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ABSTRACT Insulators play a pivotal role in power transmission lines, and the timely detection of defects
in insulators is crucial to prevent potentially catastrophic consequences in terms of human lives and
property. This paper proposes an insulator defect detection algorithm, named Insulator Lack-You Only
Look Once (IL-YOLO), addressing the limitations observed in existing research concerning the complex
background and multi-target challenges in insulator detection. The IL-YOLO algorithm focuses on detecting
insulator defects within the intricate background of power transmission lines. To enhance its functionality,
we propose three improved modules. Firstly, the Insulator Lack-Global Attention Mechanism (IL-GAM)
addresses issues such as the mutual influence of weights and loss of detailed information in the original
module. Secondly, the Insulator Lack-C3 (IL-C3) module is designed to emphasize key information while
preserving feature extraction and fusion. Lastly, the Insulator Lack-SPPFCSPC (IL-SPPFCSPC) module
enhances attention to both key and global information while extracting effective information from multi-
scale features. Experimental results demonstrate that IL-YOLO achieves a detection accuracy of 91.2%,
marking a 3.6% improvement compared to the YOLOv5 algorithm. Furthermore, precision improves by
0.5%, recall increases by 6.3%, and the F1 score sees a boost of 3.8%. Notably, IL-YOLO achieves a frame
rate of 90 frames per second (FPS), showcasing its capacity for real-time detection. Additional experiments
affirm IL-YOLO’s accuracy in completing insulator defect detection tasks in both general and complex
backgrounds, highlighting its substantial advantages in addressing complex background and multi-target
challenges.

INDEX TERMS Complex background, insulator lack, multi-target, real-time detection, YOLO.

I. INTRODUCTION
As of the conclusion of 2022, the total length of 220 kV
and above transmission lines in China has reached 794,000
kilometers [1]. The continuous growth of the Chinese power
industry has led to a gradual expansion in the scale of
transmission lines. Insulators, integral components of trans-
mission lines, are prone to damage from prolonged exposure
to outdoor conditions, resulting in phenomena such as the
insulator defect image depicted in Fig 1. Statistically, over
75% of global power grid accidents are attributed to insulator
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defects annually [2], posing a significant threat to the secure
and stable operation of power grids. Therefore, the effec-
tive detection of insulator defects holds substantial practical
importance.

Historically, the detection of insulator defects relied on
manual inspection. However, with the emergence of deep
learning in the field, object detection algorithms have pro-
gressively replaced traditionalmanual inspections. In contrast
to manual inspections, which are costly and time-consuming,
object detection algorithms can efficiently and safely accom-
plish the task of insulator defect detection. This transition
signifies a noteworthy advancement in the insulator detection
capabilities of the power industry.
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FIGURE 1. Insulator defect images.

Presently, object detection algorithms are broadly catego-
rized into single-stage detection algorithms and two-stage
detection algorithms [3]. Single-stage detection algorithms
predominantly include the You Only Look Once (YOLO)
series [4], [5], [6], [7], [8], and the Single Shot Multi-
Box Detector (SSD) [9]. Conversely, two-stage detection
algorithms are primarily represented by the Region-based
Convolutional Neural Network (R-CNN) series [10], [11],
[12]. Previous research has predominantly concentrated on
enhancing the detection accuracy of two-stage detection algo-
rithms, as evidenced in the works of Shuang et al. [13],
Ou et al. [14], and Wang et al. [15].
To address the challenge of relatively slow detection speed,

single-stage detection algorithms have been introduced.
Sadykova et al. [16], building upon the YOLOv2 network,
incorporated data augmentation tools to prevent overfitting
of training data, resulting in improved recognition of insu-
lators covered with ice, snow, water, and similar substances.
Liu et al. [17] combined YOLOv3with CSPDarknet53, intro-
ducing the CIOU Loss and K-means++ clustering algorithm
to enhance the detection accuracy of insulator defects, albeit
at the cost of a significant reduction in detection speed.
Bao et al. [18], utilizing YOLOv5 as the base network archi-
tecture, introduced the CA attention mechanism module in
the Backbone and incorporated the Bi-FPN network struc-
ture, thereby improving the detection accuracy of insulator
defects. However, the model introduced an excessive number
of parameters, hindering edge deployment. Wang et al. [19],
by introducing Darknet53 to replace the original backbone
of YOLOv4, aimed to enhance the detection accuracy of
insulators but focused only on insulator detection, neglecting
the broader issue of insulator defect detection. Han et al. [20],
in designing the D-CSPDarknet53 network to replace the
YOLOv4 backbone, incorporated the Shuffle Attention (SA)
mechanism into the feature fusion network and introduced
a new detection head to enhance the recognition capability
of insulator defects. However, there remains room for fur-
ther optimization in terms of both detection accuracy and
speed. Huang et al. [21], achieving model lightweighting
by pruning redundant layers from YOLOv5, introduced an
adaptive attention module between adjacent residual modules
to enhance the network’s feature learning capability. Never-
theless, further improvement is required in terms of model

detection accuracy. Yi et al. [22], building upon YOLOv5,
introduced GSConv, designed the VoV-GSCSP module and
MaECA attention mechanism module, optimized the loss
function in SPPF, and introduced the SIoU loss function.
However, there is still potential for further optimization and
enhancement in model accuracy.

In general, deep learning has showcased substantial poten-
tial in the realm of insulator defect detection. However,
current research encounters challenges in addressing complex
backgrounds and multi-target issues in insulator detection.
This paper adopts YOLOv5 as the foundational model,
which, in comparison to other versions, achieves a more
favorable balance between detection accuracy and speed,
with a model size conducive to edge deployment. Build-
ing upon this foundation, the paper introduces a detection
algorithm named Insulator Lack-You Only Look Once
(IL-YOLO), specifically designed to tackle the task of insula-
tor defect detection within the intricate background of power
transmission lines. The introduction of this algorithm brings
forth novel perspectives and methods to overcome existing
challenges in insulator detection. The key contributions of
this study are summarized as follows.

a) To address the issue of low saliency in detecting
faulty targets within complex backgrounds, which often leads
to challenges in accurate detection, the introduced Insula-
tor Lack-Global Attention Mechanism (IL-GAM) attention
module is incorporated into the backbone. This augmentation
enhances the model’s ability to recognize defect positions,
intensifies its focus on crucial information, and enhances the
extraction of key features effectively during the early and
middle stages of the network. Consequently, this augmen-
tation contributes to an improvement in the model’s overall
detection accuracy.

b) To address the challenge of information loss during the
feature extraction and fusion process, the proposed Insulator
Lack-C3 (IL-C3) module is introduced to replace the orig-
inal C3 module in the network. This module intensifies the
emphasis on target information, mitigates the likelihood of
gradient vanishing issues, consequently reducing instances
of missed and false detections. This modification results in
a more compact model size while concurrently enhancing
its capacity to extract pertinent information pertaining to
insulator defects.
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c) To address the multi-target challenge associated with
insulator defects, the proposed Insulator Lack-SPPFCSPC
(IL-SPPFCSPC) module replaces the original SPPF module.
This novel module, while extracting effective information
from multi-scale features, enhances attention to both key and
global information. This improvement enables the algorithm
to adeptly classify and extract information from multi-target
images, thereby further augmenting the algorithm’s overall
detection performance and accuracy.

II. METHOD
In this chapter, we will introduce a range of improvement
strategies and the comprehensive architecture of the proposed
algorithm, all designed to be plug-and-play.

A. IL-GAM
In the task of insulator defect detection, we encounter two pri-
mary challenges. Firstly, insulators are frequently positioned
in complex background environments, including other trans-
mission lines and buildings, which introduce an abundance of
background information in terms of texture, color, and shape.
This complexity poses a challenge to the defect detection
task. Secondly, the use of long-distance photography, due to
the impracticality of capturing images at close range, may
lead to difficulties in extracting characteristic information
about the defect’s position, thereby affecting the accuracy of
defect detection.

In recent years, various attention mechanisms have con-
tinually surfaced, showcasing significant progress in perfor-
mance. These encompass Squeeze-and-Excitation (SE) [23],
Convolutional Block Attention Module (CBAM) [24], Coor-
dinate Attention (CA) [25], Normalization-based Attention
Module (NAM) [26], and others. While these attention mech-
anisms have achieved noteworthy results in enhancing model
performance, they generally concentrate on information from
only two dimensions. In contrast, the recently introduced
Global Attention Mechanism (GAM) [27] can comprehen-
sively utilize information from all three dimensions, thereby
further enhancing model performance.

However, when addressing insulator defect detection tasks
in complex backgrounds, GAM still exhibits certain lim-
itations. These include the influence of channel attention
weight on the output of spatial attention weight and the
excessive blurring of information for small targets, leading to
a reduction in defect detection accuracy. Recognizing these
challenges, this paper introduces an optimized and enhanced
attention mechanism named Insulator Lack-Global Atten-
tion Mechanism (IL-GAM). The overall module design is
depicted in Fig 2.
In the initial stage, the input feature map F1 is simul-

taneously fed into both the channel attention module and
the spatial attention module. This simultaneous processing
is implemented to avoid mutual interference of weights,
enhance the exchange and integration of global information,
and consequently improve computational efficiency. The out-
puts from these modules are then summed, and the resulting

FIGURE 2. Structure of the IL-GAM.

sum undergoes sigmoid activation to obtain the final attention
weights. Subsequently, these weights are element-wise mul-
tiplied with the input feature map F1. The resulting product is
then added to the residual structure, preserving the richness
of information related to small targets and reinforcing the
representational capacity of the output feature map F2. The
formula is expressed as ‘‘(1)’’ and ‘‘(2)’’.

F2 = MF ⊗ F1 + F1 (1)

MF = σ (MC (F1) +MS (F1)) (2)

where:
• MF represents the mixed-domain attention weight.
• Mc represents the channel attention weight.
• Ms represents the spatial attention weight.
• σ represents the sigmoid activation function.

1) CHANNEL ATTENTION MODULE
In the Channel Attention Module, the Mish activation func-
tion [28] is employed instead of the conventional ReLU [29].
The functions are compared in Fig 3. Mish demonstrates
greater flexibility in managing negative values, facilitating
information propagation and mitigating gradient saturation
issues. Simultaneously, it maintains smoothness to enhance
the efficacy of gradient descent. This enhancement equips
IL-GAM with improved feature extraction capabilities, espe-
cially in the context of complex image backgrounds.

The Channel Attention Module initiates by transforming
the dimensions of the input feature map F1. Subsequently,
it employs a Multi-Layer Perceptron (MLP) for information
propagation, followed by dimension reverse transformation.
Finally, the processed result undergoes sigmoid activation.
The Mish function is utilized for information processing
within the MLP. The structural details are depicted in Fig 4.
The formula is expressed as ‘‘(3)’’.

MC = σ (per(MLP(per(x)))) (3)

where:
• MC represents the channel attention weight.
• per represents the dimension transformation operation.
• MLP represents the fully connected layer.
• σ represents the sigmoid activation function.
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FIGURE 3. ReLU and mish activation functions.

FIGURE 4. Structure of the channel attention module.

FIGURE 5. Structure of the spatial attention module.

2) SPATIAL ATTENTION MODULE
The Spatial Attention Module primarily employs convolu-
tion for processing. Two convolutional kernels of size 7 × 7
are utilized. By executing dimension reduction followed by
dimension augmentation, spatial dimension information is
extracted and fused to enhance attention to spatial details.
Finally, the sigmoid function is applied for further processing.
The structural details are illustrated in Fig 5. The formula is
expressed as ‘‘(4)’’.

MS = σ (f 7×7(f 7×7 (x)) (4)

where:
• MS represents the Spatial Attention Module.
• f 7×7 represents the convolution layer with a 7 × 7

convolutional kernel.
• σ represents the sigmoid activation function.

B. IL-C3
In YOLOv5, the C3 module showcases capabilities in fea-
ture extraction and fusion. However, for the specific task
of insulator defect detection, this module’s design presents

certain limitations. Insulator defects typically manifest small
target characteristics, and the feature information within the
defect area often resembles the surrounding background.
The original C3 module processes information exclusively
through 1 × 1 and 3 × 3 convolutions. When confronted
with small target characteristics and areas exhibiting high
similarity, this structure may result in the loss of detailed
information, thereby impacting the accurate extraction of
insulator defects.

To mitigate the previously mentioned issues, this paper
introduces the Insulator Lack-C3 (IL-C3) module, draw-
ing inspiration from the core concepts of ResNet [30],
GSConv [31], and SE [23]. This enhancement is designed
to more effectively address small target features, boost the
extraction capability of key information, and enhance the
model’s performance in the task of insulator defect detection.
The structure is illustrated in Fig 6.

The process begins with a 1 × 1 convolutional layer
performing dimension reduction on the input feature map,
thereby reducing the computational complexity of the model.
The dimension-reduced feature map is then fed into the
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FIGURE 6. Structure of the IL-C3.

Insulator Lack-BottleneckX (IL-BottleneckX ) module,
specifically designed for feature extraction to intensify atten-
tion to crucial information. Subsequently, the output of the
IL-BottleneckX module is concatenated with the original
input feature map, aiming to fuse the high-level seman-
tic information extracted and the low-level features from
the original input. Finally, a 1 × 1 convolutional layer is
employed to adjust the channel number and obtain the output
feature map.The formula is expressed as ‘‘(5)’’.

The IL-BottleneckX module consists of two sub-
structures: IL-Bottleneck1 and IL-Bottleneck2, illustrated
in Fig 7 and Fig 8. IL-Bottleneck1 addresses the rela-
tionship between input and output through a residual
connection, alleviating information loss issues and conse-
quently enhancing model performance and generalization
ability. IL-Bottleneck2 sequentially transmits information.
Both sub-structures primarily utilize 1 × 1 convolutional
layers and 3 × 3GSConv for dimension reduction and feature
extraction. Subsequently, the SE attention mechanism is
employed to focus on crucial information related to insu-
lator defects. Finally, a 1 × 1 convolutional layer ensures
the output channel number is consistent with the input,
enhancing the quality of feature fusion and thereby improving
network detection accuracy. The formula is expressed as
‘‘(6)’’ and ‘‘(7)’’.

y = f 1×1(f
1×1

(IB (x)) + f 1×1(x) (5)

y = f 1×1(S(G
3×3

(f 1×1 (x)))) + x (6)

y = f 1×1(S(G
3×3

(f 1×1 (x)))) (7)

where:
• f 1×1 represents the convolutional layer with a 1 × 1

convolutional kernel.
• G3×3 represents the GSConv with a 3×3 convolutional

kernel.
• S denotes the SE attention mechanism.
• IB represents the IL-BottleneckX module, where
X = 1, 2.

C. IL-SPPFCSPC
In YOLOv5, the Spatial Pyramid Pooling (SPP) module ele-
vates the network’s detection accuracy by integrating features

from various scales. Despite the capabilities demonstrated by
the SPPF [7] module and the SPPCSPC [8] module proposed
in 2023 for multi-scale feature extraction, they still possess
certain limitations in addressing the multi-target issue asso-
ciated with insulator defects in power transmission lines.
To tackle these challenges, this paper introduces the Insu-

lator Lack-SPPFCSPC (IL-SPPFCSPC) module. Drawing
inspiration from the design principles of SPPF to enhance
model training speed, this module integrates Global Average
Pooling (GAP) and Global Max Pooling (GMP) to compre-
hensively consider crucial information from the target and
global context. Research [24] suggests that the simultaneous
use of these two pooling methods enhances feature diversity
and expressive power, thereby improving the model’s robust-
ness and generalization, especially in handling multi-target
problems in complex backgrounds. The IL-SPPFCSPC
module, through cross-scale information fusion, adapts
to the requirements of images with different resolutions,
enhancing the model’s adaptability and generalization per-
formance, ultimately optimizing detection effectiveness
and accuracy. The overall module design is illustrated
in Fig 9.
The process initiates with the input feature layer under-

going feature extraction through convolutional layers with
kernel sizes of 1 × 1, 3 × 3, and 1 × 1. Subsequently,
the input flows into the Compound Pooling module for
multi-scale feature fusion, as depicted in Fig 10. Following
this, a 1 × 1 convolutional layer is applied to simultaneously
reduce the number of channels and parameters. The processed
output then enters a 3 × 3 convolutional layer to restore the
channel number, and the resulting output is concatenated with
the initial output of the 1 × 1 convolutional layer. Finally,
a 1 × 1 convolutional layer is employed to maintain the
output’s channel number consistent with the original input
feature layer. The formula is expressed as ‘‘(8), as shown at
the bottom of the next page’’. The Compound Poolingmodule
continuously feeds the input into three convolutional layers
with kernel sizes of 5, padding of 2, and global max-pooling,
as well as global average-pooling with the same operations.
Each output is concatenated with the original input channels.
The formula is expressed as ‘‘(9), as shown at the bottom of
the next page’’.
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FIGURE 7. Structure of the IL-Bottleneck1.

FIGURE 8. Structure of the IL-Bottleneck2.

FIGURE 9. Structure of the IL-SPPFCSPC.

where:
• f 1×1 represents the convolutional layer with a 1 × 1

convolutional kernel.
• f 3×3 represents the convolutional layer with a 3 × 3

convolutional kernel.
• C represents the concatenation operation.
• CP represents the Compound Pooling module.
• GAP represents the global average pooling.
• GMP represents the global max pooling.

D. IL-YOLO NETWORK MODEL
The IL-YOLO algorithm proposed in this paper represents
an optimization of the YOLOv5 algorithm, incorporating
significant enhancements to the backbone and neck networks
of YOLOv5.

In the backbone, IL-YOLO introduces the IL-GAM atten-
tion mechanism module to enhance the network’s focus on
critical areas, eliminating interference from non-essential
information and improving the feature extraction capability.

y = f 1×1(CP(f 3×3(f 1×1(C(f 1×1(f 3×3
(
f 1×1 (x)

)
)))), f 1×1 (x))) (8)

y = C(C
(
GAP (x) ,GAP(GAP (x)),GAP(GAP (GAP (x)))),
GMP (x) ,GMP(GAP (x)),GMP(GMP (GMP (x))))

)
, x) (9)
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FIGURE 10. Structure of the compoud pooling.

Additionally, IL-YOLO incorporates the IL-C3 module in
both the backbone and neck networks to replace the orig-
inal C3 module, reducing information loss during feature
extraction and further enhancing the network’s ability to
capture valuable information. Finally, in the backbone, the
IL-SPPFCSPC module is introduced to replace the original
SPPF module, combining crucial information with global
context to improve overall detection accuracy. The Com-
plete Intersection over Union Loss (CIoU Loss) is utilized
for localization loss. The formula is expressed as ‘‘(10)’’,
‘‘(11)’’, and‘‘(12)’’. The comprehensive network architecture
is illustrated in Fig 11.

LIoU = 1 − IoU +
ρ2

(
b, bgt

)
c2

+ αv (10)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)
2

(11)

α =
v

(1 − IoU) + v
(12)

where:
• ρ represents the Euclidean distance between the center
points of two bounding boxes.

• b represents the center point of the predicted box.
• bgt represents the center point of the ground truth box.
• wgt represents the width of the ground truth bounding
box.

• hgt represents the height of the ground truth bounding
box.

• w represents the width of the predicted bounding box.
• h represents the height of the predicted box.
• α represents the balancing parameter.
• v represents the parameter measuring the similarity of
aspect ratios.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. SELECTION AND CONSTRUCTION OF THE DATASET
For the task of insulator defect detection in power trans-
mission lines, this study implemented a series of effective
strategies. Recognizing the relatively small scale of the

original dataset, which could lead to insufficient model train-
ing and underfitting issues, we conducted in-depth research
and introduced strategies such as data augmentation and
feature enhancement to improve training effectiveness. The
primary datasets utilized include the China Power Line Insu-
lator Dataset (CPLID) and some images collected by drones
in actual scenarios. The division between the training set and
the test set followed an 8:2 ratio. The specific number of data
images is shown in Table 1.

B. EXPERIMENTAL ENVIRONMENT AND
HYPERPARAMETER SETTINGS
The experiment was conducted on a Windows 10 oper-
ating system using an NVIDIA GeForce RTX 3080 for
both training and testing. The model was built using the
PyTorch 1.12.1 framework and the Python 3.10 programming
language.

In our experiment, stochastic gradient descent (SGD) was
employed as the optimizer. The initial learning rate was set to
0.01, and it was updated using the cosine annealing learning
rate schedule. The optimizer’s momentum and weight decay
values were configured at 0.937 and 0.0005, respectively.
Each model underwent training for 200 epochs, with a batch
size of 16 images per iteration. Regarding data augmentation
parameters, the scores for enhancing the hue, saturation, and
brightness of input images were set to 0.015, 0.7, and 0.4,
respectively. During preprocessing, there was a 50% chance
of horizontal flipping for the images. Additionally, cutout
data augmentation techniques were employed to enhance the
model’s generalization and accuracy. More detailed hyperpa-
rameter settings are provided in Table 2.

C. EVALUATION METRICS
To rigorously evaluate the model’s performance, this
study employs commonly used metrics in object detection
assessment.

Specifically, True Positives (TP) denote instances where
the model accurately predicts positive samples, indicating the
number of correctly detected insulators. False Negatives (FN)
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FIGURE 11. The IL-YOLO network structure.

TABLE 1. Composition of dataset.

represent cases where the model incorrectly predicts positive
samples as negative, indicating the number of insulators that
were missed (undetected). False Positives (FP) correspond
to situations where the model incorrectly predicts negative
samples as positive, reflecting the number of falsely detected
insulators.

Recall (R) is the ratio of the number of samples correctly
predicted as the positive class by the classifier to the total
number of actual positive samples. The formula is expressed
as ‘‘(13)’’.

R =
TP

TP+ FN
(13)

Precision (P) is the ratio of the number of samples cor-
rectly predicted as the positive class by the classifier to the
total number of samples classified as the positive class. The
formula is expressed as ‘‘(14)’’.

P =
TP

TP+ FP
(14)

Average Precision (AP) is the average of the areas under the
precision-recall curves calculated for each class. The formula
is expressed as ‘‘(15)’’.

AP =

∫ 1

0
PdR (15)

Mean Average Precision (MAP) is the average of the Average
Precisions (AP) calculated for all classes. The formula is
expressed as ‘‘(16)’’.

mAP =
1
n

∑
r∈(0.1,0.2,···,1)

ρ(r) (16)

where:
• n represents the set of detection categories.
• ρ(r) represents the average precision for predicting tar-
gets within each category.

F1 is the harmonic mean of precision and recall. A higher F1
score indicates a more effective experimental method. The
formula is expressed as ‘‘(17)’’.

F1 =
2 × P× R
P+ R

(17)

Frames Per Second (FPS) is a measure of the number of
frames processed per second in image or video processing.

Giga Floating Point Operations Per Second (GFLOPS)
measures the number of floating-point operations executed
per second during model inference, serving as an indicator of
model computational efficiency.

D. RESULT ANALYSIS
1) ABLATION EXPERIMENTS
This study investigates the effectiveness of IL-GAM, IL-C3,
and IL-SPPFCSPC for detecting defects in the transmission
line dataset. To achieve this, ablation experiments are con-
ducted to assess the impact of these improvement methods
on the experimental results. The experimental data in Table 4
are based on the results of 200 training rounds. G-YOLO rep-
resents the model with the IL-GAM module. C-YOLO
represents the model with only the IL-C3 module. S-YOLO
represents the model with only the IL-SPPFCSPC module.
GC-YOLO represents the model containing both IL-GAM
and IL-C3 modules. CS-YOLO represents the model with
both IL-C3 and IL-SPPFCSPC modules. GS-YOLO rep-
resents the model with both IL-GAM and IL-SPPFCSPC
modules. IL-YOLO includes all three modules: IL-GAM,
IL-C3, and IL-SPPFCSPC. The results of the ablation
experiments are shown in Table 3.

G-YOLO, C-YOLO, S-YOLO, GC-YOLO, CS-YOLO,
GS-YOLO, and IL-YOLO all achieve higher mAP values
than the baseline YOLOv5 model, reaching 88.3%, 88.8%,
89.4%, 88%, 88.3%, 89.4%, and 91.2%, respectively. These
improved models increase the average precision of defect
detection by 0.7%, 1.2%, 1.8%, 0.4%, 0.7%, 1.2%, and 3.6%,
respectively. For insulator detection, the average precision
of these models is higher than that of the basic YOLOv5
model. For G-YOLO, the addition of the IL-GAM attention
mechanism module has increased attention to small target
objects to some extent. Compared to the basic model, the
IL-GAMmodule increases the focus on small target informa-
tion while improving model accuracy. Experimental results
show that G-YOLO’s F1 score has increased by 1.4%, and the
detection accuracy of small target information has increased
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TABLE 2. Specific hyperparameter settings.

by 1.2%.C-YOLO replaces the original C3 module in the
YOLOv5 model with the IL-C3 module, resulting in a 1.2%
improvement in mAP compared to the original YOLOv5.
S-YOLO adds the IL-SPPFCSPC module to replace the orig-
inal SPPF module, significantly improving the network’s
detection accuracy by 1.8%.

From the GC-YOLO, CS-YOLO, and GS-YOLO models,
we can observe that the combination of various modules
has improved the model’s detection accuracy to a certain
extent. However, due to the increase in network layers and
the introduction of complex modules, the inference time of
the models has significantly increased, leading to a decrease
in detection speed compared to the YOLOv5 baseline model.
A comparison between the IL-YOLO model and the original
YOLOv5 model training results is shown in Fig 12.
From Fig 12(a), (b), and (c), it can be observed that

IL-YOLO shows a significant improvement in detection
accuracy compared to YOLOv5. The mAP has increased by
3.6%, precision has improved by 0.5%, recall has increased
by 6.3%, and the F1 score has risen by 4%. The results
indicate that introducing the three mentioned modules simul-
taneously into our IL-YOLO model leads to a significant
enhancement in both detection accuracy and precision.

However, this improvement comes with certain costs,
as the introduction of additional attention mechanisms and
complex modules increases the depth of the network, thereby
raising the computational cost for detection time. Although
IL-YOLO experiences a decrease in detection speed by
21.7%, themodel still achieves a detection speed of 90 frames
per second, which remains suitable for real-time detection
needs.

2) COMPARATIVE EXPERIMENTS
To further validate the detection performance of IL-YOLO,
we compared its performance with other models on the

CPLID public dataset. The comparative experimental results
are presented in Table 4.

IL-YOLO exhibits a significant improvement inmAP com-
pared to other models. In comparison to the latest YOLO-S
model, IL-YOLO achieved a 3.1% improvement. Relative to
YOLOv3 and YOLOv4, IL-YOLO improved by 5.4% and
6.2%, respectively. Compared to YOLOv6 and YOLOv7,
IL-YOLO improved by 3.9% and 0.1%, respectively. Fur-
thermore, when compared to the base model YOLOv5,
IL-YOLO demonstrated a 3.6% performance improvement.
These results highlight the enhanced accuracy of IL-YOLO
in detecting insulators and their defects.

Similarly, FPS is a crucial indicator for evaluating model
performance. YOLOv7 achieves a detection speed of only
72 frames per second due to its memory consumption and
computational complexity. In contrast, IL-YOLO excels with
a detection speed of 90 frames per second, representing a
4.7%, 15.3%, and 24.3% increase compared to YOLOv3,
YOLOv4, and YOLOv7, respectively. However, IL-YOLO’s
detection speed decreased by 11.8% compared to YOLOv6.
YOLOv5, the base model, exhibits the fastest detection speed
among all models, reaching 115 frames per second, which
is 11.3% higher than IL-YOLO. Nevertheless, IL-YOLO’s
90 frames per second FPS remain sufficient for real-time
detection.

In terms of model computational load, YOLOv3,
YOLOv4, and YOLOv7 are relatively large, reaching
193.9GFLOPS, 119.8GFLOPS, and 103.2GFLOPS, respec-
tively, which may pose challenges when testing on mobile
devices. In contrast, other YOLO series models have rela-
tively smaller computational loads, with the latest YOLO-S
model only occupying 14.9 GFLOPS, making it the model
with the smallest computational load. IL-YOLO’s model
computational load is 21.9 GFLOPS, representing a 37.9%
increase compared to the baseline model.

In terms of precision, recall, and F1 score, IL-YOLO
achieves significant improvements. In terms of accuracy,
IL-YOLO’s performance is only 1.4% below YOLOv7,
slightly higher in recall by 0.1%, and the F1 score is only
0.4% below the YOLOv7 model. However, when compared
to other models, IL-YOLO consistently demonstrates notable
improvements. Particularly, compared to the base model
YOLOv5, precision increased by 0.5%, recall increased by
6.3%, and the F1 score increased by 4%.

Through the comparative experiments on the above mod-
els, we find that the IL-YOLO network structure has a
significant advantage in detection speed when facing models
with larger computational loads, such as YOLOv3, YOLOv4,
and YOLOv7. Additionally, it demonstrates comparable
detection accuracy to the latest YOLOv7model. When facing
models with relatively smaller computational loads, such as
YOLOv5, YOLOv6, and YOLO-S, IL-YOLO lags slightly
in detection speed but exhibits a clear advantage in detec-
tion accuracy. In summary, the proposed IL-YOLO detection
model achieves a good balance between detection speed and
accuracy.

14540 VOLUME 12, 2024



Q. Zhang et al.: IL-YOLO: An Efficient Detection Algorithm

TABLE 3. Ablation experiment results.

FIGURE 12. Comparison of model training results.

E. DETECTION RESULTS ANALYSIS
As shown in Fig 13 and Fig 14, the detection results of
YOLOv5 and the proposed IL-YOLO network are presented
for the same set of images after training.

In the comparison of the obtained detection results, it is
evident that the proposed IL-YOLO insulator defect detec-
tion network has significantly improved the effectiveness of
addressing insulators and their defects in power transmission
lines. The results demonstrate noticeable enhancements in
both the localization of insulators and the recognition of
defects. In scenarios involving long distances and multiple
targets, the original YOLOv5 network may encounter issues
such as low detection accuracy, missed detections, and false
positives. In contrast, the proposed network excels in accu-
rately detecting and identifying insulators and their defects
on power transmission lines under similar conditions, show-
casing a substantial improvement in accuracy compared to the
original network.

In a detailed comparison of the experimental results, when
examining Fig 14(a) and Fig 13(a), IL-YOLO successfully
achieved comprehensive recognition of insulators, attaining
a defect detection accuracy of 0.88. Although slightly lower
than the original network’s 0.95, it is sufficient to ensure

accurate identification of insulators without missed detec-
tions. Moving on to Fig 14(b) and Fig 13(b), IL-YOLO
exhibits a defect detection accuracy of 0.91 when facing
the multi-target problem, surpassing the original network’s
0.9. IL-YOLO demonstrates good detection accuracy in
the presence of multiple insulators, with respective accu-
racies of 0.96, 0.90, and 0.89. It is noteworthy that the
original network exhibits false positives for insulators in
multi-target scenarios, while IL-YOLO shows more reli-
able performance in this regard. Regarding Fig 14(c) and
Fig 13(c), IL-YOLO achieves a defect detection accu-
racy of 0.92, slightly lower than the original network’s
0.95. Due to the similarity between the background color
and insulators, the original network has false positives
for the defect positions, while IL-YOLO performs bet-
ter in such backgrounds. Finally, in the comparison of
Fig 14(d) and Fig 13(d), IL-YOLO’s defect detection
accuracy is 0.93, significantly higher than the original
network’s 0.88.

IV. MODEL ROBUSTNESS TESTING AND ANALYSIS
In practical applications, power transmission lines typically
involve high voltage levels. Consequently, drones may face
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TABLE 4. Comparison results of model performance.

FIGURE 13. Detection results with YOLOv5 network.

challenges in capturing images from close distances during
real-time inspections, leading to potential issues such as
blurriness and occlusion in the obtained images. In such
scenarios, conducting robustness tests on the model becomes
crucial. The following figures illustrate the comparison of the
insulator detection model IL-YOLO proposed in this study
with the baseline network model YOLOv5s in the presence of
noise, rotation, occlusion, low brightness, and other complex
backgrounds. The specific comparison results are shown in
Fig 15 and Fig 16.

Through the detection of insulator defect images in power
transmission lines under complex backgrounds, we found that
IL-YOLO proposed in this study exhibits better detection per-
formance in complex scenarios. The comparison of Fig 16(a)
and Fig 15(a) shows that IL-YOLO achieves a defect detec-
tion accuracy of 0.87, significantly higher than the baseline
network’s 0.81, and the detection accuracy for insulators is
0.92, also higher than the baseline network’s 0.87. In the
comparison of Fig 16(b) and Fig 15(b), IL-YOLO’s defect
detection accuracy is 0.87, lower than the baseline model’s
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FIGURE 14. Detection results with IL-YOLO network.

FIGURE 15. Detection results with YOLOv5 network.

0.92, but it still accurately identifies defect locations. Notably,
in scenarios with multiple targets, the IL-YOLO model per-
forms well. For distant insulators, the baseline network has

missed detections, while IL-YOLO still completes accurate
recognition, with detection accuracy of 0.91, 0.77, and 0.62,
respectively. In the comparison of Fig 16(c) and Fig 15(c), the
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FIGURE 16. Detection results with IL-YOLO network.

detection performance of the IL-YOLOmodel is more signif-
icant, with a defect detection accuracy of 0.94, higher than the
baseline network’s 0.93. In the presence of noise in the image,
the baseline network misses distant insulator targets, while
IL-YOLO accurately identifies them, with detection accuracy
for insulators being 0.97, 0.82, and 0.78, respectively. Finally,
in the comparison of Fig 16(d) and Fig 15(d), IL-YOLO’s
defect detection accuracy is 0.86, slightly lower than the base-
line network’s 0.87. However, when facing occluded insulator
target information, the baseline network misses detections,
while IL-YOLO still accurately identifies them, with detec-
tion accuracy of 0.98, 0.65, and 0.64, respectively.

Based on the comprehensive analysis of detection images
in various complex backgrounds on power transmission lines,
we conclude that the proposed IL-YOLO detection network
for insulator defects in power transmission lines demonstrates
excellent performance in the presence of external factors such
as noise, shadows, and rotation. Moreover, when encoun-
tering scenarios involving multiple targets, small targets,
or occlusions, the IL-YOLO detection model excels in accu-
rately identifying insulators and their defects, showcasing its
remarkable robustness.

V. CONCLUSION
In this study, we propose an algorithm specifically designed
for the detection of insulator defects in power transmis-
sion lines under complex backgrounds, named IL-YOLO.
The algorithm is designed to address the shortcomings
of existing research in dealing with complex backgrounds

and multi-target issues. The core design principles of
IL-YOLO involve increasing attention to critical information,
enhancing the network’s information extraction capabili-
ties, and cleverly integrating critical information with global
information. The main contributions of this paper are as
follows:

a) Introduction of the IL-GAM module to address the
issues of mutual influence of weights and loss of detailed
information in the original module while increasing atten-
tion to critical information. Experimental results show
an improvement of 0.7% in detection accuracy on our
dataset.

b) Proposal of the IL-C3 module based on the core
ideas of ResNet, GSConv, and SE, aiming to further
increase attention to critical information while ensuring
feature extraction and fusion. Experimental results show
an improvement of 1.1% in detection accuracy on our
dataset.

c) Introduction of the IL-SPPFCSPC module based on the
idea of fusing critical information with global information to
address multi-target issues in complex backgrounds. Exper-
imental results show an improvement of 1.8% in detection
accuracy on our dataset.

d) Comparative experimental results demonstrate that the
proposed IL-YOLO algorithm achieves a detection accuracy
of 91.2%, a 3.6% improvement compared to the YOLOv5
algorithm. The precision increases by 0.5%, recall increases
by 6.3%, and F1 score increases by 3.8%, confirming the
effectiveness of the method. The detection speed reaches
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90 frames per second, slightly reduced but still sufficient for
real-time detection.

e) Ablation experiment results show that incorporat-
ing IL-GAM, IL-C3, and IL-SPPFCSPC modules into the
network structure significantly improves detection results,
with an increase of 3.6%.

f) The designed IL-YOLO in this paper performs
well in detecting insulators and their defects in both
normal and complex backgrounds, handling scenarios
involving multiple targets, small targets, and occlusions.
The analysis of detection results and robustness testing
indicates an improvement in detection accuracy of up
to 5%.

In future research, we will focus on lightweight improve-
ments to the model to increase target detection speed while
maintaining detection accuracy. Edge deployment consid-
erations will also be explored, applying the network to
unmanned aerial vehicles (UAVs) for real-time and efficient
detection of power transmission lines.
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