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ABSTRACT Machine vision-based methods are usually applied to detect impurities in transparent liquids
like water or alcohols. Oils have higher viscosity and lower light transmittance, so traditional vision detection
methods do not work well. A weak oil impurity detection algorithm was proposed using event stream data.
In this method, the binary image of the oil was firstly captured using an event camera. To reduce the noise
interference from the event camera, image filtering and morphological operations were applied. Then, image
algebra operations were used to remove the oil container’s bottom pattern. Finally, impurity detection was
performed through the YOLOv5 network. Three common edible oils serve as the experimental samples.
Small flying insects, raw material fragments, metal fragments, hair strands, and tin beads of various sizes are
selected as the weak impurities. Experiments were performed on a dataset containing 3000 sample images.
To the best of our knowledge, existing algorithms can detect impurities with the minimum size of 0.4mm,
and most of the experimental samples are transparent liquids. The proposed method can be applied to detect
impurities in water and oils, and the detectable impurity size limit is 0.2mm.

INDEX TERMS Impurity detection, dynamic vision, event camera.

I. INTRODUCTION
With the development of edible oil production lines, there
is a growing demand for automatic impurity detection.
Traditional detection methods primarily depend on manual
detection. Such methods rely on heavy human labors, result-
ing in inefficiency and inconsistency. Long-time manual
operations can also lead to mental and visual fatigue [1]. Fur-
thermore, detection reliability may decrease when conducted
under inadequate lighting conditions or when bottles have
opaque colorations. Sometimes, impurities are easily mis-
taken for being part of the background, making the detection
more challenging. Current impurity detection methods can
be divided into two categories: motion features based, and
contour features based.

Contour features-based detection methods primarily
depend on complex image processing algorithms. They are
often employed to extract features like the edge contours
and texture shapes of impurities. Zhai et al. [2] focused
on the detection of impurities within grain samples. His-
togram equalization and the Gauss-Laplacian operator were
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used to enhance the contrast between grains and impurities.
Additionally, they also introduced parameters related to the
area of impurities to reduce the false detection points. This
method proves highly effective in detecting impurities when
significant feature differences exist between the subjects
and the impurities. However, it may lead to false-positives
in cases that the differences are very subtle. To minimize
the false detection rates, Yang et al. [3] treated sorghum as
the research object. They extracted various particle features
including the size, shape, color, and eccentricity. In addition,
they used principal component analysis (PCA) to reduce the
data dimension. Support Vector Machine (SVM) was used
for classification. As to the detection of impurity in liquids,
Yao et al. [4] adopted a preprocessing approach involving
bilateral filtering. They applied an enhanced multi-scale
wavelet transform to identify the edges of the object and
employed feature classification techniques to ascertain the
presence of impurities. This method simultaneously classifies
impurities and bubbles, and distinguishes them according
to the obtained feature information. To address the chal-
lenge of fuzzy impurities edges that may not be separated
from the changing background, He et al. [5] proposed a
two-stream fusion network approach. An embedding network
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was applied to extract regional features. Impurities and back-
grounds within each training sequence are clustered and
labeled. If the features of the impurities to be detected can
match those obtained by training, the impurity detection is
successful.

Motion feature-based impurity detection methods gener-
ally need rotating or sudden-stopping the bottles. This makes
the liquid in the bottle shake violently. Xu et al. [6] devised
a machine vision-based system for liquid drug detection. The
system begins by capturing images of a rotating drug bottle.
Then the frame difference method is applied to locate the
impurities accurately. And image recognition technology is
used to identify whether there are foreign substances in the
liquid. Song et al. [7] used ampoule liquid as their exper-
imental subject. They applied an adaptive multi-threshold
classification approach to extract potential impurity objects.
Through the forward search process, these potential objects
are assessed as genuine impurities. He et al. [8] aimed
to detect liquid impurities in opaque glass bottles. The
textures of the impurities are more complex. This study
constructs a long-term cyclic convolutional network for
classification purposes. The method goes beyond merely
extracting the differences between two frames containing
the impurities. Instead, it captures the continuous motion
and appearance changes of the impurities across multiple
frames.

Unlike liquors, liquid pharmaceuticals, and beverages, oils
have distinctive properties such as high viscosity and low
transparency. Motion feature-based visual detection methods
are not suitable for oil products. Specifically, three factors
may affect the oil impurity detection. First, the air bubbles
generated during the production process may be confused
with impurities. Second, the small sizes of the impurities
bring challenges to feature extraction. Third, most impurities
tend to gather around the bottle bottom. Its shape may be
irregular and diverse, so extracting the contour of every single
impurity point becomes difficult. In summary, traditional
impurity detection methods are effective for liquids like alco-
hols and beverages. However, they cannot be directly applied
to the detection of oil impurity.

The paper applies dynamic vision technology to oil impu-
rity detection. An event camera is used to capture the images
from the bottle bottom. This method ensures the full capture
of impurity points. Because of the inherent device interfer-
ences and environmental factors, the captured images contain
noises. Image filtering and morphological operations are
applied to reduce the noises in event images. And algebraic
operations are employed to reduce the bottle bottom patterns.
Finally, impurities are detected using the YOLOv5 (You Only
LookOnce) network. Themain contributions of this paper are
as follows:

1) A weak oil impurity detection method is proposed.
An event camera is used to collect the event stream image
data, and the YOLOv5 network is used to construct the detec-
tion model.

2) A pattern template for bottle bottom is created using
event stream data. This template serves to reduce the inter-
ferences during the impurity detection process.

3) A dataset of oil impurities with various bottle bottom
patterns is produced and extended to 3000 images through
data augmentation. Five different impurities are introduced,
including small flying insects, raw material fragments, metal
fragments, hair strands, and tin beads. The locations of these
impurity points are manually marked.

The rest of the paper is organized as follows: Section II
introduces the theoretical basis of dynamic vision and
object detection algorithms. Section III details the oil impu-
rity detection algorithm. Experimental results are given in
Section IV. Finally, conclusions are drawn in section V.

II. RELATED WORKS
A. TRADITIONAL OBJECT DETECTION ALGORITHMS
Traditional object detection algorithms involve three key
steps: selecting the detection window, extracting the image
window, and designing the classifier. The representative
algorithms are Viola-Jones, Histogram of Oriented Gradient
(HOG), and DPM (Deformable Part Model). Viola-Jones [9]
pioneered the use of integral image techniques to expedite
Haar-like input feature calculations. AdaBoost algorithm is
used for feature selection to identify key visual features.
In addition, a detection cascade technique is implemented
to enhance the accuracy and reduce the computational work-
load. The combination of HOG features and SVM classifiers
has been widely used in pedestrian detection algorithms [10].
It effectively captures the appearance and shape of local
objects by describing the gradient or directional edge density
distribution. The algorithm first divides the image into small
cells. The pixel gradient or edge direction histogram is then
collected in these cells. Finally, these histograms are merged
to create feature descriptors. The DPM model focuses not
only on the overall features of the object to be detected, but
also on the feature representation of the individual parts of
that object. It can be regarded as an extension of HOG [11].
The model includes a root filter with 8×8 resolution and sev-
eral component filters with a gradient resolution of 4×4. The
color-based object detection approach involves several oper-
ations, which includes color segmentation, morphological
processing, and feature extraction. These operations start with
establishing an appropriate segmentation threshold based on
the object object’s color features. Subsequently, morpholog-
ical processing and feature extraction are carried out. The
machine learning algorithm is used to classify and identify
the object.

B. OBJECT DETECTION ALGORITHMS BASED ON DEEP
LEARNING
Deep learning-based object detection algorithms can be cate-
gorized into two types: the one-stage and two-stage detection
methods. The two-stage detection algorithm combines the
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Region Proposal Network (RPN) to suggest potential can-
didate regions, in order to improve the detection accuracy.
The one-stage detection algorithm does not need to generate
candidate boxes. The problem of locating the object boundary
is directly transformed into a regression task, and thus obtains
a higher detection speed [12].

In 2014, Girshick et al. introduced the RCNN (Region-
based Convolutional Neural Network) network [13]. The
algorithm uses candidate regions and convolutional neural
networks instead of sliding windows to improve the detection
accuracy. However, the redundant computation of overlap-
ping frame features greatly slows the overall detection speed
of the network. To address this issue, He et al. introduced
the SPPNet (Spatial Pyramid Pooling Networks) [14]. They
propose a spatial pyramid pooling layer that allows candidate
boxes of arbitrary sizes. This layer generates a fixed-size
feature representation map as the final output, effectively
mitigating the computational redundancy problem. SPPNet
significantly reduces the computation time without compro-
mising detection accuracy. R. Girshick et al. introduced the
Fast R-CNN [15] in 2015, building upon the RCNN and
SPPNet. Fast R-CNN enables the training of both detectors
and edge regressors with the same network configuration.
It still relies on a selective search algorithm to locate regions
of interest, which can slow down the detection of large real
datasets. Faster R-CNN employs a RPN to generate candidate
frames instead of relying on the selective search algorithm.
This approach significantly enhances the detection speed.
In 2017, Lin et al. introduced Feature Pyramid Networks
(FPN) [16]. FPN is a network architecture that introduces
top-down and horizontal connections. It constructs high-level
semantic information across all layers and can accommodate
various scales. Cascade RCNN [17] enhances the Faster
RCNN by incorporating multiple cascade modules into the
backend detector. It employs various Intersection over Union
(IOU) thresholds during the training, which leads to a signifi-
cant accuracy improvement for the two-stage object detection
algorithm.

The representative one-stage object detection algorithms
are YOLO series and SSD (Single Shot Multi-Box Detector).
The YOLO network transforms object detection into a regres-
sion problem by utilizing the entire image as the network
input. After passing through a neural network, it obtains the
bounding box’s location and its corresponding class. The SSD
algorithm uses a regression approach similar to that of the
YOLOmodel, enabling it to regress both the object’s category
and location within a single network. This design contributes
to higher detection speeds. In the detection process, the region
concept used in Faster RCNN is adopted. Combine multiple
candidate regions into regions of Interest (ROIs). Objects in
the image are detected by classifying and positional regres-
sion for each region.

C. EVENT CAMERA-RELATED STUDIES
The event camera is a bio-inspired sensor, which has high
dynamic range, low delay, and super time resolution fea-

FIGURE 1. Comparisons of the data acquisition process between
traditional and event cameras.

tures. Unlike traditional cameras, the event camera doesn’t
provide a continuous stream of image frames at a fixed
rate. On the contrary, it only reports changes in local pixel-
level brightness, thus forming an event stream. Each pixel
point’s output is represented as an event, typically denoted
as (t, x, y, p). In the event stream data, (x, y) denotes the
pixel’s spatial coordinates, t indicates the timestamp of the
event. In addition, the polarity p means the brightness change
compared to the previous sampling [18]. If the brightness
increases, p equals +1 and the event polarity is positive. And
p equals −1 when the brightness decreases, in which case the
event polarity is negative. Figure 1 shows the comparisons
of the data acquisition process between traditional cameras
and event cameras as a black dot rotates on a disc [19]. When
the black dot rotates with the disk, the traditional camera will
lose some of the collected data and produce motion blur due
to the influence of the sampling frequency. The data collected
by the event camera is relatively complete, and it is not easy
to produce motion blur.

The remarkable features of the event camera have pro-
moted its applications in various computer vision areas.
It includes robot interaction, 3D reconstruction, high-speed
motion estimation, and etc. Rudnev et al. [20] introduced a
neural radiation field designed for a color event camera. This
approach surpasses baseline rendered image quality, excels
in fast motion processing, handles low illumination scenarios
effectively, and minimizes data storage demands. Iaboni et al.
employed an event camera to achieve real-time detection and
tracking of moving robots [21]. Density-based spatial cluster-
ing is applied to handle noises and maintain stable tracking
even in the absence of events. Ryan et al. [22] developed a
driver monitoring system for the detection and tracking of
faces and eyes using an event camera. A distinctive fully
convolutional recurrent neural network architecture is pro-
posed. This method is not limited by the specific conditions
of the driving environment, making it versatile and adaptable.
Since event cameras are sensitive to junction leakage current
and photocurrent, they tend to amplify noises during the
logarithmic conversion process. Therefore, it is necessary to
perform denoising on the images captured from event cam-
eras. Mohamed et al. [23] introduced a dynamic background
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FIGURE 2. Flowchart of the edible oil impurity detection algorithm.

activity filtering method based on the K-nearest neighbors
(KNN) algorithm and optical currents. This approach results
in a substantial improvement in signal-to-noise ratio. R.
Wes Baldwin introduced a neural network-based denoising
method named EDnCNN [24], which enhances the contrast
sensitivity, promising significant improvements in various
applications of neuromorphic vision.

III. OIL IMPURITY DETECTION ALGORITHM
A. IMPURITY DETECTION PROCEDURE
Figure 2 shows the flowchart of our proposed edible oil impu-
rity detection algorithm. Since the event camera is sensitive to
ambient light level fluctuations and the influences by optical
hardware circuits and environmental factors, the impurity
images captured contain considerable noises. Therefore, it is
necessary to preprocess the event stream data first. Image
filtering and morphological steps are used. Secondly, the
image subtraction operation is performed on the collected
images containing impurities and the bottle bottom pattern.
Then, the preprocessed images are divided into a training set
and a test set with a ratio of 4:1. Impurities are annotated using
labelme. These labeled images are used to train a YOLOv5
network, and a model is generated. Finally, the model can be
used for impurity detection.

B. IMAGE PREPROCESSING
Due to the high sensitivity of the sensor to light, the out-
put image is easier to produce noises. During the process
of integral imaging, traditional cameras generally perform
the smoothing operation automatically, while event cameras
don’t. So the images captured by event cameras have obvious
noises. What is more, under low contrast conditions, the
camera’s own logarithmic conversion operation may even
amplify the noises. For this reason, it is necessary to perform
the noise reduction operation on the output event images.
As shown in Figure 3, the operation is mainly composed of
two parts: bilateral filtering and morphological operation.

Bilateral filtering is an edge-aware denoising technique
that considers both the spatial proximity and pixel-value

similarity in an image. Unlike other filtering methods that
tend to blur edges when reducing noises, bilateral filtering
can effectively reduce the noises while preserving local edge
details and regional information. Bilateral filtering operates
on images using a combination of spatial distance and Gaus-
sian kernels. It’s a nonlinear filter that effectively preserves
edges by combining the features of both Gaussian and α-
trimmed mean filters. This method considers information in
both the spatial and value domains and its kernel is derived
by multiplying spatial domain and value domain kernels [25].
The bilateral filter template weights are as follows:

w (i, j, k, l)

= exp

(
−

(i− k)2 + (j− l)2

2σ 2
d

−
∥f (i, j) − f (k, l)∥2

2σ 2
r

)
(1)

where σd is the standard deviation of the Gaussian kernel
function on the spatial domain, which controls the weights
of the pixel positions. σr is the standard deviation of the
Gaussian kernel function on the pixel value domain, which
is used to control the weights of the pixel values. f (i, j) is
the pixel value of the image. f(k , l) is the pixel value of the
coordinate point at the center of the template window.

In this paper, morphological operation is used to reduce
the small noise points in the image. The opening opera-
tion consists of an erosion followed by a dilation operation.
It effectively reduces small noise points in the image while
preserving the shape of relatively larger objects [26]. Based
on the bilateral filtering operations, the open operation further
reduces the small noise generated by the event camera.

The application of bilateral filtering and morphological
operations can effectively reduce most of the noises. But
the pattern of bottle bottom and part of the unreduced noise
are enhanced after removing the noise. This enhancement
could potentially impact the accuracy of impurity detection.
In this study, the enhancement of the bottom pattern’s edges
is reduced by subtraction in image algebraic operation.

The principle of image subtraction operation is to compare
the input image with the background. The moving object is
detected or segmented according to the changes in gray level
and other features. This operation can be used to detect and
track moving objects, reduce image backgrounds, and other
tasks. Let’s denote two input images of size M×N as f(x, y)
and g (x, y), and the output image as h (x, y). The pixel of
each position in the image f (x, y) subtracts the pixel of the
corresponding position in the image g (x, y) to obtain h (x, y).

C. YOLOv5 OBJECT DETECTION NETWORK
The algorithm proposed in this paper uses the YOLOv5 net-
work to create a model for detecting weak impurity points
in edible oils. The model comprises three components: a
backbone feature extraction layer, a feature fusion layer, and
an object detection layer [27]. The network architecture is
shown in Figure 4.
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FIGURE 3. Flowchart of event stream image denoising. [25], [26].

FIGURE 4. Diagram of YOLOv5 detection network. [27].

FIGURE 5. Comparative results of preprocessing. (a) the original image containing impurities. (b) the result after
3 × 3 median filtering. (c) the result after 3 × 3 mean filtering. (d) the result after bilateral filtering. (e) the result of the
open operation with a 3 × 3 convolution kernel. (f) the result after removing the bottom pattern.

The backbone feature extraction layer comprises the Focus
module, CSPDarknet, and SPP (Spatial Pyramid Pooling)
module. First, the captured event stream data is input into
the Focus module. In the Focus module, the high-resolution
image is segmented into several low-resolution feature
images using the slicing operation. Then these feature images
are processed by the SPP module, converting them into
fixed-size feature vectors. Subsequently, they are passed
through the CSPDarknet53 module. The residual connection
is used to enhance the feature transfer, and the skip connection
is used to combine the feature maps of different scales to
enhance the object detection accuracy.

To detect impurity objects of varying sizes and positions
within the image, a feature fusion layer is employed. This
layer uses the FPN structure, which combines feature maps
from different scales using up-sampling and down-sampling
operations. The top-down component accomplishes feature

fusion by integrating up-sampling with coarser-level feature
maps, while the bottom-up part combines different levels
of feature maps using a convolutional layer. The feature
fusion layer combines various impurity feature maps to
produce an impurity feature image containing multi-scale
information.

In the end, the previously fused impurity feature maps
undergo multi-scale object detection through an object detec-
tion layer. It includes components such as the convolution
layer, pooling layer, and fully connected layer. To begin with,
a predefined set of bounding boxes is used within the feature
map to generate candidate boxes. These region proposals
are then subjected to a classification process to determine
whether they correspond to impurities or not. Finally, the
full connection layer is used to perform regression operation
on each detection frame, and extract the location and size
information of impurity points.
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FIGURE 6. The first row shows a side view of the bottle and the third row shows a bottom view. Bottle contours may appear in
side view, and the impurities cannot be seen clearly in these images. In the bottom view, impurities can be found without
difficulty. For the reader’s convenience, the visible impurity points are manually marked with yellow.

FIGURE 7. Impurity detection results for different objects.

IV. EXPERIMENTS AND RESULTS
A. DATASET CONSTRUCTION
The experiments were conducted on three commonly used
oils: soybean oil, rapeseed oil, and olive oil. These oils serve
to assess the performance of our proposed impurity detection
algorithm. To simulate typical impurities during production,
small flying insects, rawmaterial fragments, metal fragments,
hair strands, and tin beads were used, among which the
diameter of tin beads varies in four sizes: 0.5mm, 0.4mm,
0.3mm, and 0.2mm. A total of 2,000 images were taken using
the event camera. The dataset was further expanded to 3,000
images by data enhancement methods such as horizontal
mirroring and up-down flipping. Then images were randomly
divided into the training, testing, and validation sets.

B. IMAGE PREPROCESSING
Three distinct filtering methods were employed for compar-
isons. Figure 5 illustrates the results after several filtering

operations. The median filter proves effective in eliminating
the Salt & Pepper noise. However, under the circumstances
of strong noises, image details will even be filtered out.
Mean filter is often used to reduce uniformly distributed
noises. And, this filtering technique can potentially cause
edge information to become blurred and result in detail loss
within the image. Bilateral filtering proves highly effective
in eliminating noises from the image while preserving edge
information and complicated details.

It exhibits superior denoising performance for both Salt
& Pepper noise and Gaussian noise. It can be seen from the
experimental results that bilateral filtering is most suitable.

The opening operation is combined with bilateral filtering
to reduce noises while preserving the overall object shape and
edges, as is shown in Fig. 5(e). Additionally, a morphological
open operation with a 3 × 3 convolution kernel is applied
to further remove small objects. This operation reduces the
adhesion between impurity points and refines the edge of the
object image.
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FIGURE 8. Comparison results of different methods. The use of the greyscale second difference method for the detection of
impurities has more interference and has certain requirements for the bottle color. The inter-frame difference method has certain
requirements for the impurities’ distribution area, and the impurities attached to the bottom of the bottle cannot be detected well.
It is more sensitive to brightness and has larger background interference. The method using multi-scale wavelet transform and
morphological features is not able to detect the impurities in the corners of the bottle. In comparison, the detection method
proposed in this paper is more effective.

TABLE 1. Comparisons of impurity detection algorithms.

To mitigate the influence of the bottle’s bottom pattern on
impurity detection, images of the oil bottle’s bottom without
any impurities were initially captured. The bottom image
of the oil bottle without any impurities is imported into the
algorithm. The pixel size of the image after morphologi-
cal processing is consistent with that of the image at the

bottom of the oil bottle. Next, the pattern boundaries were
computed through an iterative process. After that, the pat-
tern of the bottle bottom was extracted and subtracted from
the morphology-processed image. This subtraction process
removes the same regions in the two images, leaving only the
differences between them. The results are shown in Fig. 5(f).
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A part of the results obtained after the subtraction operation
was selected as the training set to be input into the deep
learning network for training. The remaining part served as
the test set.

C. EXPERIMENTAL RESULTS
Three experiments were designed to evaluate the proposed
impurity detection algorithm. Firstly, different shooting
angles are compared. When shooting from the bottle side, the
event camera can easily capture the bottle’s outline. However,
it faces difficulty in clearly capturing impurities within the
liquid, such as hair and small particles. Shooting from the
bottom solves this problem. The results are shown in Figure 6.
The white pixels represent the detected objects.

Secondly, different types of impurities were chosen for
comparisons, which includes small flying insects, raw mate-
rial fragments, metal fragments, hair strands, and tin beads
of varying sizes. The detection results are shown in Figure 7.
The white pixels represent the raw data output from the event
camera, and the red marked represent the detected impurity
points.

Thirdly, different fluids were tested. Performance compar-
isons among the proposed method and traditional detection
methods are performed on soya-bean oil and water respec-
tively. The results are illustrated in Figure 8. In the first row,
the detection results of each method on edible oils are shown.
Tin beads with 0.2mm diameter are used. For Mean Filter-
ing + Quadratic Difference method, it failed to detect the
impurities. The Inter-Frame difference+ Brightness thresh-
olding method is sensitive to brightness, and the impurity
points detection is easily disturbed by the background envi-
ronment. Only a very small part of impurities was detected.
The Multi-scale Wavelet Transform + Morphological fea-
tures method effectively reduces the interference of bubbles
and noise. However, it still has shortcomings in detecting
impurities as small as 0.2 mm. Compared with the other
three algorithms, the method proposed in this paper is not
affected by background image and illumination. Impurities
with the diameter of 0.2 mm were detected, as is shown
in red mark.

The second row shows the results of each method as is
applied to water, with metal debris as the detection object.
The Mean Filtering + Quadratic Difference method can suc-
cessfully detect the metal debris impurities, as is indicated
by the red rectangle. However, the algorithm’s performance
is sensitive to the color of the bottle. Its detection accu-
racy decreases notably when the bottle is green or brown.
The Inter-Frame Differential + Brightness threshold method
is sensitive to brightness changes and strictly depends on
bottle sudden stop. The enhanced detection method, which
combines multi-scale wavelet transform and morphological
features, successfully detected the metal impurities, as is
shown with a red rectangle. This method is sensitive to bot-
tle features. If the impurities move over the bottle’s edge,
it disappears from the captured image and can’t be detected.
The algorithm in this paper also has a good effect on the

detection of impurities in water, where the detection is not
easily affected by bottle contour and environmental factors.
The detection results are marked with red. Table 1 gives
the performance comparisons among the proposed and tra-
ditional methods. Compared with other methods, our method
can be applied to the detection of impurities in water and oils.
Moreover, more types of impurities can be detected, and the
size of detectable impurities is smaller.

V. CONCLUSION
In this paper, an event-based weak oil impurity detection
algorithm is proposed. Filtering and morphological opera-
tions are used to remove the noises from the event camera.
The pattern image at the bottle’s bottom is extracted and
removed to improve the detection accuracy. And a YOLOv5
network is applied to detect the weak impurities. Three com-
monly used edible oils and several impurities are used for
testing. The sample impurities include small flying insects,
rawmaterial fragments, metal fragments, hair strands, and tin
beads. Tin beads with different diameters are used, ranging
from 0.5mm to 0.2mm at an interval of 0.1mm. Experiments
were carried out, and as is compared with other detection
methods, the minimum impurity size that can be detected
in our method reached 0.2mm. The proposed method out-
performs previous visible light-based methods in both the
detection accuracy and application scenarios. Future work
may be focused on combining the appearance features of the
impurities with the detection trajectories.
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