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ABSTRACT Healthcare is an area of concern where the application of human-centred design practices
and principles can enormously affect well-being and patient care. The provision of high-quality healthcare
services requires a deep understanding of patients’ needs, experiences, and preferences. Human activity
recognition (HAR) is paramount in healthcare monitoring by using machine learning (ML), sensor data,
and artificial intelligence (AI) to track and discern individuals’ behaviours and physical movements. This
technology allows healthcare professionals to remotely monitor patients, thereby ensuring they adhere to
prescribed rehabilitation or exercise routines, and identify falls or anomalies, improving overall care and
safety of the patient. HAR for healthcare monitoring, driven by deep learning (DL) algorithms, leverages
neural networks and large quantities of sensor information to autonomously and accurately detect and track
patients’ behaviors and physical activities. DL-based HAR provides a cutting-edge solution for healthcare
professionals to provide precise and more proactive interventions, reducing the burden on healthcare systems
and improving patient well-beingwhile increasing the overall quality of care. Therefore, the study presents an
improved coyote optimization algorithm with a deep learning-assisted HAR (ICOADL-HAR) approach for
healthcare monitoring. The purpose of the ICOADL-HAR technique is to analyze the sensor information
of the patients to determine the different kinds of activities. In the primary stage, the ICOADL-HAR
model allows a data normalization process using the Z-score approach. For activity recognition, the
ICOADL-HAR technique employs an attention-based long short-termmemory (ALSTM)model. Finally, the
hyperparameter tuning of the ALSTM model can be performed by using ICOA. The stimulation validation
of the ICOADL-HAR model takes place using benchmark HAR datasets. The wide-ranging comparison
analysis highlighted the improved recognition rate of the ICOADL-HARmethod compared to other existing
HAR approaches in terms of various measures.

INDEX TERMS Human activity recognition, hyperparameter tuning, coyote optimization algorithm,
wearable sensor, deep learning.
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I. INTRODUCTION
Generally, hospitalized patients spend their time mostly in
bed and become lazy. It is particularly for elder patients
as physically inactive where hospitalization leads to useful
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decay [1]. In addition, better or steady action stages aid as
a valued effort for evaluating patient’s discharge willingness.
In the present scenario, observing hospitalized patient’s flexi-
bility depends mainly on direct opinions from caregivers [2].
Multiple tools are accessible to evaluate the functional and
mobility capability of patients. A selection of which valuation
tool to utilize mainly relies on feasibility and the clinician’s
choice. Wearable accelerometers have a high possibility to
perform as an effective tool in estimating patients’ health con-
dition at the time of recovery in a neutral method and allowing
assessment of analysis and other medicinal interventions [3].
Metrics like the quantity of time consumed in a decent place
as well as regular step count initiate have a good relation with
the period of hospital stay. Additionally, posture detection
models deliver significant data for averting pressure ulcer cre-
ation [4]. These metrics defined by employing human activity
recognition (HAR) depend on wearable sensors or camera
methods like gyroscopes, magnetometers accelerometers as
well as barometric pressure devices. Handling indications
fromwearable devices needsmuch computation control when
equated to camera-related methods as well as executing a few
assaults of confidentiality [5]. HAR employs accelerometers
in smartphones and smartwatches as fitness trackers.

HAR contains dual kinds of actions such as complex and
simple [6]. Complex human actions include the execution of
simple human movements along with exact transition acts,
there are moderately few studies on recognizing difficult
human actions like dribbling a ball, brushing teeth, and so on.
In the machine learning (ML) field, HAR employs labelled
data because it is a multivariate time series detection as well
as a supervised learning issue [7]. HAR is mainly attained
by removing physically crafted features from device data
as well as training classifiers that learn relationships and
patterns among features as well as class labels. It is nothing
but a conventional technique that uses feature-based ML
models. Many past researchers discovered the task of detec-
tion activity by utilizing traditional techniques like Random
Forest, SVM, XGBoost, etc. as well as non-traditional deep
learning (DL) methods [8]. The task with traditional methods
needed a lot of feature engineering as well as physical feature
extraction which is time-consuming. Recently, deep neural
networks (DNNs) are an effective method which becomes a
general and another method selection for HAR [9]. DNNs
were proposed and innovative in present years and brought
innovations in areas like natural language processing and
visual object detection. Themain benefit of employing DNNs
is that conventional ML models are capable of removing
higher-level features mechanically from raw input so that
hand-crafted feature extraction is not needed [10]. DLmodels
automatically learn features from data and are more appropri-
ate for the task of classifying difficult human actions.

This study presents an improved coyote optimization
algorithm with a deep learning-assisted HAR (ICOADL-
HAR) approach for healthcare monitoring. The purpose
of the ICOADL-HAR technique is to analyze the sen-
sor information of the patients to determine the different

types of activities. In the primary stage, the ICOADL-HAR
model allows a data normalization process using the Z-score
approach. For activity recognition, the ICOADL-HAR tech-
nique employs an attention-based long short-term memory
(ALSTM) network. Finally, the hyperparameter tuning of the
ALSTM algorithm can be performed by using the ICOA. The
design of the ICOA for hyperparameter tuning demonstrates
the novelty of the work. The stimulation validation of the
ICOADL-HAR method takes place using benchmark HAR
datasets.

II. LITERATURE SURVEY
In [11], a HAR transfer-learning model with two major
mechanisms was introduced. Firstly, a representative analysis
shows general characteristics that are transmitted through
user-specific features and users should be personalized.
In [12], the authors suggest a hierarchical DL-based HAR
model (HiHAR) to augment the short, long -term and spatial
features from the sensor information which is built from two
robust DNN structures: Bi-LSTM and CNN. HiHAR has two
phases with the hierarchical architecture: local and global.
In [13], the authors carried out smartphone sensor-based
raw data collections, such as H-Activity, using Android-OS-
based applications for linear acceleration, gyroscope, and
accelerometer. Moreover, a hybrid DL algorithm is intro-
duced, coupling CNN-LSTM, enabled by the self-attention
mechanism to improve the predictive abilities of the model.
In [14], proposed a new classifier ‘‘ICGNet’’ for HAR that is
a mixture of GRU and CNN models. In this work, the CNN
block used is adapted from the Inception model. Simultane-
ously, it exploits multi-sized convolution filters over the input
thereby capturing the data at various scales.

In [15], to support an IoT system that requires a
resource-effective mechanism, the study presents a DL-based
HAR technique named MultiCNN-FilterLSTM that fuses a
multi-head CNN with LSTM via residual connection where
the feature vector is processed efficiently in hierarchical
order. In [16], a wearable inertial measurement unit system
to assess patients through the Berg balance scale (BBS),
a clinical test for balance assessment. An automated scoring
model was introduced for these purposes. The study aims
to enhance the accuracy of ML-based techniques by pre-
senting a DL model. A 1D-CNN and GRU that show better
accuracy in multi-variate time-series data are applied to find
the optimum ensemble model. We tested different structures,
and a stacked ensemble mechanism with a meta-learner after
one GRU head and two 1D-CNN heads revealed higher
performance.

In [17], the authors focus on reinforcing the vanilla con-
volution without modifying the model architecture in HAR
scenarios. We introduce a new heterogeneous convolution
for the HAR task based on the concept of grouped convo-
lution, where each filter within a certain convolution layer is
divided into two unequal groups. Especially, the sensor inputs
are down-sampled into low-dimension embedding that is
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FIGURE 1. Overall flow of ICOADL-HAR technique.

convolved via single filter groups to rectify the standard filter
within the other groups.

Abdulelah et al. [18] introduce a HAR lightweight, lower
computational ability, DL algorithm for real-time applica-
tion. The general HAR architecture for smartphone sensor
information is developed by using the LSTM network
for the time-series domain and typical CNN exploited for
classification. The finding demonstrates that the presented

technique surpasses many of the deployed DL and ML
algorithms.

III. THE PROPOSED METHOD
In this study, we have established an ICOADL-HAR
approach for healthcare monitoring. The purpose of the
ICOADL-HAR technique is to analyze the sensor infor-
mation of the patients to determine the different kinds
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of activities. It contains three main processes such as
Z-score normalization, ALSTM-based classification, and
ICOA-based hyperparameter tuning. The overall working
flow of the ICOADL-HAR model is given in Fig. 1.

A. DATA NORMALIZATION
Initially, the ICOADL-HAR algorithm allows a data nor-
malization process using the Z-score technique. Z-score
normalization is a central data preprocessing model in HAR
that ensures the comparability of sensor information gathered
from various individuals or devices [19]. Z-score normaliza-
tion alleviates the effects of variations in sensor units and
sensitivity by converting raw sensor measurements into a
normalized scale with amean of zero and a standard deviation
of one, which makes it easy to analyze and identify patterns
of human activities across different subjects and equipment.
This normalization technique optimizes the accuracy of the
HAR model and simplifies the incorporation of data from
various sources, which contributes towards more reliable
and robust activity recognition and healthcare monitoring
systems.

B. ACTIVITY RECOGNITION IN THE CLASSIFICATION
MODEL
At this stage, the ICOADL-HAR technique employs the
ALSTM model. LSTM donates a difference in recurrent
neural networks (RNNs) design [20]. One of the foremost
benefits of this kind is the capability to absorb long-term
needs. By consuming this technique, the LSTM system
design accounts for faults existing in normal RNN like
vanishing gradients. A simple LSTM network contains 3 fun-
damental measures including hidden layer (HL), input, and
output layers. Several neurons in the input layer are verbal-
ized through the quantity of features. Similarly, the output
layer is based on the amount of objective features. This makes
it an essential model to handle multivariate prediction. The
uniqueness of LSTM relies on the usage of memory units
within HL. This includes 3 kinds of gates namely forget
ft , input it , and output 0t , whereas t represents timestep.
Particular gates are employed by memory cells to mod-
ify cell states st , well permitting data to be kept within
the system. This device permits LSTM networks to make
time-based alterations in data which makes them suitable
to time-series information. Numerous phases are occupied
within the LSTM network for each timestep t which are
mentioned below:

Step 1: Data in cell state st−1 measured for removal. Inputs
are handled through the sigmoid activation function as well
as predictable to a range of [0, 1], and then data is nominated
for preservation from the preceding cell state or removal. The
ft forget gate is defined in Eq. (1):

ft = σ
(
Wf ,xxt +Wf ,hht−1 + bf

)
(1)

whereas σ signifies the sigmoid function, Wf ,x , and Wf ,h
indicates weight matrices, xt denoted as an input vector at

timestep t , the output of preceding timestep (t − 1) signified
by h+ t − 1 and bf denotes forget gate bias vector.
Step 2: Inputs calculated and based on it data is enlarged

to cell state st by utilizing a sigmoid function. Additionally,
input data is proposed to a [−1, 1] array through thetanh
function. Two parameters are required to be calculated in
this phase, activation values and candidate values for every
input gate. These are expressed by employing Eqs. (2) and (3)
correspondingly.

s̃ = tanh
(
Ws̃,xxt +Ws̃,hxt + bs̃

)
(2)

it = tanh
(
Wi,xxt +Wi,hxt + bi

)
(3)

where bias vectors are characterized as bs and bi, and weight
matrices are denoted byWs̃,xxt ,Ws̃,h,Wi,xxt ,Wi,hxt .

Step 3: Novel cell states st are calculated depending
on Eq. (4)

st = ft ◦ st−1 + it ◦ s̃ (4)

While symbol (◦) represents Hadamard product.
Step 4: Outputs of ht defined through sigmoid and tanh

activation functions calculated based on Eqs. (5) and (6)
separately,

ot = σ
(
Wo,xxt +Wo,hht−1 + bo

)
(5)

ht = ot ◦ tanh (st) (6)

whereas σ signifies the sigmoid function, Wo,h, and Wo,x
characterize weight matrices and bo is denoted by the bias
vector.

By integrating these devices, an LSTM network can
achieve the effect of short-term memory, via the imple-
mentation of 3 gates [21]. Moreover, cell memory permits
preceding steps to impact future consequences that make
LSTM networks more suitable for HAR. In HAR problems,
the input feature is not of equal importance under various
circumstances, we add the attention module to attain relevant
data from significant features. The structure of the ALSTM
model is shown in Fig. 2. Consider that Y is comprised of
output [yt−1, yt , yt+1, . . .] of the prior layer and the scoring
model is implemented by the output score α and Softmax
layer. Finally, Y is denoted as γ.γ is comprised of weighted
sum of [yt−1, yt , yt+1, . . .]:

M = tanh (Y ) (7)

FIGURE 2. Architecture of ALSTM.
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α = softmax
(
wTM

)
(8)

γ / = YαT (9)

where Y ∈ Rµ×τ , µ denotes the dimension of the intention
feature, wT represents the transposition of w, w shows the
training parameter, and τ indicates the dimension of time-
sequence data. Lastly, the intention expression y′ is attained
by the tanh function.

y′ = tanh (γ ) (10)

C. ICOA-BASED HYPERPARAMETER TUNING
Finally, the hyperparameter tuning of the ALSTMmodel can
be performed by the use of the ICOA. ICOA is a bio-inspired
process of optimizer [22]. Similar to other nature-inspired
techniques, nature has been simulated to solve the optimizer
problems. COA mimics the living style of Coyotes which are
Canis Latrans creatures existing mostly in Central and North
America. The variation of the coyote to the environment and
the coyote’s social attitude has been exposed by the COA. The
COA offers the procedure of optimizer using strike a balance
between development and finding.

In the COA, the swarm has been separated as NP sets
where Nc defines the coyotes’ number from all the sets. The
candidate’s performances and social attitude toward coyotes
(SAC) are the main functions:

SACg,t
c = y = [y1, y2, . . . , yD] (11)

At this point, SACg,t
c defines the social attitude of

cth coyote from the gth set at the simulation time of t.
Any coyotes are elected on an arbitrary basis to create the

candidate solutions with the area performance.

SACg,t
c,j = LBj + k ×

(
Hrj − Lrj

)
(12)

whereas, k refers to the arbitrary amount different from 0 to 1,
Hrj and Lrj imply the higher and lower ranges of the jth

variable throughout the seeking region. The cost function for
all the coyotes has been considered using the below equation:

objg,tc = f
(
SACg,t

c,j

)
(13)

At the COA commencement, all the Coyotes participate
from sets arbitrarily. All the individuals, also, variations the
condition using moving to the other sets.

Pl =
5

100
× N 2

c (14)

This equation does support altering the procedure of coy-
otes in all the sets. Not all the sets have 14 or more coyotes
due to the enhanced diversity of COA. It is crucial to notice
that whenever Nc ≤ 10

√
2, P1 develops superior to one.

The coyote leader from all the sets is called Alpha Coyote
who is well known for the presence of a great responsible
coyote. This equation below is employed for the detection of
Alpha coyotes because of mathematics:

αg,tc = sacg,tc forminobg,t jc (15)

This mathematical equation below can depict the coyote’s
normal features for the interchange of culture:

culg,tj =


Rg,tNC+1

2 ,j
, Nc is an odd number

1
2

(
Rg,tNC

2 ,j
+ Rg,tNC+1

2 ,j

)
O.W .

(16)

where Rg,t defines the social ranking for the set number (g)
at t is a time interval for the jth variable.

The life process of coyotes, an environmental element
group, and the social attitude are also regarded by the COA.
The coyote’s life process is exposed depending on the
equation:

Bleg,tj =


sacg,tk1,j, kj < gksorj = j1
sacg,tk2,j, kj ≥ gks + gkaorj = j2
ρj, O.W .

(17)

At this point, ki refers to the random number differing
from 0 to 1, k2 indicates the arbitrary coyote from the
gth set, ρi demonstrates the arbitrarily selected number from
the range of the designed variable, j1, and j2 illustrates the
arbitrarily designed variables, gka and gks signifies the scatter
and association chances that expose the cultural variation
of coyotes in the set. The final elements are mathematical
models are determined as follows:

gks =
1
d

(18)

gka =
1
2

(1 − gks) (19)

At present, d represents the dimensional of a variable.
The death possibility for Ble is considered 10 percent,

i exposes the coyote counts from every set, and ω refers to
the worse performances of coyotes.

The replacement of culture among sets is determined using
µ1 and µ2 as:

µ1 = αg,tc − sacgitc1 (20)

µ2 = culg,t − sacg,tc2 (21)

Now, the cultural dissimilarity among the elected coyotes
(c1 and c2) and the group leader is signified by µ1 and µ2,
correspondingly.

This equation below is employed to renew the social style
because of the effect of the sets and the leader together:

nsacg,tc = sacg,tc + k1 × µ1 + k2 × µ2 (22)

At this point, k1 and k2 indicate the random numbers
among 0 and 1.

According to the renewing equation, this formula below
offers the upgraded count of cost function as:

nobjg,tc = f
(
nsacg,tc

)
(23)

sacg,t+1
c =

{
nsacg,tc , nobjg,tc < objg,tc
sacg,tc , O.W .

(24)

22162 VOLUME 12, 2024



S. Alazwari et al.: ICOADL Driven Activity Recognition in Healthcare

FIGURE 3. Confusion matrices of (a-b) 80:20 of TRPH/TSPH and (c-d) 70:30 of TRPH/TSPH.

A particular one main feature of this method is its capabil-
ity not to be stuck from a local optimal. The ICOA technique
derives an FF to obtain a higher efficacy of classification.
It defines a positive integer to illustrate the best results of the
candidate solution. At this point, the decline of the classifier
error rate is assumed as an FF.

fitness (xi) = Classifier Error Rate (xi)

=
No.of misclassified samples

Total No.of samples
∗ 100 (25)

IV. EXPERIMENTAL VALIDATION
The simulation analysis of the ICOADL-HAR model was
conducted on Localization Data for Person Activity (LDPA)
datasets retrieved from the UCI dataset.

It includes seven classes such as LDSD (Lying down,
sitting down), FLD (Falling, lying down), LS (Lying, sitting),
LOAF (Lying, on all fours), SUFSSUFSOG (Standing up

TABLE 1. Details on databases.

from sitting, standing up from sitting on the ground), FSD
(Falling, sitting down) and SUFLSUFS (Standing up from
lying, standing up from sitting) as shown in Table 1.

In Fig. 3, the confusion matrices produced by the
AOAFS-HDLCP technique under 80:20 and 70:30 of the
TR set/TS set are depicted. The results indicate the effectual
detection and classification of seven classes.
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In Table 2 and Fig. 4, the overall HAR outcomes of
the ICOADL-HAR model are investigated under 80:20 of
TRPH/TSPH. The outcomes imply that the ICOADL-HAR
model properly recognizes human activities. On 80% of
TRPH, the ICOADL-HAR technique offers an average accuy
of 98.84%, precn of 92.56%, recal of 86.31%, Fscore of
88.99%, and AUCscore of 92.76%. Meanwhile, on 20% of
TSPH, the ICOADL-HAR method offers an average accuy
of 99.01%, precn of 93.43%, recal of 87.73%, Fscore of
90.27%, and AUCscore of 93.52%.

TABLE 2. HAR outcome of ICOADL-HAR technique on 80:20 of
TRPH/TSPH.

FIGURE 4. Average of ICOADL-HAR technique on 80:20 of TRPH/TSPH.

In Table 3 and Fig. 5, the overall HAR outcomes of
the ICOADL-HAR method are investigated under 70:30 of
TRPH/TSPH. The outcomes imply that the ICOADL-HAR
model properly recognizes human activities. On 70% of
TRPH, the ICOADL-HARmethod provides an average accuy
of 98.74%, precn of 89.97%, recal of 85.78%, Fscore of
87.72%, and AUCscore of 92.48%. Meanwhile, on 30% of
TSPH, the ICOADL-HARmethod offers an average accuy of
98.87%, precn of 91.06%, recal of 86.68%, Fscore of 88.55%,
and AUCscore of 92.96%.

TABLE 3. HAR outcome of ICOADL-HAR technique on 70:30 of
TRPH/TSPH.

FIGURE 5. Average of ICOADL-HAR method on 70:30 of TRPH/TSPH.

The training and validation accuracy curves of the
ICOADL-HAR technique on 80:20 of TRPH/TSPH shown in
Fig. 6, provide valuable insights into the performance of the
ICOADL-HAR technique over multiple epochs. This curve
highlights the valuable insights into the learning process and
the model’s capacity to generalize. Furthermore, it is noted
that there is a consistency improvement in the TR and TS
accuracy over maximum epochs. It noted that the model’s
capacity to learn and detect patterns within the training and
testing datasets. The increasing testing accuracy proposes that
the model adapts to the training dataset and excels in mak-
ing accurate predictions on previously unseen data, which
emphasizes the strong generalization abilities.

In Fig. 7, we represent a comprehensive view of the TR
and TS loss values for the ICOADL-HAR technique on
80:20 of TRPH/TSPH across various epochs. The TR loss
progressively decreases as the model enhances its weights to
reduce classifier errors on TR and TS datasets.

This loss curve provides a better understanding of how
well the model aligns with the training data, underlining its
capability to efficiently hold patterns in both datasets. It is
noticeable that the ICOADL-HARmethod incessantly refines
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FIGURE 6. Accuy curve of ICOADL-HAR technique on 80:20 of TRPH/TSPH.

FIGURE 7. Loss curve of ICOADL-HAR technique on 80:20 of TRPH/TSPH.

FIGURE 8. PR curve of ICOADL-HAR technique on 80:20 of TRPH/TSPH.

its parameters to minimize the discrepancies between the
actual training and the prediction labels.

With respect to the PR curve as shown in Fig. 8, the out-
comes confirm that the ICOADL-HAR technique on 80:20
of TRPH/TSPH steadily accomplishes improved PR values
across every class. The results highlight the effectual capa-
bility of the model in the discrimination of various classes,
highlighting the efficiency in the detection of classes.

Furthermore, in Fig. 9, we introduce ROC curves generated
by the ICOADL-HAR method on 80:20 of TRPH/TSPH,
which excel in distinguishing between the classes. This curve

FIGURE 9. ROC curve of ICOADL-HAR technique on 80:20 of TRPH/TSPH.

FIGURE 10. Accuy outcome of ICOADL-HAR technique with other existing
models.

TABLE 4. Accuy outcome of ICOADL-HAR technique with other existing
models.

provides essential insights into the balance between TPR
and FPR across various classification thresholds and epochs.
The results highlight the accurate classification performance
under various classes, which highlights the performance in
tackling various classification problems.

In Table 4 and Fig. 10, a comprehensive comparison
analysis of the ICOADL-HAR model is provided [23]. The
results imply that the ICOADL-HAR technique gains better
performance with an increased accuy of 99.01%. On the other
hand, theHA-Bernoulli NB,HA-Decision Tree, HA -Logistic
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Regression, HA-KNN,HB-Bernoulli NB, HB-Decision Tree,
HB-Logistic Regression, HB-KNN, and IHPTDL-HARmod-
els obtain worse performance with minimal accuy values
of 78.86%, 88.17%, 81.55%, 75.95%, 96.07%, 97.38%,
96.66%, 93.26%, and 98.70%, correspondingly. These results
ensured that the ICOADL-HAR technique accomplishes
enhanced recognition results in the healthcare environment.

V. CONCLUSION
In this study, we have established an ICOADL-HAR
approach for healthcare monitoring. The purpose of the
ICOADL-HAR technique is to analyze the sensor infor-
mation of the patients to determine the different kinds
of activities. It contains three main processes such as
Z-score normalization, ALSTM-based classification, and
ICOA-based hyperparameter tuning. In the primary stage,
the ICOADL-HAR technique allows a data normalization
process using the Z-score approach. For activity recogni-
tion, the ICOADL-HAR technique employs the ALSTM
model. Finally, the hyperparameter tuning of the ALSTM
algorithm can be performed by using the ICOA. The stim-
ulation validation of the ICOADL-HAR method takes place
using benchmark HAR datasets. The wide-ranging compar-
ison analysis highlighted the improved recognition rate of
the ICOADL-HAR model compared to other existing HAR
approaches with a maximum accuracy of 99.01%. In the
future, the ICOADL-HAR technique holds significant latent
for more developments in the medical sector. Exploring
real-time execution and combination with evolving technolo-
gies namely edge computing improve the responsiveness and
effectiveness of the healthcare monitoring system. Further-
more, extending the ICOADL-HAR methodology to varied
patient populations and medical settings will contribute to
its generalizability and applicability across several healthcare
conditions.
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