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ABSTRACT To understand how Convolutional Neural Networks (ConvNets) perceive the muscular
movements of the human face, known as Action Units (AUs) in this work, we introduce a new dataset
named Dataset on Emotions among Mexicans (DEM), consisting of 1557 images of Mexicans labeled
with twenty-six AUs and seven emotions. As a benchmark, we used the comparison with DISFA+ labeled
with 12 AUs. To address the task of detecting AUs in each image, six ConvNets were employed, and we
evaluated their performance using the F1 Score. The two ConvNets with the best performance were VGG19
with 0.8180% (DEM), 0.9106 % (DISFA+), and ShuffleNetV2 with 0.7154% (DEM), 0.9440% (DISFA+).
Subsequently, these ConvNets were analyzed using Grad-CAM and Grad-CAM++; this algorithms allows
us to observe the areas of the face considered for prediction. In most cases, these areas consider the region of
the labeled AU. Considering the F1 score and the visual study, we can conclude that using DEM as a dataset
to classify AUs is promising since the experiments achieved performances similar to those of the current
literature that only use ConvNets.

INDEX TERMS Action units, ConvNets, CAM analysis.

I. INTRODUCTION
Nonverbal Nonverbal communication is an essential aspect
of human interaction, where facial expressions play a pivotal
role in conveying emotions, intentions, and affective states.
Since ancient times, humans have endeavored to comprehend
and decode facial language, recognizing the significance
of these visual cues in interpreting and understanding the
intentions and emotions of others.

The study of facial expressions has evolved from subjective
approaches based on intuition and observation to objective
and systematic methodologies aimed at decomposing and
encoding facial movements into specific units. In this context,
the Facial Action Coding System (FACS) [1], developed by
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Paul Ekman and Wallace Friesen in 1978, has emerged as a
central tool in analyzing facial expressions.

The Facial Action Coding System (FACS) serves as a
framework for encoding and describing visually discernible
muscular movements of the face, offering a precise and
detailed representation of facial expressions. FACS intro-
duces the concept of breaking down facial expressions
into fundamental units known as Action Units (AU), each
corresponding to specific muscle movements. Each AU is
assigned a code, facilitating an objective and quantitative
description of facial expressions.

FACS has proven to be a valuable tool across various
fields of study and applications. FACS has been employed
in psychology and neuroscience to investigate emotional
responses, cognitive processes, and psychological disorders.
For instance, in psychology, FACS has been used to explore
cognitive and emotional processes [2], [3], [4], enabling an
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objective and quantitative assessment of facial expressions
in different contexts. It has also found utility in Artificial
Intelligence (AI), where FACS has become a tool for
automatic emotion recognition [5], [6].

Furthermore, FACS has found applications in fields such as
medicine and therapy, where it has been employed for diag-
nosing and treating disorders related to facial expressions,
such as Möbius syndrome [7] and facial paralysis [8].
One of the most well-known approaches in this field is

using deep learning techniques, particularly Convolutional
Neural Networks (ConvNets). These networks aim to extract
relevant features from images and learn complex patterns.
ConvNets have proven highly effective in image classifica-
tion tasks, and their application to facial expression analysis
has led to significant improvements in the accuracy and
performance of facial recognition systems.

Studies attempt to classify AUs using the FACS as a
basis for Deep Learning methods. These works include [9],
which evaluates the visual transformers ViT and SWIN for
AU classification using the DISFA+ dataset [10]. Besides
normalizing the images, they perform facial alignment,
horizontal flips, and rotations for preprocessing. The results
recorded in their experiments show an average F1 score of
60% using SWIN and 54% using ViT.

There is also the work of [11], in which they propose
an Attention-based Relationship Network (ABRNet) for AU
classification. In this study, ABRNet utilizes multiple layers
of relationship learning to capture different AU relationships
automatically. These are then introduced into a self-attention
fusion module to refine individual AU features with attention
weights, thus enhancing feature robustness.

In [12], the authors investigated how to integrate the
propagation of semantic relationships between AUs and a
deep neural network to enhance the feature representation of
facial regions. For this purpose, they constructed a structured
knowledge graph of AUs. They integrated a Gated Graph
Neural Network (GGNN) to propagate node information
through the graph to generate an enhanced representation of
AUs. The model uses two AU-labeled datasets: BP4D [13]
(utilizing 12 AUs) and DISFA [14] (utilizing 8 AUs) for
evaluation. In DISFA, since it is annotated with AU intensity
ranging from 0 to 5, they took intensity two as a reference to
indicate the presence of the AU.

Consequently, AUs are tagged as existing if the intensity is
equal to or greater than two; otherwise, as absent. This work
achieves an average F1 score of 62.9% on BP4D and 55.9%
on DISFA.

We also have the work of [15], in which they employed
a new Facial Action Units (FAU) correlation network
based on a transformer encoder architecture to capture the
relationships between the different AUs using the DISFA
dataset. They detected facial regions for preprocessing and
resized them to 224 × 224 grayscale pixels. Similarly to the
previous work, they also decided to use intensity two as a
discriminator for the appearance or absence of an AU. The
results on DISFA showed a 61.5% F1 score.

TABLE 1. Total samples per emotion in DEM.

We also found works such as the one by [16] in which,
in addition to classifying the AU, it also performs facial
alignment, not as part of the preprocessing but as part of the
learning of the neural model that uses an attention-learning
module. Their evaluation in F1 score shows an average
of 56%.

In brief, our main contributions are:

1) We introduce a novel dataset called Dataset on
Emotions among Mexicans (DEM). DEM included
1557 images ofMexican individuals with the following
labels: AUs, 0-5 intensity of the AU, and seven
emotions.

2) Our experimental results using CAM algorithms show
that ConvNets trained with DEM and DISFA+ cor-
rectly differentiate, in most cases, the visual areas
where an action unit appears, even in images that do
not belong to the training set.

3) In F1 score percentages, DEM performs similarly to
those presented in the literature using only ConvNets.

II. MATERIALS AND METHODS
In the current literature, there are various datasets created to
analyze Action Units, such as CK/CK+ [17], [5], BP4D [13],
CASME [18], MMI [19], Bosphorous [20], among others,
in this work, we use the following ones.

A. DATASETS
1) DEM
In this work, we present the Dataset on Emotions among
Mexicans (DEM) for the first time, a dataset with Latin
American faces labeled with AUs and emotions. It includes
246 participants, comprising students and professors from
universities and research centers in Mexico City. Each
volunteer had a maximum of eight photographs taken,
resulting in a total collection of 1,942 images at a resolution
of 6016 × 4016 pixels in RGB. We showed each participant
pictures of eight emotions they had to portray, and we took
photographs when the muscular movement resembled the
ideal model. DEM includes labels for AUs with intensities
ranging from 0-5, as well as labels for facial expressions
that represent human emotions. Five experts performed the
labeling of DEM. After individual labeling, we carried
out bias reduction through a majority vote. Thus, if three
individuals labeled an image the same way, it was considered
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TABLE 2. Action units in DISFA+ and DEM for our experiments.

FIGURE 1. Example of AUs in DEM.

valid. This filtering discarded 20% of the images, resulting in
1557 images divided into seven emotions and a neutral face
as can be seen in Table 1. To label the AUs it was necessary
to remove the 285 neutral face images because no AUs are
found in the neural faces.

DEM includes 26 labeled AUs; however, for comparison
with DISFA+, only the 12 AUs that DISFA+ contains
were used, listed in Table 2. To better exemplify the DEM
distribution, Figure 1 shows some examples of images
included in DEM that visually show the AUs used in this
work. The nomenclature used is defined in FACS, aligning
with the psychological and clinical literature.

It is important to note that the number of main AUs in
the FACS varies between 28-30, and if we consider AUs
with movement, the number reaches 58. These expressions
spontaneously appear on the face, making it an extremely
challenging task to capture the exact moment they occur and
obtain a sufficient number of images for each, to the extent

that, even today, there is no dataset in the literature that
includes all of them.

2) DISFA+

We selected DISFA+ because it is a recently created dataset
and a significant update to DISFA [14]. DISFA+ consists of
nine individuals recorded in various contexts in a controlled
environment to capture twelve AUs corresponding to the
twelve classes to be classified. The dataset includes posed
and non-posed action units. Each of the twelve AUs is also
labeled by intensities ranging from 0-5, where zero signifies
the absence of the AU, and 5 represents the maximum visual
presence. It is essential to mention that while the dataset
contains approximately 57,000 images, the total content of
the dataset is around 96,000 AUs. This difference is because
each image can have more than one AU labeled.

B. DEEP NEURAL NETWORKS
From the literature, we chose to conduct experiments with six
Convolutional Neural Networks (ConvNets): VGG19 [21],
ResNet101 [22], NASNet Mobile [23], MobileNetV2 [24],
EfficientNetB0 [25], and ShuffleNetV2 [26]. We selected
these neural networks as they have been employed for facial
and emotion classification tasks, yielding favorable results,
as observed with VGG19 in [27], ResNet101 in [28], and
NASNet, MobileNetV2, EfficientNetB0, and ShuffleNetV2
in the works of [29], [30], [31], and [32] respectively.
Therefore, we consider these ConvNets excellent candidates
for classifying facial gestures and emotions, although this
study will not perform the latter task. Below, we provide a
brief description of each of the ConvNets used.

1) VGG19
This ConvNet was one of the earliest ConvNets with signifi-
cant feature extraction power, maximizing 3×3 convolutions
while maintaining a straightforward architecture (cascading
convolutions with increasing filters in each convolutional
block). Although its training is more time-consuming due
to the number of filters and cascading convolutions, its
effectiveness in classification tasks has made it one of the
most widely used ConvNets in computer vision research.

2) RESNET101
On the other hand, ResNet101 introduced residual connec-
tions that help alleviate the vanishing gradient problem,
a common issue in artificial neural networks with consider-
able depth. This problem prevents the weights in the initial
and intermediate layers of the networks from updating during
backpropagation because, as the weights of the last layers (the
first to be updated during backpropagation) are updated, the
gradients become progressively smaller, tending to zero in the
initial layers. Another reasonwe chose ResNet101 is its use of
bottlenecks, which are blocks employing 1× 1 convolutional
layers [33] acting as bottlenecks within the network. They
reduce dimensions, then use 3 × 3 convolutions and again
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1 × 1 convolutions to return to the original dimensions,
thereby reducing the number of network parameters and
matrix operations.

3) MOBILENETV2
MobileNetV2 introduces the inverted residual structure while
employing Depthwise Separable Convolution implemented
in MobileNetV1 [34]–convolutional layers widely used
in contemporary convolutional architectures. MobileNetV2
utilizes two blocks: the first is a residual block with a stride
of 1, and the second has a stride of 2 for size reduction. Each
block starts with a 1 × 1 convolutional layer with ReLU6
activation function [34], followed by a depthwise convolution
layer, and concludes with a 1 × 1 convolutional layer.

4) NASNET MOBILE
On the other hand, the authors constructed this Neural
Network using the Neural Architecture Search (NAS)
algorithm to find the most suitable network configuration
for solving ImageNet. The objective was to achieve the
highest accuracywhileminimizing the number of parameters.
It is essential to mention that NAS uses defined variations
of convolutions to test and discover the best combination.
Among the possible options is the use of 1× 1 convolutions,
3 × 3 convolutions, dilated convolutions [35] (a type
of convolution that inserts spaces between kernels, thus
‘‘skipping’’ pixels during convolution), depthwise separable
convolutions (a convolution that divides the filter into
two separate filters performing depthwise convolution and
pointwise convolution, saving computational operations)
introduced inMobileNetV1, as well as identity connections–a
type of residual connection implemented in ResNet101. For
this ConvNet, there is no figure illustrating the backbone
of the architecture because, as it is a pseudo-randomly
created architecture, there is no defined construction pattern.
Additionally, the final architecture consists of 389 layers in
depth.

5) EFFICENTNETB0
EfficientNetB0 can be used in classification, detection,
segmentation, and even some natural language processing
tasks. They achieved this by relying on two simple principles:
efficiency and performance. ConvNet’s architecture is based
on compound scaling, which aims to balance the network’s
size, accuracy, and computational cost. This balance is
achieved by scaling three essential dimensions of a ConvNet:

• Width: This dimension refers to the number of channels
per convolutional layer. Increasing this dimension
allows the capturing of increasingly abstract patterns.

• Depth: It refers to the number of layers a ConvNet can
have. More layers imply the ability to represent more
complex data. A ConvNet with fewer layers is more
computationally efficient but may sacrifice precision.

• Resolution: Scaling the input images can lead to the
loss or gain of helpful information in the ConvNet.

For instance, higher-resolution input may provide more
detailed information but requires more memory.

Therefore, the creation of this ConvNet involves balancing
these three dimensions. Researchers used grid search to find
the optimal combination of width, depth, and resolution
to achieve this. This search is guided by a compound
coefficient, denoted as ‘‘phi’’ (φ), which uniformly scales the
model’s dimensions. The user provides this coefficient at the
beginning of the search. A significant φ results in a more
practical but computationally more expensive model, while a
small φ produces a lighter but more computationally efficient
model.

6) SHUFFLENETV2
The researchers designed this network to achieve good results
with lower computational cost, aiming for quick and efficient
outcomes. To fulfill this objective, ConvNet proposes the
following guidelines:

• Equal channel width minimizes Memory Access Cost
(MAC), meaning maintaining a 1:1 ratio.

• Excessive group convolution increasesMAC; increasing
the number of groups leads to more computations,
ultimately reducing speed.

• Network fragmentation reduces the degree of par-
allelism: Fragmentation is inversely proportional to
parallel computation.

• Element-wise operations are not negligible: Runtime
decomposition graphs show that simple element-wise
operations impose overhead on speed.

7) CLASSIFIER
First, we add a global average max pooling layer to flatten the
feature vector and immediately add a multilayer perceptron
(MLP) to all the previously mentioned networks. This
MLP consists of two fully connected layers: the first with
512 neurons and ReLU activation function, and the second
with 12 neurons and Sigmoid activation function. The latter
layer serves as the output of the classifier.

C. PREPROCESSING AND SEPARATION OF THE DATASET
1) INITIAL PREPROCESSING
All images in DEM and DISFA+ contain elements irrelevant
to this task, such as the image capture date, additional subjects
in the image, a significant amount of background, or even
clothing. Examples can be seen in Figure 2, where Figure 2a
shows a DISFA+ image with a person in the background
and additional details like the capture date and time, and
in Figure 2b, an example from DEM. To eliminate these
unwanted elements and focus solely on the faces in the
images, we decided to employ a Cascade Classifier that
utilizes the Haar Cascade Filters [36]. This approach allowed
us to crop the images in both datasets, leaving only the
faces, as depicted in Figure 3. The final image sizes were
244 × 244 for DEM and 350 × 350 for DISFA+. However,
in the case of DISFA+, the size was subsequently reduced to
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FIGURE 2. Sample image in DISFA+ and DEM.

FIGURE 3. Diagram of image preprocessing in DISFA+ and DEM.

224 × 224 to align with the input dimensions of the selected
ConvNets.

Figure 3 provides a general overview of selecting regions
of interest and the final result. Figure 3a presents the step of
passing a DEM image through the Cascade Classifiers, and in
Figure 3b, the same procedure can be observedwithDISFA+.
With the cropped faces, we create a tabular data structure to

have the images and their labels in two simple columns. In the
first column, we placed an image; in the second column, it is
the list of labels representing a multi-label format; this is a
significant difference in our approach compared to the state-
of-the-art, where works typically use multi-class labeling.

DISFA+ and DEM initially consist of images labeled with
the corresponding AU and their intensity (ranging from zero
to five), where zero signifies no presence of the AU, and five
indicates maximum presence. Following the same approach
as state of the art, we decided to transform this problem
into a binary classification task, using the intensity just as
a threshold; so we assign the value one to AUs with an
intensity of two or greater and the value zero to all AUs with
an intensity of less than two. Also, we removed the images
without labeled AUs. As shown in Tables 3-4, 70% of the
total images in both datasets were used for training, 10% for
validation, and 20% for testing.

In Table 4, it can be observed that DEM has few
images for AU5, AU15, AU17, and AU20. To address the
class imbalance issue, an artificial data augmentation was
performed. The procedure begins with AU20, which has
less data. We took the 14 images from the original set with
AU20, and 10 artificial images were generated for each,
resulting in 140 images. It is important to note that some
images have more than one AU, so other AUs were also
augmented. We repeated the process for AU17, which was
sufficient to balance DEM. The Table 5 shows the final
result.

TABLE 3. Total samples per partition in DISFA+.

TABLE 4. Total samples per partition in DEM.

TABLE 5. Total samples per partition in DEM augmented.

D. METHODOLOGY
Figure 4 illustrates the methodology followed for our exper-
iments. Note that we have assigned a letter nomenclature to
name each ConvNet to facilitate result explanations.The steps
we followed are as follows:

1) We used the training and validation sets to realize
individual training sessions for each ConvNet to
observe the behavior of each architecture.

2) With the trained architectures, we used the test set to
calculate evaluation metrics and measure the actual
performance of the trained architectures.

3) Finally, using the same test set, we used GradCAM [37]
and gradCAM++ [38] algorithms to realize a visual
study of the previous results. Note that this calculation

15272 VOLUME 12, 2024



M. A. Moreno-Armendáriz et al.: Using Diverse ConvNets to Classify Face Action Units in DEM

FIGURE 4. Proposed methodology.

TABLE 6. Hyperparameters.

was only done for VGG19 and ShuffleNetV2 because
they were the models with the best F1 values.

Although the two CAM algorithms are similar, Grad-
CAM sometimes fails when the image contains too many
classes in a single image and does not always display
the entire region used. Grad-CAM++ addresses this issue
by employing a more advanced backpropagation method,
solving the problems encountered by Grad-CAM.

Table 6 displays the configuration of the hyperparameters
used during our training sessions. These hyperparameters are
crucial because each architecture needs to adjust these values
differently to achieve optimal performance. Additionally,
given the nature of each architecture, even with Fine Tuning,
it was necessary to adjust parameters for both DEM and
DISFA+.

We conducted a total of twelve experiments: six exper-
iments using DISFA+ and six experiments using DEM.
We decided to use pre-trained architectures, except for
ShuffleNetV2, as we can leverage the layers’ weights that are
already fine-tuned for similar tasks. In our case, we utilized

TABLE 7. F1 score per class in DISFA+ trained models.

pre-trained weights from ImageNet, which, while lacking a
specific class for faces or similar, does contain examples
where a human face may appear; this decision allows us to
freeze the entire model except for the last convolutional block
for fine-tuning.

III. RESULTS
A. EVALUATION METRICS FOR DISFA+

Following the same order as in state-of-the-art works, we used
the F1 score as the primary metric for evaluating these
experiments because the original dataset is imbalanced,
so metrics like accuracy could yield misleading values at
first glance. In Table 7, the F1 score for each AU is
presented for each trained ConvNet. Numerically, we can
observe that ShuffleNet outperforms all other ConvNets,
except in the classes AU5, AU6, and AU9, where VGG19 and
EfficientNetB0 is better.

Furthermore, in Figures 5 and 6, the confusion matrix
for each class of the models with the highest performance
(VGG19 and ShuffleNetV2) is visualized. It is easy to
observe how both models achieve similar values in all
classes, correctly classifying most test images. A particular
case is AU20, where there is a significant difference in
the AU20 class between VGG19 and ShuffleNetV2, where
ShuffleNetV2 achieves nearly perfect classification while
VGG19 does not.

Interestingly, ShuffleNetV2, with 4.5 million trainable
parameters, outperformed VGG19 in most classes, even
though VGG19 has 20.2 million trainable parameters, this
indicates the optimization demonstrated in creating the
ShuffleNetV2 architecture.

1) VISUAL STUDY FOR DISFA+

Although ShuffleNetV2 obtained better results than VGG19
numerically, we decided to perform a visual study using the
Grad-CAM and Grad-CAM++ algorithms to examine the
features that are taken into account by these ConvNets to
predict the AUs; we decided because, on many occasions,
when opting for purely numerical analysis, we can not
know which areas of an image the ConvNets used to make
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FIGURE 5. Confusion matrix of VGG19 trained with DISFA+.

a prediction, falling into problems such as the areas not
corresponding to the desired class.

Consider the image in Figure 7. The face on the left is
AU4 (Brow Lowerer), and the face on the right is AU25 (Lips
Part). In Figure 7a, we observed that the features taken by
VGG19 for the prediction of AU4 take into consideration also
part of the mouth (AU25); however, as can be noticed in the
areas of higher intensity (red color), it still takesmore features
belonging to AU25, while AU4 differentiates it correctly and
without overlapping with some other AU. On the other hand,
in Figure 7b, the features of ShuffleNetV2 do not align with
AU4, and in the case of AU25, it focuses more on the upper
part of the face, considering only slightly some areas of

FIGURE 6. Confusion matrix of ShuffleNetV2 trained with DISFA+.

AU25; this may be a sign that, although numerically, a UA
is better identified visually, it may not correspond to that UA
but to other features that appear in those movements.

To further validate these results, we use a DEM image,
as shown in Figure 8, labeled AU4. Using an image that does
not belong to DISFA+may affect the network’s performance
but allows us to evaluate its knowledge generalization
capabilities more broadly. In Figure 8a, note how VGG19
considers the AU4 region and other features such as nose
andmouth; this situation could be explained as co-occurrence
between AUs, an occurrence explained in the original
DISFA+ article where the authors mention that often an AU
obligatorily appears next to another one, however in Figure 8b
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FIGURE 7. Grad-CAM++ and Grad-CAM using a DISFA+ image on VGG19
and ShuffleNetV2 trained with DISFA+.

FIGURE 8. Grad-CAM++ and Grad-CAM using a external image on VGG19
and ShuffleNetV2 trained with DISFA+.

it fails in prediction. Now, considering only the Grad-CAM
result shown in Figure 8c, it is evident that the area covered
by the VGG19 features is considered a significant part of
the upper region of the face; this area is on top of the
AU4 area. Finally, in Figure 8d, a similar event is observed
with ShuffleNetV2.

B. EVALUATION METRICS FOR DEM
Performing the same experiments as in the previous section
with DEM, we obtained the following results (see Table 8).
In this case, the architecture that achieved the best values

FIGURE 9. Confusion matrix of VGG19 trained with DEM.

was VGG19, followed by ShuffleNetV2, which performed
better for AU17. Details of these results can be observed
in Figures 9 - 10, where confusion matrices for each AU are
displayed.

Regarding the DEM results, we can observe that despite
some ConvNets managing to generalize knowledge, many
others did not perform as well as with DISFA+; this could
be attributed to the data available for training and validation
before testing. Even though data augmentation was applied,
and transfer learning with fine-tuning was performed, it is
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FIGURE 10. Confusion matrix of ShuffleNetV2 trained with DEM.

interesting to note that modern networks like NASNetMobile
did not generalize features well, a problem that ShuffleNetV2
could address, along with an older ConvNet like VGG19.

1) VISUAL STUDY FOR DEM
Repeating the procedure with DEM, we first used
the Grad-CAM and Grad-CAM++ algorithms for the
best-evaluated models (VGG19 and ShuffleNetV2) with
images from the datasets. These results can be observed
in Figure 11, where we can appreciate how in the case of

TABLE 8. F1 score per class in DEM trained models.

FIGURE 11. Grad-CAM++ and Grad-CAM using a DEM image on VGG19
and ShuffleNetV2 trained with DEM.

ShuffleNetV2 (Figures 11b-11d), AU4 does turn out to be
the selected area by the ConvNet. However, in the case of
VGG19 in Figure 11c, we observe that this Network does not
use the AU4 region for it is prediction when in Figure 11d,
we notice that while highlighting areas that do not belong to
AU4, mainly considers the region of AU4.

On the other hand, using an image that does not belong
to DISFA+, the results can be seen in Figure 12. In this
figure, the AUs are part of the highlighted areas in both
CAM algorithms. However, let us look at Figure 12a; we can
observe AU25 in it. In the case of VGG19, it also captured
parts that do not correspond to AU25 using the GradCAM++
algorithm. While using the GradCAM algorithm, this is
correctly differentiated. In the case of ShuffleNetV2, we can
observe that the ConvNets are more general than VGG19,
considering that they cover much larger areas. However, there
is still a distinction between those selecting AU4 and those
selecting AU25.
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FIGURE 12. Grad-CAM++ and Grad-CAM using a external image on
VGG19 and ShuffleNetV2 trained with DEM.

TABLE 9. F1 score comparison of our best models against the state of the
art.

C. STATE OF THE ART COMPARISION
Table 9 compares the metrics of our best models for both
datasets.

This study includes state-of-the-art works that used DISFA
or DISFA+. Although, in some cases, the authors do not
report F1 values for specific AUs, all the considered works
were conducted under similar conditions, making it feasible
to establish a comparison. It is essential to highlight that we
only included articles that considered the presence of the AU
when its intensity is equal to or greater than two.

In this comparison, we only report our two best F1 score
results. The ‘‘DISFA+ Ours’’ column was obtained with
ShuffleNetV2, with an average value of 0.94%, and the
‘‘DEM Ours’’ column with VGG19, with an average value
of 0.82%.

IV. DISCUSSION AND CONCLUSION
Despite being a classical ConvNet, the results of this work
show that VGG19 remains a very efficient architecture for
solving complex Computer Vision problems, in this case,
the detection of AUs in the human face. When studying
state-of-the-art works, we encountered the AU intensity label;
however, for AU detection, we found that this value is not
essential for the classification task. Binarizing the problem
yielded suitable F1 values.

Regarding the datasets, while it is true that in Table 9
DISFA+ achieves higher F1 scores, this can be explained
by the quantity and quality of the data. DISFA+ surpasses
DISFA in the quality of captured images, not only in
resolution but also in the equipment used and the scenario
in which the photographs were taken (with better lighting
conditions in DISFA+, for example).

While with DEM, we can observe that although its
mean F1 value is lower than that obtained using DISFA+

in the experiments conducted, it is essential to consider
that DISFA+ has only nine individuals. In contrast, DEM
has 246 participants, which, because of the number of
participants, adds more variability to the problem, and the
distribution of characteristics changes significantly, so that
for work that seeks to study these changes in the way
individuals express the same AU it may be more valuable to
have more test subjects. In addition, having such a diverse set
of individuals in DEM enriches the dataset and, at the same
time, makes it more challenging to model.

That said, we can affirm that DEM is a valuable dataset
for detecting Action Units in human faces, in addition to
providing labels on emotions, which may result in more
complex work on the study of AUs and emotions alike, since
as is known, a set of AUs can visually express an emotion on
the face.

Using pre-trained ConvNets for transfer learning followed
by fine-tuning was highly beneficial, as it reduced training
time while achieving satisfactory F1 values for all the AUs
to be classified; this is because pre-trained models have
weights tuned for similar classification tasks, providing a
good starting point for the specific classification problem
addressed in this work.

Another exciting aspect is that we observed that models
with few adjustable parameters, approximately 5 million,
such as ShuffleNetV2, achieved similar or even better results
in terms of F1 compared to VGG19, which has over
130 million parameters.

The use of gradient visualization techniques, Grad-CAM
and Grad-CAM++, proved to be highly beneficial for
examining the disparities in the selected features between
ShuffleNetV2 and VGG19 (the two models that achieved the
best F1 scores). This includes the features considered by both
models for AU prediction, even in some cases taking into
account features that do not necessarily represent a true AU.
For example, selecting features from upper regions (part of
the eyes and forehead) and lower regions (such as the chin and
mouth) to represent a single AU. However, in general, these
techniques demonstrated that the AUs are well-represented
in the majority of cases. However, we find examples such
as those presented in Figures 7a and 7c where substantial
differences are evident when Grad-CAM++ is employed.
Although it is clear that the model selects features that
visually correspond to AUs and are correctly labeled in the
image, there are cases where the features taken into account
have a larger area than a typical AU. Another analogous case
is observed in Figure 8a compared to Figure 8b, where a
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discrepancy in the features considered by both visualization
methods is apparent. Another similar scenario involves DEM
in Figure 12a, where, using Grad-CAM++, certain features
of the mouth are included that were not considered when
using only Grad-CAM. The model incorporating features
beyond those expected for predicting an outcome is standard.
For AUs, the original DISFA+ article said that the appearance
of one action unit may be linked to another simultaneously,
which, according to our experiments, may cause a ConvNet
to predict one AU based on the appearance of another.

When comparing results, we can observe that the Shuf-
fleNetV2 model generalized the AUs better with DISFA+

than with DEM; this may be due to the number of images
each data set has, DISFA+ being the largest. So, the more
examples a model has to train, the better its generalization
performance will be for this specific model. Since we did not
use a pre-trained ShuffleNetV2 model, the number of images
played an essential role during training, and the results were
better with the more extensive data set.

On the other hand, we have the case of the VGG19
model, which generalized the AUs better with DEM thanwith
DISFA+. In this case, we used a pre-trained VGG19 model
for these experiments. However, the number of images is
essential; their variability is more important, with DEM being
the data set with the most significant amount of variability,
which benefited the model to generalize better by having bet-
ter (and more diversified) examples of the same case (AUs).

In this sense, the choice of architecture will depend entirely
on what data and how much data is available. The deeper
a network is, the more data it will need to generalize
knowledge, but it will do better, which is why training a
model from scratch is ideal if there is a large and coarse
data set. On the other hand, if only have a small or medium
data set, it is better to opt for pre-trained models (as in this
example, VGG19), which will use the previously adjusted
parameters to now generalize the new characteristics, being
influential in both cases the variability of the data presented
during the training phase. This work can be valuable in
various scientific areas where the AUs can play a significant
role. For example, the manual implementation of the FACS
(without the use of machine learning) has been studied
in clinical settings to detect pain in older adults with and
without Alzheimer’s disease [39]. In this experiment, the
authors used 27 individuals diagnosed with Alzheimer’s and
36 volunteers without cognitive issues. Considering a pain
threshold obtained through the multiple random staircase
technique, the participants’ electric and mechanical stimuli
were applied to record their facial reactions at each pain
threshold. Subsequently, a FACS expert classified these
reactions. The authors concluded that FACS can detect pain
in individuals who cannot report their sensations. In such
experiments, deep learning techniques like these would assist
an expert.

Another work that already utilizes machine learning
techniques, such as Random Forest, is found in [40]. In this
study, the authors aimed to design an automatic AU classifier

to detect stress in individuals through facial videos recorded.
At the same time, people type or rest in front of a computer.
The results of this work showed an effectiveness of 74%
in subject-independent classification, reinforcing the theory
that the proper use of deep learning techniques can improve
even the results obtained byworks applying classical machine
learning classifiers.

The use of Deep Learning is functional for AU classifi-
cation, and in turn, the use of AUs is valuable in different
areas of knowledge, such as medicine. The next step in this
work is to investigate AUs within the context of human
emotions. Leveraging the existence of the DEM dataset, this
could be useful for implementing emotion classifiers based
solely on AUs. However, there is still a broad path to explore,
where, in addition to implementing more modern ConvNet
architectures, we can consider the actual intensities of each
AU to add variables such as the sequence of occurrence.
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