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ABSTRACT Recent studies have shown the potential of the Data-Efficient Image Transformer (DeiT)-
based transfer learning method in speech/image recognition and classification utilizing models pre-trained
on image datasets. However, the use of DeiT models, especially those pre-trained on image datasets, has
not yet been explored for Valvular Heart Disease (VHD) detection. This paper proposes a transfer learning
methodology using the DeiT model pre-trained on image datasets for VHD classification. Additionally,
we introduce a hybrid Convolution-DeiT (Conv-DeiT) architecture to further improve classification
performance. The Conv-DeiT framework integrates a convolutional block with a Squeeze-and-Excitation
(SE) attention mechanism to enhance the channel and spatial information within the input features before
processing by the DeiT model. The proposed models were assessed using the Heart Sound Murmur (HSM)
database, accessible on GitHub. Experimental results show that the DeiT-based transfer learning approach
achieved an overall accuracy of 97.44%. Moreover, our Conv-DeiT method outperformed the DeiT-based
transfer learning with an impressive overall accuracy of 99.44%. This study indicates the effectiveness of
transfer learning using DeiTmodels pre-trained on image datasets for heart sound classification. Specifically,
our hybrid Conv-DeiT method, which combines the convolutional block and the SE-attention mechanism,
demonstrates significant advantages in this context.

INDEX TERMS Valvular heart diseases detection, transfer learning, DeiT, hybrid model.

I. INTRODUCTION
Valvular heart disease (VHD) is emerging as a major health
concern globally, especially compared to other cardiovascular
diseases, due to its rising prevalence and high mortality
rates [1]. Early VHD screening is essential in reducing these
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mortality rates. Traditionally, auscultating heart sounds has
been the primary medical approach for VHD evaluation,
providing valuable insights into cardiovascular abnormal-
ities [2], [3]. However, diagnosing cardiac abnormalities
through auscultation can be challenging, especially for
inexperienced clinicians [4]. In current technology, digital
stethoscopes have been used to record heart sounds, which
can be plotted in a graph known as Phonocardiograms
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TABLE 1. Summary of studies employing ML, DL, and transfer learning for heart sound classification: predominantly focused on five-class prediction
using the Heart Sound Murmur (HSM) Database [62] and two-class prediction (Normal/abnormal) using the PhysioNet/CinC Database [56] and PASCAL
Classifying Heart Sounds Challenge (PASCAL) [19].

(PCG). It is paving the way for a comprehensive PCG
signals database. As a result, using artificial intelligence
to analyze and detect cardiac abnormalities has gained
significant attention.

The current methods used in artificial intelligence for
detecting VHD can be divided into two main methods:
machine learning and deep learning. The machine learning
approach is a process with manually designed feature extrac-
tion, converting the PCG signal into specific parameters,

followed by a process that tunes learning features for a
classifier to distinguish various VHD classes [5], [6], [7].
In contrast, the deep learning approach utilizes end-to-end
systems that bypass manual feature extraction, leveraging
deep learning-based classifiers to model and predict target
classes [8], [9], [10].

Research on VHD detection mostly focuses on conven-
tional pipeline approaches. These studies have explored the
use of efficient hand-crafted feature extraction techniques in
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combination with effective classifiers. Several methods have
been proposed for the detection of VHD, including Mel-
Frequency Cepstral Coefficients (MFCCs) [11], [12], [13],
[14], [15], Tunable Q-factor Wavelet Transform (TQWT)
[16], Mel Frequency Spectral Coefficients (MFSCs) [17],
Gram polynomial [18] and Wavelet Transform (WT) [19],
[20], [21]. In addition, the study examined various machine
learning classifiers, including the support vector machine
(SVM) [22], [23], [24], [25], [26], [27], multiclass composite
classifiers (MCC) [28], Multi-layer Perceptron (MLP) [29],
Random Forest (RF) [30], and k-Nearest Neighbor (k-NN)
[31], [32], [33], [34]. The effectiveness of hand-crafted
feature extraction for classification is a significant part of
these conventional approaches, demonstrating the need for
expertise, e.g., speech processing tasks [35].
According to previous research, deep learning models

have demonstrated outstanding accuracy in detecting acoustic
using complicated pattern recognition techniques [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46]. As reported
by [5], the utilization of MFCC in Deep Neural Networks
(DNNs) has proven to be more effective in detecting VHD
than SVM, k-NN, and MLP classifiers. This superiority can
be attributed to the DNN’s inherent ability to independently
extract hierarchical features from the MFCC. The utilization
of Long Short-Term Memory (LSTM) and Convolutional
Neural Network (CNN) models combined with a log-
mel spectrogram has represented encouraging outcomes in
detecting VHD [47]. Furthermore, a study by [48] proposed
using hierarchical LSTM networks that incorporate parallel
and series feature fusion to detect VHD through PCG signals.
The study represents performance improvements when using
MFCC and Linear Prediction Cepstral Coefficients (LPCC)
as features. Nevertheless, the effectiveness of these deep
learning classifiers is significantly influenced by the volume
of training data [49].

Transfer learning-based classifiers have become more
popular in many applications in recent times [50], [51],
[52]. This technique leverages knowledge acquired from
models trained on large datasets, which enhances data uti-
lization efficiency and accelerates the training process [53].
According to [54], the approach enables models to achieve
outstanding performance even when trained on a small
amount of task-specific data, reducing the risk of overfitting.
In addition, it enables the adaption of models from one
domain to another one, resulting in enhanced performance
in closely related domains. The studies operated by [55]
focused on detecting VHD, which presented transfer learning
models such as ResNet50 and VGGNet-16. These models
were trained using Time-Frequency (TF) images derived
from PCG signals, which results showed a promise in VHD
classification. However, transfer learning may encounter
difficulties when a substantial disparity exists between the
source and target domains. This discrepancy necessitates
the implementation of supplementary procedures to tackle
these obstacles effectively. A detailed compilation of studies
employing ML, deep learning, and transfer learning for the

classification of heart sounds is summarized in Table 1,
providing the reader with a more nuanced understanding of
the field.

In this study, we explore the usefulness of the Data-
Efficient Image Transformer (DeiT) model [57] in the context
of heart sound classification using transfer learning. The
inherent capabilities of DeiT include hierarchical feature
extraction, and attention mechanisms, which help identify
abnormalities in heart sounds. As a result, it is anticipated
to be a promising candidate for detecting VHD. Although
the architecture of DeiT models demonstrates exceptional
performance in image domains, it is important to note that
these models may not be fully optimized for the complexities
associated with audio data. Therefore, it is imperative to
enhance and modify the model to capture the intricacies of
the heart more accurately.

In order to improve the classification efficacy of transfer
learning based on DeiT, we propose integrating a hybrid
Convolution-DeiT (Conv-DeiT) model. In order to enhance
channel and spatial information before the VHD detection
phase, we integrate a convolutional block and a squeeze-and-
excitation (SE) attention mechanism into the DeiT frame-
work. The present study provides the following contributions:

1) We explored the use of DeiT-based transfer learning for
VHD detection. Specifically, we used three channels
of the MFCC together with their corresponding delta
and double delta coefficients, which are obtained from
the original one-dimensional utterances. This approach
enables us to use pre-trained DeiT models from image
datasets.

2) We proposed a hybrid Conv-DeiT model to improve
the classification efficacy of transfer learning based on
DeiT. This model integrates a convolutional block and
a SE-attention mechanism into the DeiT framework.
It helps enhance the quality of channel and spatial input
feature information before the DeiT and classification
process.

3) In this study, we represented the capability of a DeiT
model in the context of VHD detection, which was
initially developed for image-based tasks. Moreover,
the proposed Conv-DeiT technique enhanced VHD
detection accuracy by integrating the convolutional
block and SE-attention mechanism.

The subsequent sections of the paper are organized in the
following manner: The proposed approach is described in
Section II. The experimental setup and results are discussed
in Sections III and IV, respectively. The last part provides
commentary and suggests potential approaches for future
research.

II. PROPOSED METHOD
The proposed methodology for the detection of VHD relies
on a framework of transfer learning. Initially, the audio
signal undergoes a feature extraction phase where MFCCs
and their derivatives are computed to capture both spectral
and temporal dynamics. These features are then transformed
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FIGURE 1. Overall visualization of our proposed architecture. (a) image-like feature extraction, (b) convolution module, and (c) classifier.

to conform to an image-like input suitable for our adapted
Deep Image DeiT model, respecting its design for handling
two-dimensional data structures. We have introduced a
convolutional module consisting of parallel convolutional
layers with self-attention mechanisms to augment the feature
extraction process. This module is specifically engineered
to adapt the spectral features of audio signals for the DeiT
model, enabling it to leverage its spatial pattern recognition
capabilities. The cohesive interplay and stepwise progression
of these components are succinctly illustrated in Fig. 1.
Furthermore, this section delves into the specific loss function
employed in our approach. The following subsections provide
a more granular breakdown of each component:

A. TRANSFORMING AUDIO DATA FOR DeiT MODEL
The adaptation of the DeiT model from image to audio
processing presents unique domain-specific challenges due
to the fundamental differences between visual and auditory
information representation. While DeiT excels in identifying
patterns within the spatial domain of images, audio signals
require an interpretation of patterns over both time and
frequency domains. To address this, we transformed one-
dimensional audio signals, denoted as S into into a three-
dimensional structure matching a 3 × 224×224 image that
parallel the two-dimensional nature of images, allowing
us to leverage DeiT’s powerful spatial pattern recognition
capabilities. In order to achieve this, the MFCCs are
employed.

MFCC = F(S) (1)

MFCCs provide an audio representation that closely
resembles the auditory perception of humans. The procedure
entails dividing the audio into brief, overlapping segments,

converting these segments into a frequency spectrum, and
subsequently enhancing the frequencies that aremost relevant
to human auditory perception by employing the Mel scale.
This concept is further enhanced by employing the Discrete
Cosine Transform. Further details of the MFCC extraction
can be seen in [58].
The temporal variations included in the MFCCs are

effectively represented by incorporating the delta and double
delta coefficients.

1[t] =

N∑
n=1

n(MFCC[t + n] −MFCC[t − n]) (2)

12[t] =

N∑
n=1

n(1[t + n] − 1[t − n]) (3)

where N represents the number of adjacent frames taken into
account. Meanwhile, n and t stand for the frame’s index and
the current time frame.

The delta and double delta coefficients [59] adeptly
encapsulate the advancement and intensification of auditory
attributes. The MFCCs, along with their first-order deriva-
tives (deltas), and their second-order derivatives (double
deltas) have a structural resemblance to the Red-Green-Blue
(RGB) channels found in images. After they are resized,
this structural similarity enables the representation of audio
signals in the format of 3 × 224×224, which is specifically
designed to suit the DeiT model. This format optimization
enhances the DeiT model’s capability to detect VHD signals
from audio data.

B. CONVOLUTION MODULE
Relying solely on existing image-based models may not fully
encompass the diverse range of audio intricacies. In order
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to address this gap, we suggest the implementation of a
hybrid convolution-transfer learning model that integrates a
convolutional block with the SE attention mechanism.

The convolutional block, responsible for processing the
MFCCs, is formally described as:

Coutput = Conv(MFCC) (4)

The module consists of three separate convolutional
branches, each utilizing a kernel size of 3 × 3. The primary
goal of the design is to extract channel features that are
specific, while also preserving the original dimensions of the
spectrogram. Additionally, the design attempts to improve the
representation of features, even when the available data is
low, without compromising computational efficiency.

The subsequent stage of the neural network architecture,
known as the SE block, further enhances the results obtained
by the convolution module:

SEoutput = SE(Coutput) (5)

As indicated by Equation 5, this block adaptively tailors
channel dependencies and accentuates key features, in accor-
dance with the findings of [60].

C. DeiT-BASED CLASSIFIER
The Vision Transformer (ViT) adapts the transformer archi-
tecture, initially developed for natural language processing
(NLP) tasks [61], to effectively process image data. The
power of DeiT resides in its ability to effectively merge data
efficiency with the transformer model’s proficient pattern
recognition skills. Precision in distinguishing tiny heart
sounds is of utmost importance in jobs such as VHD identi-
fication. In contrast to traditional transfer learning methods
that largely depend on extensive labeled datasets, DeiT
employs a distinctive distillation token to facilitate efficient
learning even in scenarios with low data availability. This
methodology offers the potential for expedited convergence
and improved performance, hence conferring a competitive
edge over conventional models such as CNN [57]. The main
operation of the ViT is described as post-processing by the
self-attention mechanism module:

ViToutput = ViT (SEoutput) (6)

The inclusion of a ‘‘classification token’’ is a crucial com-
ponent in conventional ViT architectures. Nevertheless, the
absence of spatially-focused layers in Vision Transformers
necessitates a substantial amount of pre-training in order to
achieve comparable performance to CNN. In response to this
particular difficulty, DeiT proposes the implementation of a
distillation token. This token serves the purpose of simulating
label predictions, under the guidance of a mentor model.

D. LOSS FUNCTION
The culmination of the process is the evaluation of loss
function. Using the output from the Vision Transformer and

TABLE 2. Detail of the HSM database.

the actual labels, the loss is computed as:

L = L(ViToutput, y) (7)

where y denotes the true label.
In essence, the end-to-end relationship, commencing from

the raw audio signal and culminating in the computed loss,
is encapsulated by:

L = L(ViT (SE(Conv(F(S)))), y) (8)

This relationship offers a comprehensive perspective on
the process of data travel inside the system, outlining the
progression from raw audio to the ultimate assessment of loss.

III. EXPERIMENT SETUP
A. DATABASE
The Heart Sound Murmur (HSM) database [62] was utilized
in this investigation. The database consists of 1000 samples
of phonocardiogram (PCG), which have been formatted
as .wav audio files. The recordings are characterized by
a single-channel configuration, featuring a bit-depth of
16 bits per sample and a sampling rate of 8000 Hz.
The collected samples encompass five distinct categories,
namely Aortic Stenosis (AS), Mitral Regurgitation (MR),
Mitral Stenosis (MS), Mitral Valve Prolapse (MVP), and
Normal (N). Further details on the datasets can be found in
Table 2.

B. FEATURE EXTRACTION
In this paper, the MFCCs were utilized as the principal
magnitude characteristic for the input of our transformer
model. The computation of these coefficients was performed
using a frame length of 20 ms, with a 50% overlap, and
the application of a Hamming window to each frame. This
process yielded a 38-dimensional MFCC. In order to capture
the temporal dynamics between audio frames, both delta
and double-delta coefficients of MFCC were computed.
According to the study conducted by [47], a predetermined
segment duration of 2 seconds was employed. This duration
was determined to capture a greater quantity of information
compared to segments of 1 second or 1.5 seconds, based on
empirical experimentation. The MFCC data, together with
its delta and double delta, was reshaped into dimensions of
3 × 224X224 (representing channels, height, and width).
This reshaping was done to ensure compliance with the pre-
trained DeiT model, which is specifically designed for image
datasets.
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TABLE 3. Model parameters of Conv-DeiT.

C. NETWORK TRAINING
The models for evaluation were constructed via the PyTorch
v1.10.1 framework and conducted training on an NVIDIA
RTX3090 GPU equipped with 24 GB of RAM. The training
parameters are presented in Table 3.

A comprehensive set of experiments was conducted to
assess the effects of various factors, including different learn-
ing rates and batch sizes. Nevertheless, these modifications
did not enhance the detection performance. This indicates
that adjusting parameters did not yield positive results for
our Conv-DeiT approach or other similar transfer learning
classifiers. The selected values showed a desirable balance
between computing requirements and the effectiveness of the
model.

D. PERFORMANCE CRITERIA
For classifier performance evaluation, prevalent matrices
were adopted as suggested in [47]: precision (Pr), recall
(Re), F1-score (F1), and accuracy (Acc). These matrices are
determined by:

Pr =
TP

TP+ FP
(9)

Re =
TP

TP+ FN
(10)

F1 = 2 ×
Pr × Re
Pr + Re

(11)

Acc =
TP+ TN

TP+ TN + FP+ FN
(12)

Here, TP, TN , FP, and FN represent true positive, true
negative, false positive, and false negative values respectively.

IV. RESULTS AND DISCUSSIONS
A. RESULT BASED ON THE PROPOSED METHODS
In this study, we analyze the performance of DeiT trans-
fer learning by the utilization of various experimental
approaches, which include:

• DeiT-Small: The present methodology employs the
DeiT-Small model for the purpose of transfer learning,
whereby features are extracted directly without the
utilization of the Convolutional block. The DeiT-Small
model is designed with 384 embedding dimensions,
which determines the size of the hidden vector rep-
resentations in the transformer model. Additionally,
it employs 12 attention heads to effectively identify

various patterns and correlations within the input data.
The parameters for the DeiT-Small model is outlined in
Table 3.

• DeiT-Base:The approach described in this study utilizes
the DeiT-Base model for transfer learning by directly
extracting features, similar to the DeiT-Small method,
without making any modifications to the Convolutional
block. The DeiT-Base model is notable for its utilization
of 768 embedding dimensions and 6 attention heads.
The parameters for the DeiT-Base model are outlined in
Table 3.

• Conv-DeiT w/o att: The proposed approach incor-
porates the DeiT model-Base and the Conv block
for transfer learning, while dropping the SE attention
mechanism. The Conv-DeiT model without attention
has the same configuration parameters as the DeiT-Base
model.

• Conv-DeiT: This framework embraces the proposed
structure depicted in Fig 1. The optimal parameters for
the Conv-DeiT method are outlined in Table 3.

A comprehensive analysis of the performances of DeiT-
small, DeiT-base, Conv-DeiT w/o att, and Conv-DeiT
is presented in Table 4. The comparison is conducted
throughout all five folds and encompasses many performance
indicators. This complete perspective facilitates a thorough
comprehension of the outcomes.

As depicted in Table 4, a comparative analysis was
conducted on two variations of DeiT-based transfer learning
techniques, distinguished by their respective parameter
configurations. The results indicate that DeiT-base, which
has 768 embedding dimensions and 6 heads, exhibited
superior performance compared to DeiT-small, which has
384 embedding dimensions and 12 heads. The enhanced
detection performance of DeiT-base can be attributed to
its more intricate and resilient embedding representation.
Therefore, the DeiT-base model is selected as the reference
point for subsequent comparisons, either in conjunction with
the Conv block or the Conv block with the SE-attention
mechanism.

The Conv-DeiT approach, when implemented without
attention, demonstrates greater performance compared to
the DeiT method. The inclusion of the Conv block appears
to play a significant role in enhancing the performance,
as it offers more discernible information compared to the
DeiT technique in the absence of the Conv block. As a
result, the utilization of the Conv block in combination
with the SE-attention mechanism leads to a more advanced
embedding representation. Adding the attention mechanism
to Conv-DeiT may allow it to outperform its version without
attention.

After that, we proceeded to examine the statistical signifi-
cance of the embedding features obtained from the flattened
layers of DeiT-Small, DeiT-Base, Conv-DeiT w/o att, and
Conv-DeiT. We utilised the Multivariate Analysis of Vari-
ance (MANOVA) technique [63] to assess the participant’s
capacity to differentiate among several categories of VHD.

15850 VOLUME 12, 2024



T. Jumphoo et al.: Exploiting Data-Efficient Image Transformer-Based Transfer Learning

TABLE 4. Classification results for different models.

TABLE 5. Statistical significance test of DeiT-Small, DeiT-Base, Conv-DeiT w/o att, and Conv-DeiT using MANOVA (p-value < 0.05).

The Wilk’s 3 metric, Pillai’s trace, Hotelling-Lawley trace,
and the F-value were essential in this assessment. Lower
values of Wilk’s 3 suggest greater statistical significance
in distinguishing across categories of VHD. In contrast,
larger values of the Pillai’s trace, Hotelling-Lawley trace, and
F-value indicate a higher level of statistical significance in
distinguishing across VHD groups. The embedding features
utilized in this investigation were derived from the initial
experimental iteration. For this analysis, we used t-distributed
Stochastic Neighbor Embedding (t-SNE) [64] to reduce the
dimensionality of embedding features, crucial for visualizing
and understanding the data. This step was vital to assess
participants’ ability to differentiate between VHD categories
effectively. The statistical significance of the models DeiT-
Small, DeiT-Base, Conv-DeiT w/o att, and Conv-DeiT is
presented in Table 5. Our results underscore the Conv-DeiT
model’s distinct advantage in multiple statistical metrics,
including Wilk’s Lambda (3), Pillai’s trace, Hotelling-
Lawley trace, and the F-value. The model achieved the
lowest Wilk’s Lambda at 0.81 and the highest F-value at
23.54, indicating robust discriminative power in classifying
various VHD categories, as detailed in Table 5. The Conv-
DeiT model also recorded the highest Pillai’s trace at
0.19 and Hotelling-Lawley trace at 0.24, further confirming
its superior performance over the other models evaluated.
These higher values reflect the model’s enhanced sensitivity
and accuracy in detecting differences among VHD groups.

The integration of Squeeze-and-Excitation (SE) attention
within the Conv-DeiT framework is instrumental to this
performance, dynamically recalibrating channel-wise feature
responses, which significantly improves the model’s focus on
relevant features for VHD detection. This strategic fusion of
the DeiT architecture’s global contextual awareness with SE
attention’s channel-specific refinement leads to precise and
discerning feature representations. The Conv-DeiT model’s
superior statistical measures demonstrate the efficacy of
this approach, marking a significant advancement in deep
learning for medical imaging and specifically in the complex
task of VHD classification. An in-depth technical exposition
on the Conv-DeiT model’s architecture and the functional
integration of SE attention, which is foundational to the
enhanced performance, is available in the supplementary
materials.

In order to examine the distributions among VHDs
and visualize the discriminatory information based on the
Conv-Deit feature representation for VHD classification,
we employed t-SNE, a well-known technique for dimension-
ality reduction. In this case, the outcome of the initial fold
was selected. Fig. 2 presents the graphical representation of
the flattened features obtained from the Conv-Deit model that
underwent training.

As depicted in Fig 2(a), the data distributions of distinct
groups utilizing unprocessed speech samples exhibited sub-
stantial overlap. This posed a difficulty in distinguishing
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FIGURE 2. Visual distributions of different features based on t-SNE. (a) raw speech signals, (b) flatten features derived from Conv-DeiT model.

TABLE 6. Comparison with some known systems.

among various forms of VHD. However, it is evident
from Fig 2(b) that the feature derived from the Conv-Deit
model, after training, exhibited enhanced performance in
comparison to utilizing unprocessed voice samples. The
object had distinct outlines and shorter distances among
different classes, suggesting its efficacy in discerning among
various types of VHD. The findings of this study indicate that
the spatial-temporal characteristic derived from the Conv-
Deit model may hold significant value in the detection of
VHD.

B. COMPARISON WITH SOME KNOWN SYSTEMS
In this subsection, we evaluate the effectiveness of our
suggested approaches by comparing them to established
systems. As emphasized in the opening, conversations
may circumvent specific frameworks when their empirical
foundations deviate from our prescribed repository. The
primary emphasis of our study is on the data obtained from
the HSM database, which is consistent with the experimental
framework in which we have established. Table 1 presents a

comparison of the results obtained from different well-known
systems in relation to our proposed technique.

As shown in Table 6, it is apparent that Conv-DeiT demon-
strates superior performance compared to other established
systems when evaluated on the HSM database. Nevertheless,
the performance of the aforementioned model did not exceed
that of the classifier based on Convolutional Neural Networks
(CNN) utilizing the log-mel spectrogram feature, as reported
by [47]. One plausible explanation may lie in the process
of self-selection of training and testing datasets. However,
the outcomes of our study are based on a five-fold cross-
validation approach, which enhances the reliability of the
classification performance of the offered approaches. Fur-
thermore, it is worth noting that Conv-DeiT did not achieve
superior performance compared to the deep CNN classifier
while utilizing the FDPCT feature. The aforementioned
statement highlights the importance of FDPCT’s capacity to
effectively analyze non-stationary signals, specifically those
found in PCG signals. The combination of FDPCT with
deep learning has been found to improve the accuracy of
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VHD identification. While our Conv-DeiT model, designed
to enhance DeiT, showed a marginal performance drop of
0.04%, it still presents a viable approach for VHD detection.

V. CONCLUSION
In this paper, we propose identifying VHD by employing
transfer learning methods that take advantage of pre-trained
transformer models based on image data. The DeiT model,
initially pre-trained on image datasets, was harnessed for
its inherent capabilities. This strategy achieved a notable
overall accuracy of 97.44% in the classification of heart
sounds. Subsequent enhancements led to the proposal of the
Conv-DeiT approach, a hybrid architecture that integrates
a convolutional block, an SE attention mechanism, and the
DeiT process. This method exhibited superior performance
compared to the standalone DeiT-based transfer learning,
reaching an exceptional overall performance of 99.44%.
The study has indicated the potential of DeiT-based transfer
learning and the efficacy of using models pre-trained on
a distinct modality, such as images, for classifying heart
sounds. Moreover, our hybrid Conv-DeiT method, which
combines the convolutional block and the SE-attention
mechanism has demonstrated significant advantages in this
context.

In future work, we aim to investigate other attention mech-
anisms to further refine our proposed methods. We also plan
to incorporate multi-scale convolutional neural networks [35]
and phase information [49], [65] as supplementary data to
enhance our methodologies.
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