other biometric authentication methods,
such as facial recognition, is that the vein patterns in the
hands are more unique and less subject to changes over
time. It makes hand vein recognition a reliable and accu-
rate way of identifying individuals for security purposes.
With the support of learnable weights and biases, CNN is
a Deep Learning framework capable of analyzing an input
image, assigning relative value to various objects or features,
and distinguishing between them. When compared to other
classification algorithms, CNN needs substantially less pre-
processing. The convolutional layer, fully connected layer,
pooling layer, and activation functions (e.g., Sigmoid, Tanh,
ReLU, etc.) are all fundamental components of CNN archi-
tecture. In this study, an RBM-based deep learning scheme
for vein recognition is developed. An energy-based Artificial
Neural Network (ANN) known as RBM is employed in many
different fields, including pattern recognition, image process-
ing, regression, image processing, and topic modeling. RBM
is an unsupervised learning and feature extraction system
based on a two-layered stochastic recurrent neural network.
The test/training sets are located in the visible layer of the
RBM, and the feature extractor is located in the invisible
layer. Every unit in the unhidden layer is related to every
unit in the invisible layer; in contrast, there is no relationship
between any of the units in the visual layer, and the same is
true of the invisible layer’s units [1].
Furthermore, in recognition tasks, RBM has shown

remarkable results as both a practical first step in training
deep neural network classifiers and a feature extractor for text
and picture data [2].
CNN technique gives better accuracy as compared to

the traditional methods. This technique has significantly
improved the ability to learn biometric characteristics to offer
perfect and forceful results. This paper’s contributions are
summed up as follows:

1. Suggesting an image-processing approach for vein
patterns such as filtering techniques, contrast enhance-
ment strategies, detecting DHV patterns, and reducing
noise.

2. Proposing deep learningmethodworking on two differ-
ent datasets: Dr. Badawi and Dorsal Hand Vein Image
Database.

3. Evaluating the traditional classical CNN models
(ResNet, AlexNet, VGG16, VGG19, and InceptionV3)
in the hand vein authentication.

4. Comparing a proposed deep learning method with the
traditional CNN models. The result shows that perfor-
mance is better than other conventional CNN models.

5. Suggesting the RBM technique for DHV recognition to
decrease the time for authentication and achieve high
accuracy.

6. Boosting accuracy, sensitivity, and specificity in accor-
dance with the suggested CNN and RBM methods.

The following are the outstanding sections of the paper:
Section II presents the related work. CNN and RBM model
architectures andmethodology used in this article are covered
in Section III. Discuss the trial results and valuation of the
suggested system in Section IV. Finally, discuss the conclu-
sion in Section V.

II. RELATED WORK
Kumar et al. [3] offered a deep-learning model that deter-
mines recognition accuracy by individually evaluating DHV
datasets from children and adults. This study predicts how
useful vein patterns will be for biometric identification
because children up to 12 undergo significant physical
changes [1].
Alashik et al. [4] have posited the DL-GAN method to

confirm biometric identity. The DL-GAN approach has the
advantage of higher accuracy because it employs a back-
hand structure for authentication. The main limitation of
this research is the unlimited complexity. It was observed
that this research generated many simulated samples for
training to increase the accuracy and potency of this image
classification method. One limitation of DL-GAN is its insis-
tence on a sizable dataset, which can be challenging to
compile. There are disadvantages to the DL-GAN approach.
First, achieving high accuracy requires a lot of training
data.

Kuzu et al. [5] published a unique CNN pipeline for vein-
based biometrics. Using the weights of the network from
the A dataset of pre-trained ImageNet and adjusting the
Densenet-161 architecture, according to the findings adjust-
ing lasting CNN structural design would perform better than
developing a network from the ground up for a specific
purpose area (such as vein biometrics).

Daas et al. [6] observed unimodal and multimodal biomet-
ric tools for identification based on the FV. AlexNet, VGG16,
and ResNet50 are three pre-training models used for fea-
ture extraction. SVM and Softmax classifiers are utilized in
recognition performance calculations and improvements. The
recognition accuracy is improved by the suggested ResNet50-
Softmax with weighted sum fusion (score level fusion).

Qin et al. [7] have documented an iterative deep-learning
theory to use a deep article demonstration to estimate the like-
lihood of pixels being veins in the background by using a deep
feature performance to estimate the likelihood of pixels being
veins in the background. In order to make vein segmentation
easier, a Deep Belief Network (DBN) is recommended for
the extraction of venous features. The DBN avoids laborious
and error-prone automatic labeling and performs well since
it is iteratively taught to rectify the wrong labels. The trial
consequences reduce the verification error rate and reach
cutting-edge performance.
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FIGURE 1. Block Diagram for Combination of Image Processing and Deep Learning Techniques for Dorsal Hand Vein .Authentication.

Song et al. [8] have shown a way to identify finger veins
based on a deep Dense Net. This system reached high recog-
nition accuracy. Additionally, the composite image was found
to be more robust against noise than the difference image
when tested with a noisy image.

Obayya et al. [9] have used trained models to exam-
ine the authentication issue by palm veins and developed
a finely tailored deep CNN-based model by applying the
Bayesian technique for optimization. The developed CNN
model gained a high level of identification accuracy.

Zhou et al. [10] have a significantly lightweight CNN and
its methods of instruction. The lightweight CNN is utilized
from images of finger veins to extract more condensed and
discriminatory features. One advantage of the presented train-
ing approach is that lightweight CNN performs nearly as well
as pertained weights-based CNN while using substantially
fewer resources. Additionally, the suggested approach can be
used in other fields lacking training data, such as palm prints
and palmar veins.

Zeng et al. [11] have gained a new CNN to fulfill the
pixel-wise task involving the segmentation of finger veins.
The experimental results demonstrate favorable segmentation
outcomes compared to other comparable models. Also, per-
formance improvements can be attributed to the incorporated
conditional and random fields.

Trabelsi et al. [12] proposed efficient identification sys-
tems for quick palm print recognition, including unimodal

and multimodal approaches. The recommended way is the
simplified PalmNet-Gabor algorithm. Experiment results
substantiated the proposed method’s robustness and perfor-
mance by realizing high recognition accuracy with consider-
ably fewer features.

Kuzu et al. [13] developed a unique extracting features
methodology for vein-based biometric recognition in terms of
templates built to utilize a CNN alone. The suggested model
has documented effective recognition better to up to date on
the dorsal, palm, and finger pattern of veins.

A unique model for palm vein recognition that uses
decision-level fusion to connect a CNN-based architecture
with a texture-based system has been thoroughly studied by
Babalola et [14]. In addition, a CNN structure established on
deep learning was constructed by the AlexNet architecture.
However, with fewer filters, CNN’s decision, and the decision
to reach a final decision, five sub-regions are fused. Linked
to the additional methods, the proposed model achieved the
highest accuracy.

A unique CNN model based on Transfer Learning was
created by Garcia-Martin et al. [15] and tested on smart-
phones for contactless vein biometric detection. The pro-
posed TL model has four different configurations. VGG16
is a well-known CNN shape or architecture. ResNet50,
ResNet152, and VGG19. The model under consideration
demonstrates enhanced performance and yields optimal out-
comes to Equal Error Rate (EER).
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Shao et al. [16] designed a deep biometric hash learning
(DBHL) model to accurately analyze and manage Palm print,
palm vein, and DHV recognitions. In order to transform
binary codes from images, implementing a comprehensive
network from start to finish is executed. Palm vein and fin-
gerprint recognition achieve optimal performance when the
DHV identification is recognized with a lower EER.

Zhong et al. [17] have thoroughly investigated the PHD
(Palmprint Hybridized with Dorsal hand vein) model. PHD
is a novel multi-biometrics algorithm that combines palm
print and DHV recognition. This model takes advantage of
palm print recognition’s high accuracy and DHV recogni-
tion’s liveness recognition. This model can produce optimal
outcomes, i.e., FAR and FRR are close to zero.

A novel multi-biometric approach for personal authen-
tication utilizing fingernail plates and finger knuckles has
been investigated by Choudhury et al. [18] inside a deep
learning framework. After the two traits are optimized,
extensive investigations demonstrate that a flawless 100%
identification accuracymay be achieved under specific fusion
settings.

Tiong et al. [19] have proposed a Multi-feature Deep
LearningNetwork (MDLN) architecture that improves recog-
nition performance by combining modalities from the face
and regions with texture descriptors. The proposed MDLN
enhanced biometric recognition performance under difficult
situations, incorporating illumination variances, features, and
posing misalignments.

Shahreza et al. [20] attempt to secure and improve current
finger vein authentication procedures by utilizing a DNN to
minimize the number of biometric characteristics and then
retaining the reduced-dimension features of Bio hashing. This
framework accomplishes superior performance results.

Arora et al. [21] offered a deep learning architecture for an
iris recognition system to identify and detect various spoofing
attacks. The suggested framework performs better than exist-
ing ones in detecting attacks with printed images and contact
lenses.

Jayanthi et al. [22] have recommended an efficient
DL-based incorporated model for detecting and recognizing
iris from input photos. The suggested technique has produced
superior iris recognition performance with maximum recog-
nition accuracy. Outperforming other ways such as AlexNet,
UniNetV2, VGGNet, Inception, ResNet, and DenseNet
models.

Toygar et al. [23] have to present a multimodal
CNN architecture combining three biometric features with
decision-level data biometrics from the palm, wrist, and
dorsum. The suggested CNN architecture produced better
performance compared to all other approaches. CNN archi-
tecture showed the effectiveness of three-vein biometrics,
Enhanced performance, and the ability to defend against
multiple attacks.

Jhong et al. [24] created a prototype device for palm
vein detection using a convolutional neural network utilizing
the Raspberry Pi operating system and a cloud-calculating

platform. The suggested study produced successful identifi-
cation of palm veins without contact. The theory outcomes
presented that the offered method has great identification
accuracy in several databases.

Das et al. [25] offered a CNN approach for finger-vein
identification, demonstrating robust symmetry capabilities
under various ambient situations. The detected outcomes
show that a maximum identification accuracy of 95%may be
reached for all utilizing the proposed CNN architecture for all
databases.

Xu et al. [26] conducted palm print image recognition
and verification studies on two public contactless palm print
databases using a residual network (ResNet) and spatial
transformation networks (STN). Several state-of-the-art pro-
cedures were compared in extensive experiments, and the
results showed that the method was effective.

Yin et al. [27] offered a novel approach to feature trans-
fer for deep face identification training that examines the
UR classes with an imbalance problem. Across regular, UR,
and unseen classes, the proposed technique is shown to
acquire superior representations, consistently improving per-
formance. As shown in Table 1.

III. DORSAL HAND VEIN DATABASE
Two datasets are passed down in this work; the first is identi-
fied as ‘‘Badawi hand vein dataset.’’ It comprises one hundred
hands, each containing five photographs per individual per
hand (500 images). It’s related to 50 different people for both
left and right hands. People with left and right hands are
linked to 50 diverse people. Photos of both right and left hands
are involved in the dataset. The organization of Dr. Badawi’s
hand vein dataset enables its application in the context of
identification. The study of changes between the right and
left hands and the listing of people by the dorsal hand veins.
People’s left hands are depicted in the data between 1 and 50,
whereas right hands are shown in the data between 51 and
100. The study does not differentiate between the right and
left hands; rather, it generates one hundred distinct classes
using assumptions that the left and right hands represent
different people [28]. The second one is known as ‘‘ Dorsal
Hand Veins Image Database 1.’’ With 138 individuals and
four images per individual per hand, the database contains
1,104 pictures. The time interval between the data obtained
in the sessions for Database 1 is two months [29].

IV. METHODOLOGY
A. PREPROCESSING FOR DORSAL HAND VEIN
Image processing is a method utilized to enhance the con-
tent of an image by eliminating extraneous data present in
different regions of the picture. This method is required
to improve image visualization before identification. Pre-
processing also aids in The procedure of enhancing pixel
density and improving image quality. After preprocessing,
image quality improves. Image preprocessing is frequently
the first and most practical step in the identification process.
Algorithm 1 explained the steps to execute image processing.
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TABLE 1. Related work.
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TABLE 1. (Continued.) Related work.

FIGURE 2. Dorsal hand image in preprocessing phase a) original image
b) result obtained after applying image sharping.

The sharp masking filter is used to bring out the vascular
structure evenmore. This filter is done to improve the contrast
between different ranges of pixel intensities. Image sharpen-
ing contrasts the texture and hidden details of an image; it
does not add additional detail, as shown in Figure 2.
After using the sharp masking filter, it is critical to improve

the image quality. Subsequently, a median filter is applied.
In addition to reducing distortion, this filter effectively detects
image boundaries, an advantage over other filters. The resul-
tant image subsequent to the execution of the median filter is
depicted in Figure 3.

FIGURE 3. Dorsal hand image in preprocessing phase c) original image
d) result obtained after applying a Median Filter.

After applying sharping and median filters, we found that
the CLAHE filters can strengthen the contrast and visibility
of details in pictures of dorsal hand veins, making it easier
to detect patterns and identify the vein’s location. This filter
achieved the best result for enhancing vein pattern contrast.
The CLAHE procedure can expressed as:

δ =
x
y
(1+

σ

100
(Cmax − 1)) (1)

δ is the bound value (clip limit), x signifies the region size,
y denotes the grey-level value (256), σ is the clip factor
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Algorithm 1 Pre-Processing DHV Dataset
Input: Dorsal Hand vein Dataset I, every pixel bij,threshold Thij.
Output: Enhance image and detect vein for hand image.
# Start Procedure

1: Load Dataset
2: Preprocessing image (Data Set):
3: Resizing I to M×M.
4: Convert I to greyscale.
5: Sharpen the image.
6: Apply the Median filter to smooth the image.
7: Apply CLAHE filter as a transformation function to contrast and visibility of details in photos.
8: The optimal threshold process:
9: For each grayscale image
10: Scan grayscale image
11: For every pixel bij, threshold Thij
12: If bij > Thij–k
13: bij = 225;
14: Else
15: bij = 0;
16:

End If
17:

End For
18: Output binary image.
19:

End For
20: Mathematical morphology processes:
21: Apply← Skeletonize to reduce foreground regions in a binary image.
22: Apply Erosion← to remove extraneous parts.
23: Apply Dilatation← to expand the binary image and remove gaps.
24: Finding contours area by applying an adaptive threshold to show that all noise near vein pattern.
25: Performan adaptive threshold to show that all noise is near.
26: Removingnoise
27: Applya median blur filter and canny edge filter.

#End Procedure.

expresses the sum of a histogram limit with a value rang-
ing from 1 to 100 [26]. Cmax is the extremely acceptable
slope.

After that, the optimal threshold process separates the
background’s vein pattern. This process leads to the acqui-
sition of the targeted vein picture. To detect a vein’s image,
more important steps are done as:
• Converting the vein pattern into white on a black back-
ground extracts the vein pattern.

• The resultant binary hand vein contains the output hand
vein pattern.

• Applying mathematical morphology processes for hand
vein pattern enhancement by three basic operations:
Skeletonize is the process of reducing binary things to
1-pixel width representations. This can be helpful in
vein extraction. Erosion is the process that analyses the
image, narrows it, and removes extraneous parts, and
Dilatation is the process that enlarges the binary image

and eliminates gaps. It broadens the picture and removes
broken edges, as shown in Figure 4.

• Finding contours area by applying an adaptive threshold
to show that all noise near vein pattern appears in green
points. The result is shown in Figure 4.

• Finally, to reduce the effect of these unwanted defects
and remove noise, apply a median blur and canny edge
filter. The canny edge filter ensures that the vein image
obtained is continuous and has no breakpoints. The out-
come is depicted in Figure 5.

V. DEEP LEARNING ARCHITECTURES
In recent times, deep neural networks, namely Convolutional
Neural Networks (CNN), have exhibited a notable capac-
ity to acquire proficient feature representations from input
data. CNN deep learning algorithm and essential modules
were used to analyze the network’s overall structure. CNNs
are designed for image and video recognition tasks. They
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FIGURE 4. Dorsal hand image in preprocessing phase a) CLAHE filter
applied on hand vein image b) result image obtained after applying
threshold v = 127 c) Skelton image d) Eroded image e) Dilated image
f) hand image with noise.

FIGURE 5. Dorsal hand image in preprocessing phase a) Image with noise
b) removing noise by a canny edge.

extract features from input data using convolutional layers,
followed by numerous fundamental concepts, like the Con-
volutional Layer, activation functions, Pooling Layer, and
Fully-Connected Layer.

A. CONVOLUTIONAL LAYER
One of the primary constituents of a CNN is the convolution
process. The convolutional layer is the first stage in which
the diverse features are extracted from the input images. Input
data, a filter, and a feature map are the few components that
are needed. The filter (also called kernels) is applied to an
image to obtain a specific map, resulting in multiple feature
maps. The features are different depend on the filter that is
used. Input pixels and filter weights are used to determine
the dot product when applying a filter to an image. The filter
matrix is commonly 3×3 (but the size might vary). Following
the filter’s n-pixel shift, or ‘‘stride,’’ the dot product of the first
pixels and the filter weights are used in the calculation. This
method is also called convolution, as the equation (2) shows.

P
[
x, y

]
= (m ∗ n)

[
x, y

]
=

∑
a

∑
b
m[a, b] n

[
x− a, y− b

]
(2)

where m represents the input image, and n signifies our
kernel. The indexes representing the rows and columns of the
result matrix are represented by x and y correspondingly.

B. POOLING LAYE
The purpose of this layer is to diminish the feature maps,
which, when the depth of the image is held constant, are
completely unrelated to the depth dimension. The pooling
layer performs feature summarizationwithin a specific region
of the feature map generated by a convolutional layer. Conse-
quently, succeeding operations are executed on summarized
features rather than those produced by the convolution layer
that is precisely positioned. Two main types of pooling layers
are commonly used in neural networks: max Pooling and
average Pooling. The formula for maximal Pooling over ‘‘Y’’
is as follows:

Y a,bb =
p

max
a,b=1

(Ya,b) (3)

where Y a,bb describes the output after the pooling layer. The
size of the pooled kernel is denoted by p.

C. RELU ACTIVATION FUNCTION
After the convolutional layer, a nonlinear layer (or activation
layer) called a rectified linear unit (ReLU) is typically used.
Sigmoid, Tanh, and ReLU are the activation functions that
are widely used. ReLU is used in this paper because it helps
the network train more quickly. Equations (4), (5), and (6),
respectively, define the functions of the ReLU, the Sigmoid,
and the Tanh:

ReLU → R (y) =

{
0 ‘‘if ′′y < 0
y ‘‘if ′′y >= 0

(4)

Sigmoid→ S(y) =
1

1+ e−y
(5)

Tanh→ Tanh (y) =
ey − e−y

ey + e−y
(6)
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D. FULLY CONNECTED LAYERS (FC)
The fully connected layer is the last stage of a CNN. FC is a
neural network in which, via a weights matrix, each neuron
applies a linear change to the incoming vector. Subsequently,
the product undergoes a nonlinear transformation by utilizing
a nonlinear activation function denoted as f. It is also known
as a dense layer since it has a high density of connections.
As the equation (7) shows

xjk(y) = f(
∑nH

i=1
wjkyi + wj0) (7)

where w represents the weights matrix, and y represents the
input vector. The bias term, marked as wj0,’’ can be incor-
porated inside the nonlinear function, whereas the symbol f
represents the activation function.

E. MODEL OPTIMIZATION
When mapping inputs to outputs, optimization models find
the weights that make the least amount of mistakes. These
optimization models, also called optimizers, have a big effect
on how accurate the deep learning model is. They also affect
how fast themodel trains. Themost popular model optimizers
used in CNN are Stochastic Gradient Descent (SGD), RMS,
and Adam.

1) STOCHASTIC GRADIENT DESCENT (SGD)
Rather than utilizing the complete dataset for every iteration,
SGD selects data batches randomly. That is, we take only a
few samples from the dataset. SGD can be uttered by:

w := w− η∇Qi(w) (8)

where w is the weight parameter, η is the learning rate, and
∇Qi (w)is the gradient of the weight parameter.

2) RMS PROP
RMS prop, or Root Mean Square Propagation, is a popular
optimizer in the deep learning community. The algorithm
keeps every weight’s moving average of squared gradients,
which then divides the gradient by the mean square’s square
root. RMS Prop can be expressed by:

v(w, t) := γ v(w, t − 1)+ (1− γ )(∇Qi(w))2 (9)

where γ is the disregarding factor, the below formula updates
weights:

w := w−
η

√
v(w, t)

∇Qi(w) (10)

3) ADAM
Adaptive Moment Estimation (Adam), an optimization strat-
egy that adapts the learning rate during training, is employed
to enhance the proposed technique. In contrast to RMS Prop,
Adam changes learning rates using the second moment of the
gradients instead of merely the first. Adam’s formula can be
described as:

wt+1 = wt −
η√
v̂t + ϵ

m̂t (11)

m̂t =
mt

1− β tt
(12)

v̂t =
vt

1− β t2
(13)

where the default values of β1 is 0.9, β2 is 0.999, and ϵ is
10−8, m̂t and v̂t are the first moments of gradients and second
moments of gradients, respectively.

F. DATA AUGMENTATION
Regularly, training the constructed CNN with an adequate
number of images is recommended to ensure its best perfor-
mance during testing. Unfortunately, there are times when
a dataset doesn’t have enough pictures. Data augmentation
refers to the process of incorporating more data that is syn-
thetically generated from pre-existing training data. Various
image manipulation techniques such as resizing, flipping,
rotating, cropping, padding, and other similar operations are
employed. It helps fix problems like overfitting and lack of
data and strengthens the model to perform better.

VI. TRADITIONAL CNN ARCHITECTURES
A common deep neural network called CNN handles input
that is presented as several arrays, such as a grey image (one
2D array) and a color image (three 2D arrays). This paper
uses pre-trained CNNmodels to recognize the vein pattern by
relating the initial DHV image to the trained DHV datasets
system. The most common deep learning models are Vgg-
Net, ResNet50, Inception V3, Xception, DenseNet, AlexNet,
Mobile Net, and Efficient Net. All pre-trained models were
tested on the ImageNet dataset, and each model is described
in detail below.

A. VGG-NET
Andrew Zisserman and Karen Simonyan established the
Visual Geometry Group (VGG) system [30]. The following
three dual convolutional layers are a single max pooling layer
and a ReLU with 64,128 and 256 distinct filters of size
3 × 3 and stride size 1. Three convolutional layers, a ReLU
with 512 separate filters of size 33 and stride 1, and a single
max pooling layer comprise VGG-16’s fourth and fifth layers.
On the other hand, the VGG-19’s fourth and fifth layers have
four convolutional layers, a ReLU with 512 different filters,
each of size 33 and stride size 1, and a single max pooling
layer.

B. RESNET50
The concept of deep residual learning for image classifiers
was introduced by He et al. [31]. The depth of Resnet50 far
exceeds that of the VGG family of architectures. Respec-
tively, Every ResNet is planned by 7 × 7 and 3 × 3 Kernel
Sizes for the initial Convolution and Max-Pooling. Resnet50
Can Express by:

Xk
m+1 = Y

(
Xk
1→m, k1→m

)
+ Xk

lm ≥ l (14)

X km+1 = Ya(X km+1) (15)
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Yc

(
Xk
1→m, k1→m

)
= Xk

m+1 − Xk
l (16)

whereYc
(
X k1→m, k1→m

)
is an altered signal, and X kl is an

input of
(
X k1→m, k1→m

)
as a result, an aggregated output

X km+1, appears in the subsequent layer once the activation
function Ya is added.

C. INCEPTION V3
Szegedy et al. [32] proposed the Inception model, a deep
CNN architecture. It contains 42 hidden levels. There are
11 inception modules in the architecture of Inception V3.

D. XCEPTION
The Xception model was proposed by Chollet et al. [33].
The Xception structural design is an upgraded version of the
Inception V3 architecture. There are 36 convolutional layers
in the Xception network design, and they are responsible for
the feature deduction. The Xception system has 14 modules.

E. ALEXNET
AlexNet is suggested by Krizhevsky et al. [34]. AlexNet had
eight learned layers. Five of themwere convolutional, and the
other three were fully connected. A 1000-way softmax cou-
pled to the last fc layer generates the categorization results.
AlexNet can be expressed as:

k(A) = i(A)+ j(A) (17)

where i(A) and j(A) are the output goal and the total compan-
ion goal, respectively.

F. MOBILENET
MobileNet model was proposed by Google [35]. MobileNet
comprises 28 layers, some named deep convolution, one-
point convolution, batch normalization, ReLU, an average
collecting layer, and softmax, respectively.

G. DENSENET
DenseNet was offered by Huang et al. [36]. Each layer in
DenseNet has additional inputs from layers that came before
it. A feature layer, numerous dense blocks, and a few transi-
tion layers are all components of DenseNet.

H. EFFICIENTNET
Efficient Net was recommended by Tan et al. [37]. The whole
number of convolution layers is 18, or D = 18, and each
layer has a kernel of type k (3,3) or k. (5,5). The formula for
scalability of depth, width, and resolution is displayed below:

depth : D = εψ,width :W = αψ

ε ≥ 1, α ≥ 1 (18)

VII. PROPOSED CNN ARCHITECTURE
The proposed approach uses deep learning to estimate the
likelihood that a given pixel is a vein. The model comprises

FIGURE 6. The structure of proposed RBM.

several significant components, including convolutional lay-
ers, filters, strides, max Pooling, and fully connected layers.
By identifying vein patterns, reducing data dimensions, and
injecting nonlinearity, these layers’ primary responsibility
is to boost model performance. Figure 7 depicts the pro-
posed CNN model’s overall computational structure. The
structure of the Deep Learning model proposed has four
convolutional layers, three max Pooling layers, three fully
connected layers, and a softmax layer. Batch normalization is
implemented following each convolutional layer to mitigate
overfitting and uphold the stability of the model. The model
under consideration underwent training for 50 epochs with
16 batch sizes. The learning rate employed during training
was 0.00000001. The learning rate controls CNN models’
problem-solving agility. Whereas Adam, the optimizer for
the study, uses a cross-entropy function to obtain the most
precise loss measurements, the whole network uses ReLU as
its activation function and L regularization. Our best results
were achieved with a value of (0.0001), minimizing training
loss and preventing the model from becoming overfitting.
The dense layer with the ‘‘softmax’’ activation function is the
last layer of this model. The final dense layer categorizes the
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FIGURE 7. The structure of the proposed deep learning model.

50 classes when using the Dr. Badawi datasets, and the kernel
size of the final dense layer grows to 138when using theDHV
Image datasets. This model works if the dorsal vein patterns
of the left and right hands are very different. Setting the scale
to 3 for Batch Normalization and adding a 0.3 dropout after
each convolution layer keeps themodel stable, and overfitting
is avoided. Algorithm 2 listed the pseudo-code of CNNmode.

VIII. RESTRICTED BOLTZMANN MACHINES
Increasing the ability to recognize features of deep model
transfer learning and decreasing recognition time, we present
a deep learning technique for identifying images based on
restricted Boltzmann machines (RBMs). This approach inte-
grates the learning capabilities of twomodels., which conduct
subject categorization by exacting structural higher-order sta-
tistical aspects of images. While the system transfers the
taught convolutional neural networks to the target datasets,
restricted Boltzmann machine layers can substitute fully
connected layers. RBM, which has one visible layer and
one invisible layer, operates unsupervised. The unseen layer
attempts to rebuild the input as closely as possible after
the information has been delivered to the visible layer. The
neurons are stochastic binary units in both the visible and
unseen layers. Figure 6 provides the Structure of proposed
RBM. The pseudo-code of RBM is listed in Algorithm 3.
A certain joint configuration between two layers receives

its energy from:

E (a, b) = −
∑n

i=1
xiai −

∑z

j=1
yjbj −

∑n

i=1

∑z

j=1
aibj.

(19)

where aiand bjrepresent the units for the binary state in ques-
tion, xi and yj are the biases, Mij is the connection weight
between the seen unit i and unseen unit j. According to the
concept of the energy function, the probability of the visible

and hidden layers existing is defined as:

p (a, b) =
1
Z
e−E(a,b). (20)

whereZ =
∑

a,b e
−E(a,b) is the function of partitioning. As a

result, the likelihood of the visible vector being assigned
can be calculated by adding the probabilities of all possible
hidden vectors, as shown below.

p (a) =
1
Z

∑
b
e−E(a,b). (21)

The unit’s conditional probability bj’s binary state is set to 1.
Approximating a given visible vector a is possible, assuming
no direct connections exist between the hidden units.:

p
(
aj = 1 | b

)
= σ

(
yj +

∑
i
biMij

)
. (22)

where the sigmoid function is σ (·), Also b is a hidden vec-
tor. The probability that the visible unit will be 1 could be
calculated as:

p (ai = 1 | b) = σ
(
xi +

∑
j
bjMij

)
. (23)

Using training examples, a generative model could be trained
via a log-likelihood minimization technique. A more precise
description of the log-likelihood would be as follows:

L (Ctrain) =
∑

logp(a, b). (24)

where the training dataset is Ctrain. can calculate the gradient
of the log-likelihood concerning M correspondingly as:

∂ log(p(a, b))
∂Mij

=

[
∂ logL (Ctrain)

∂Mij

]
data

−

[
∂ logL (Ctrain)

∂Mij

]
model

. (25)
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Algorithm 2 Deep Learning Proposed Method
Input : Dorsal Hand Dataset Size = (150,150), E: Epochs, CNN model parameters η: Learning Rate,
b: Size of the batch; Xtrain: Dorsal Hand Training Dataset; Xtest : Dorsal Hand Test Dataset
Output : Computed model evaluated metrics and predicted the person’s veins
#Start Procedure

1: Load Dataset
2: Preprocess the data by applying (resizing, grayscale image, and sharping).
3: Implement a filtering process incorporating (MEDIAN filter, CLAHE filter)
4: Apply the morphological operation (e.g., skeleton, dilating, eroding, undesirable object removal).
5: Split (dataset): Prepare training, testing, and validating.
6: Xtrain,ytrain← pre data(Xtrain)
7: Xtest.ytest ← pre data(Xtest )
8: Set hyper-parameters.
9: E←50
10: η←10−7

11: b← 16
12: loss← categorical_crossentropy
13: for local epoch e ← 1 to E do
14: for b = (x, y) ∈ random batch
15: Optimize the model using ADAM optimizer
16:

end for
17:

end for
18: Initialize the CNN model.
19: model. Sequential ()
20: Adjust the model layer by adding
21: Add Conv2D
22: Add Batch normalization
23: Add MaxPooling2D
24: Add Dropout
25: Add Dense
26: Model.compile (loss, Learning Rate).
27: Implement image augmentation techniques to expand the dataset.
28: Training model for vein recognition.
29: Model .fit (Xtrain, ytrain)
30: Load the suggested model.
31: for j=1:num test datasets
32: split and evaluate (Xtest ,ytest )
33: (ypred ) = model predicts (Xtest )
34: Acc = accuracy score (ytest ,ypred )
35: Loss = (ytrue log (ypred )+ (1-ytrue) log (1-ypred ))
36:

end for
37: Detect Veins for Dorsal Hand for Persons.
38: ComputeAccuracy.
39: Plot acc curve-loss curve.
40: Prediction = Recognition (Train CNN, Test dataset).
41: Return prediction.
42: EvaluateMetrics (Precision, Recall, F1-score).
43: Train(Vgg-Net, ResNet50, Inception V3, Xception, DenseNet, AlexNet, Mobile Net, and Efficient Net).
44: Analogize the models.
45: Match for all models.

#End Procedure.
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Algorithm 3 Proposed RBM Methodology
Input: Input Size = (50,50), I: Iterations
Output: Computed RBM model evaluated metrics ’’ and predicted the person’s veins.
#Start Procedure

1: Load Dataset
2: Preprocess the data by applying (resizing, grayscale image, and contrast).
3: Notation: x← y means l is set to y. l ∼ k means l is sampled from k.
4: Require:
5: A training set of N data vectors:{an}Nn =1.
6: Learning rateα.
7: Iterations Number I.
8: Components Number N.
9: Parameters θ = {M, g, p}

10: Set hyper- parameters
11: I←30
12: η←0.1
13: N←256
14: Load the proposed model.
15: for q = 1 to E
16: for n = 1 to N
17: a′← an,b

′
∼ sigm (g+Mva′)

18: a
′′
← sigm (p +Mb

′
), b

′ ′
← sigm (p+Ma

′′
)

19: θ ← θ +α ∂
∂θ
E (a′,p

′
) − ∂

∂θ
E(a

′′
, b

′ ′)
20:

end for
21:

end for
22: RBM_Features_Classifier
23: Bernoulli-RBM
24: LogisticRegression
25: RBM_Features_Classifier.fit
26: Detect Veins for Dorsal Hand for Persons.
27: Prediction = classification (RBM feature).
28: ComputeAccuracy.
29: EvaluateMetrics (Precision, Recall, F1-score).
30: Compare the RBM result with Deep learning result.

#End Procedure

Allowing for Eqns. (18), (19), (23), and (24), it could be
obtained by:

∂log(p(a, b))
∂Mij

=
[
aibj

]
data −

[
aibj

]
model . (26)

where[·]indicates the probability that the data or model will
behave as expected.

IX. EVALUATION METHODS
The recommended model of deep learning is run on ‘‘Badawi
hand vein dataset’’ with 50 classes and ‘‘Dorsal Hand Vein
Image Database’’ with 138 classes. In this part, we compared
the outcomes of the proposed deep learning model and the
suggested RBM model to that of traditional models such

as Vgg-Net, ResNet50, Inception V3, Xception, DenseNet,
AlexNet, Mobile Net, and Efficient Net.

A. EVALUATION METRICS
Checking out how well the system is working is important.
Numerous evaluation parameters are used for this reason.
When the model recognizes the vein patterns, it provides four
effective outcomes: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). While TNs are
correctly identified as negative instances, while TP displays
appropriately anticipated positive cases, FPs, and FNs are
incorrectly labeled as positive and negative instances. As per-
formance evaluation criteria in this study, recall, precision,
accuracy, and F1-score are used, respectively. This study
uses recall, precision, accuracy, and F1-score as evaluation
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FIGURE 8. The accuracy (a) and loss curves (b) during training vgg-16 model.

FIGURE 9. The accuracy (c) and loss curves (d) during training vgg-19 model.

FIGURE 10. The accuracy (a) and loss curves (b) during training ResNet50.

metrics of achievement [38]. Accuracy can be defined as the
fraction of vein patterns that are effectively identified com-
pared to the entire number of vein patterns, as presented in
equation (27).

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(27)

As shown in equation (28), the ratio of accurately detected
vein patterns to the whole number of vein patterns identified
by the classifier is known as precision.

Precision =
TP

TP+ FP
(28)
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FIGURE 11. The accuracy (a) and loss curves (b) during training Inception V3 model.

FIGURE 12. The accuracy (c) and loss curves (d) during training Xception model.

FIGURE 13. The accuracy (e) and loss curves (f) during training DenseNet model.

As shown in equation (29), the concept of recall is oper-
ationalized as the ratio between the count of accurately
identified vein patterns and the overall count of vein patterns

Recall =
TP

TP+ FN
(29)

Model performance can be estimated using an evaluation
metric called F1 score, which is an average of the model’s
precision and recall, as shown in equation (30).

F1score = 2×
Precision · Recall
Precision+ Recall

(30)

18502 VOLUME 12, 2024



R. Nour et al.: Improved Unsupervised Deep Boltzmann Learning Approach

FIGURE 14. The accuracy (a) and loss curves (b) during training AlexNet model.

FIGURE 15. The accuracy (c) and loss curves (d) during training MobileNet model.

FIGURE 16. The accuracy (e) and loss curves (f) during training EfficientNet model.

X. RESULTS AND DISCUSSION
The nine common experiments used in this work utilized
various deep-learning models. First, we compared the perfor-
mance of the traditional CNN models Vgg-Net, ResNet50,
Inception V3, Xception, DenseNet, AlexNet, MobileNet, and

Efficient Net. Next, we focused on the suggested CNNmodel
and RBMmodel. In the final step, the suggested CNN model
and proposed RBM are compared with traditional CNN.
Measures of performance such as accuracy, precision, recall,
F1-score, and recall were tested in each experiment. Note that
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FIGURE 17. The proposed deep learning model for dorsal hand vein image datasets (a) Accuracy curve (b) Loss curve.

FIGURE 18. The proposed deep learning model for Badawi Hand Vein datasets (c) Accuracy curve (d) Loss curve.

the suggested models and the nine previously trained models
were trained for 50 epochs. All of the trials were carried
out on a PC with the following specifications: Microsoft
Windows 10 operating system, a 5-core processor running at
4.0 GHz, 4 GB of RAM, and an NVidia Tesla NVIDIA Tesla
P100 GPU.

A. PRE-TRAINED MODE
CNN’s abilities are shown by putting nine distinct archi-
tectures, VGG-Net, ResNet50, Inception V3, Xception,
DenseNet, AlexNet, MobileNet, and EfficientNet to work.
The execution result of each model was evaluated in Table 2.
Respectively, Figure 8,9,10,11,12,13,14,15,16 shows the tra-
ditional CNN model accuracy and loss curve. In Table 2

discusses the performance of traditional CNN models. Effi-
cientNet achieved the lowest accuracy with 2.50%, followed
by ResNet50 with 14.9%, and results started to improve in
each architecture with AlexNet at 73.9, Xception at 87.3,
VGG-19 at 88.8%, MobileNet at 92.8%, Inception V3 at
93.2%, and DenseNet at 93.9%, with the best accuracy being
based on VGG-16.

B. PROPOSED CNN AND RBM MODELS
After evaluating pre-trained models, we proposed a deep
learning model to achieve high accuracy and good perfor-
mance greater than pre-trained methods. It makes hand vein
recognition a reliable and accurate way of identifying individ-
uals for security purposes. RBMhas been suggested to reduce
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TABLE 2. Traditional CNN architectures classification report.

TABLE 3. Results of the proposed deep learning method.

TABLE 4. The proposed deep learning model classification report.

TABLE 5. Overall performance as compared to other methods.

computational time and increase the accuracy rate. Badawi
hand vein dataset and the Dorsal Hand Vein Image Database
was used to train the recommendedmodels. The experimental
outcomes of the proposed approach are presented in Table 3.
The performance of the proposed deep learning model was
evaluated in Table 4. Figures 17 and 18 show the curves for
accuracy and loss of our experimental results.

C. THE COMPARISON BETWEEN CLASSICAL CNN AND
THE PROPOSED METHOD
The proposed deep learning model’s end result is compared
with traditional CNN. The study aims to determine the pro-
posed CNN model’s ability to detect veins for the dorsal
hand to achieve the best performance. The proposed methods
achieve 99.50% recognition accuracy for Dorsal Hand Vein
Image datasets and 99.76% for Dr.Badawi dataset rate in
50 epochs. In the other traditional models, Dr.Badawi dataset

with VGG16 gives better accuracy than different architec-
tures, reaching to 95.2% rate in 50 epochs. According to
observations, the proposed CNN model appears to perform
the best results. Table 5 lists further research projects that
have been worked on in the area of DHV as a characteristic
across time. The existing dorsal vein databases are shown,
along with instances in which they have been utilized in the
literature. The methods for recognition employed in those
studies are also briefly described, along with the main find-
ings of the experiments.

XI. CONCLUSION
This study presents ten deep-learning models, including cus-
tomized CNN and RBM models, which were tested on
two datasets to determine how well they identified DHV.
Two datasets that are freely available to the public were
used. To evaluate how various factors, act on the overall

VOLUME 12, 2024 18505



R. Nour et al.: Improved Unsupervised Deep Boltzmann Learning Approach

performance of the models that are being tested, experiments
were carried out by gradually increasing the training data size,
the epochs number, the parameters, and the network com-
plexity. The proposedmodels exhibited superior performance
across the training, validation, and testing stages, with the
acquired features contributing to their good performance. The
proposed CNN technique outdid the other methods in terms
of accuracy, with precision, recall, and F1 scores ranging
from 97 to 96%, 96 to 95%, and accuracy scores from 99.2%
to 99.7%, respectively. The proposed RBM technique outdid
precision, recall, and F1 scores ranging from 99%, 99 to
99%, and accuracy scores from 99.9 %, respectively. This
study predicts how useful vein patterns will be for biometric
identification, proving that each person’s hand has a different
vein pattern.
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