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ABSTRACT Mobility is essential for all of us, and the daily routine of the majority is impacted by
vehicular transportation. Thus, the ability to predict traffic flow is a challenging task in the field of
intelligent transportation systems. However, achieving precise predictions of the state of traffic is a complex
undertaking, there are two challenges: 1) Existing studies do not explicitly account for the causal influence
of the ‘‘trigger effect’’ from contextual conditions on spatial dependencies. 2) Prior methods ignore the
fact that there is a time delay in the spread of information in large-scale regions. To address these
limitations, we present a novel Graph Structural Causality Spread Delay-aware Model (i.e., GSCSDM) for
accurate traffic flow prediction. First, we develop a contextual causality graph that learns the spatial graph
structure under the ‘‘triggering effect’’. Second, we present a spread time-delay module that captures the
information spread delaying triggered by contextual conditions in global regions. Furthermore, we construct
a multi-graph fusion matrix to extract spatial correlation from diverse perspectives, which enhances the
understanding of regions’ state interaction. Experiments on two real datasets demonstrate that GSCSDM
significantly outperforms the state-of-the-art methods. Since the ‘‘trigger effect’’ widely exists in practical
datasets, the proposed framework may also cast light on other spatial-temporal applications.

INDEX TERMS Causality graph, contextual conditions, multi-graph convolution, spread time-delay.

I. INTRODUCTION
Traffic flow prediction is vital for smart city initiatives
and spatio-temporal data mining. The field of traffic flow
prediction has been extensively studied for many years,
dating back to the 1930s, and has been extensively studied
and practiced with successful results. This involves predict-
ing future traffic volume based on past observations [1],
[2], [3]. This functionality powers a variety of services
related to road management, city planning, public safety,
vehicle dispatching, and congestion relief [4]. Accurate
traffic forecasting, as a fundamental element of intelligent
transportation systems, has garnered growing attention for its
timely delivery. Besides, it is also crucial for dynamic traffic
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management, as it enables recommending time-saving routes
for drivers. However, traffic prediction is challenging due to
the presence of complex spatio-temporal relationships influ-
enced by contextual events (e.g., traffic accidents andweather
conditions). Indeed, prediction complexity arises from the
varying traffic patterns that stem from responses to real-time
contextual conditions. As a result, analyzing external events
can assist cities in handling traffic more effectively.

Traffic prediction methods relied on statistics [5] and
machine learning [6] in the past. The former commonly adopt
statistical theory for user behavior simulation in traffic, such
as Auto-regressive Integrated Moving Average (ARIMA)
and Kalman filtering. ARIMA [7] depends on assumptions
related to weak stationarity and then fits historical data to
forecast future points. The Kalman filter method [8] adopts
the previously estimated state and the current state to obtain
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the optimal prediction. However, these approaches are inef-
fective in capturing the non-linearity feature in each traffic
flow, as they often depend on assumptions related to weak
stationarity. Regarding the latter, many early studies rely
heavily on feature engineering, such as K Nearest Neighbors
(KNN) and Support Vector Regression (SVR). KNN [9]
matches the current valuewith theK-nearest neighbors to pre-
dict the next state. SVR [10] minimizes the prediction error
by bringing sample sets close to the hyperplane. However,
they do not model the complex spatio-temporal correlations
in traffic networks, significantly reducing the accuracy of
prediction.

Recently, deep learning has demonstrated powerful higher-
order feature learning capabilities in areas such as computer
vision and natural language, so it is also widely used in traffic
flow prediction. These methods are mainly relied on Convo-
lutional Neural Networks (CNN), they capture static spatial
relationships based on Euclidean distances by dividing the
road network into regular grids. It can encode graph structure
into a lower-dimensional space to capture latent features.
For example, Traffic Flow Forecasting Network (TFFNet)
[11] adopts deep convolutional networks for capturing hier-
archical spatial structure across different depths from local
to global regions. Reference [12] enhances the associative
memory of features in recurrent neural networks, thereby
improving the accuracy of predictions. Recurrent Neural Net-
work Long-term Forecasting (RNN-LF) [13] utilizes various
data sources to forecast long-term traffic flow data. This
framework is built upon a recurrent neural network with input
incorporating external factors such as weather and accidents.
Nevertheless, CNN cannot accurately reflect spatial correla-
tions with complex non-Euclidean graph structures based on
regular grids.

In the field of spatial-temporal relationshipmodeling, there
has been increased attention on Graph Neural Networks
(GNNs) [14], [15], [16], [17], especially Graph Convolu-
tion Network (GCN) [18], [19], [20], [21]. Prior Knowl-
edge Enhanced Time-varying Graph Convolution Network
(PKET-GCN) [22] extracts dynamic and static spatial fea-
tures between nodes by characterizing external and internal
factors affecting them. Attention based Spatial-temporal
Graph Convolutional Networks (ASTGCN) [23] proposes
a novel spatio-temporal graph convolutional network to
capture complex dynamic spatio-temporal relationships and
patterns to represent the temporal features. Attention-based
Spatial–temporal Adaptive Dual-graph Convolutional Net-
work (ASTA-DGCN) [24] constructs a dual-graph convo-
lution and a sequential convolution to capture the dynamic
spatio-temporal patterns between different locations based on
latent temporal correlation and hidden weights. Deep Hybrid
Spatio-temporal Dynamic Neural Network (DHSTNet) [25]
applies different weights to each branch and combines the
results of the four features for predicting traffic crowd flows.
In other words, GNNs have the ability to not just represent
graph structures but also retain the features of individual
nodes.

Despite most of these GNNsmethods focusing on dynamic
graphs with structures evolved in time, these methods have
at least two disadvantages in predicting traffic flow: 1)
The ability to model complex nonlinear causality in spatial
correlation is inadequate. As shown in Figure 1(a), when
influenced by the same external factors, people tend to choose
the same traffic patterns. This results in a strong spatial-
temporal dependence of traffic flows in different locations.
However, traditional traffic flow prediction methods usually
simply integrate data and contextual conditions into the
model as inter-factors but ignore causality between them [26],
[27]. More information entanglement may result in capturing
spurious spatial correlations. 2) The graph structure that is
influenced by contextual conditions exhibits the effect of
information-passing time-delay. As shown in Figure 1(b),
nodes A and B are not necessarily adjacent nodes and may
experience a delay effect on traffic patterns of several minutes
when an external factor happens in one place. This delay
effect is ignored by the existing methods based on the instant
information-passing mechanism [28], [29]. More precisely,
a contextual condition intervenes in the transmission of
spatial information between nodes at t0, causing the one
node’s tendency to link with other nodes to evolve to become
higher or lower from t1 to t2. In other words, we need
to further analyze the ‘‘triggering effect’’ from contextual
conditions on dynamic graph structure.

To tackle the aforementioned gaps, we present an inno-
vative approach known as the Graph Structural Causality
Spread Delay-aware Model (GSCSDM) for traffic flow
prediction. To be specific, we develop a contextual causality
graph to capture the underlying causality from contextual
conditions. We further integrate multi-hop nodes’ historical
traffic patterns into memory items to explicitly model the
time-delay of spatial information passing in global regions.
In addition, we adopt the multi-graph convolution to reflect
the spatial relationship from diverse perspectives.

We summarize our contributions as follows:
• We propose a new network model, called GSCSDM,
to efficiently detect causality and information-passing
delaying from contextual conditions on the spatial
correlation for traffic flow prediction. This enables more
precise modeling of the context conditions of traffic data
to improve prediction accuracy.

• We develop a novel contextual causality graph (CCG)
to capture latent spatial relationships by encoding
the ‘‘trigger effect’’. To the best of our knowledge,
our work is the first one that successfully applies
the contextual causality-based module to traffic flow
prediction.

• We present a spread time-delay module to extract the
information-passing delaying triggered from contextual
conditions by traffic pattern matching. This module
enhances the feature’s understanding in global regions,
thereby improving the prediction performance.

• We construct a multi-graph fusion matrix to extract
spatial correlation from diverse perspectives, which
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FIGURE 1. The findings about traffic prediction.

improves the comprehension of regions’ state interaction
from static and dynamic graph structure.

• Our proposed algorithm has been extensively tested
on real road traffic data sets. The results show that it
outperforms several baseline methods, including state-
of-the-art algorithms.

II. RELATED WORK
A. TRAFFIC FLOW PREDICTION
Recent studies have utilized a GCN to train node representa-
tions that extract spatial relations for traffic prediction. Dif-
fusion Convolutional Recurrent Neural Network (DCRNN)
[30] is a deep learning model that integrates spatio-temporal
dependencies in traffic flow prediction. Graph Sample and
Aggregate (GraphSAGE) [31] uses neighbor sampling and
aggregation to process nodes and enable graph convolution
networks to operate on large-scale graphs. Attention based
Spatial-temporal Graph Convolutional Network (ASTGCN)
[32] tackles traffic prediction issues through modeling
dynamic spatio-temporal correlation. Adaptive Graph Con-
volutional Recurrent Network (AGCRN) [33] employs node-
level convolution filters according to the node embedding.
Coupled Layer-wise Graph Convolution for Transportation
Demand Prediction (CCRNN) [34] learns dynamic neighbor
correlation by a hierarchical coupling mechanism. Dynamic
Graph Convolutional Recurrent Network (DGCRN) [35]
handles dynamic graph structure by learning matrices at
each recursive step. However, these works only focus on
spatial graph structures in temporal continuous scenarios but
overlook the contextual conditions, resulting in very limited
effects of graph structure. Attention-Based Spatio-Temporal
Graph Convolutional Network Considering External Factors

(ABSTGCN-EF) [36] models the traffic flow as diffusion on
a digraph and extracts the spatial characteristics of traffic flow
through GCN. Spatio-temporal Attention Point Processes
(APP) [37] proposes a novel model that utilizes attention and
point processes to capture exogenous and endogenous factors
for traffic congestion prediction. Integrated Spatio-temporal
Graph Convolutional Network (ISTGCN) [38] incorporates
elements such as weather conditions, traffic accidents, and
special events to capture traffic dynamics. These studies only
integrated contextual conditions with spatial-temporal graph
structure but ignore causality between them.

B. GRAPH STRUCTURE LEARNING
Although, GCN has been widely used for graph structure
learning in traffic flow prediction, there are still two
problems. Graph Attention Temporal Convolutional Network
(GATCN) [39] has captured only the temporal depen-
dency within the road network through variants of Graph
Attention Networks (GAT) and Long-Short Term Memory
(LSTM). Dynamic Graph Convolutional Recurrent Network
(DGCRN) only utilizes a pre-defined adjacency matrix to
represent the information transfer process for dynamic node
states. In addition, methods such as Spatio-temporal Graph
Convolutional Networks (STGCN) [40] and Multi-graph
Convolutional Neural Network (MGCNN) [41] that also
represent the spatial relationship between roads using a
static adjacency matrix fail to capture the dynamic changes
in spatial dependency. Although these models have proven
effective in certain traffic prediction scenarios, they ignore the
dynamic spatial graph structure. Dynamic Spatial-Temporal
Aware Graph Neural Network (DSTAGNN) [42] captures the
dynamic spatial correlation between nodes based on their
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past traffic flow data directly. Transformer-enhanced Spatial
Temporal Graph Neural Network (DetectorNet) [43] focuses
on learning dynamic spatial structure to improve the process
based on the diffusion GCN for traffic prediction. In addition,
Spatio-Temporal Graph Neural Network (STGNN) [44] pro-
poses a position attention mechanism to gather information
from nearby nodes and use it to create a dynamic graph
structure. However, the spatial correlation may be affected at
some specific time by diverse perspectives, so the effect of
time-delay might occur in the spatial information-passing.

III. PRELIMINARIES
A. TASK DEFINITION
This paper is to forecast future traffic flow by utilizing past
samples. We denote the road network as a graph G =

(V ,E,A), where V represents a set of N nodes, E denotes
the set of edges, and A ∈ RN×N is a weighted adjacency
matrix. GSCSDM learns the temporal correlation of each
node individually while preserving the data continuity. The
final predict result X̃ as follows:

X̃ =

x̃1t+1, x̃
2
t+1, . . . , x̃

N
t+1

. . .

x̃1t+τ , x̃
2
t+τ , . . . , x̃

N
t+τ

 (1)

where x̃ represents the output of N nodes at the time step
[t+1, . . . , t+τ ], where τ is the forecast horizon. In particular,
we uses T as a time window to forecast the observations
of horizons τ minutes ahead. It means that the input of
GSCSDM is the time window [t − T + 1, t − T , . . . , t], and
the output is the series [t + 1, . . . , t + τ ]. The time series of
N nodes make up each time step. GSCSDM learns the spatial
correlation on different time windows of each node during the
prediction process, then combines the outputs of all nodes to
produce the final results. The time series of N nodes make up
each time step.

IV. METHODOLOGY
Our proposed GSCSDM can model graph structure subject
to ‘‘trigger effect’’ from contextual conditions causality with
time-delay effects. Contextual causality graph promote useful
latent representations and suppress useless representations
under the contextual conditions. Spread time-delay module
captures the effect of information-passing with time-delay
on spatial correlation. We provide a detailed introduction to
the causality and time-delay mechanisms in this section. The
overall framework of model is depicted in Figure 2.

A. CONTEXTUAL CAUSALITY GRAPH
In addition to interacting with each other, features of
locations with polymorphic state are affected by time-
varying contextual conditions in traffic flow network,
so spatial dependencies must take contextual conditions
and causality into account. Our purpose is to focus on
causality induced from time-varying contextual conditions.
Thus, as shown in Figure 2, we build a contextual causality
graph that closely tightly links contextual conditions with

spatial correlation. We generate a corresponding contextual
heterogeneous sequence from input data X T×N×D based
on various contextual conditions. X is generated from
the historical traffic flow states. T is the length of time
window, N is the number of nodes and D is the hidden
dimension. From these series, we can easily calculate
the corresponding hidden representations, named contextual
causality representations(CCR), which is defined as:{

ts = [ti, ti+1, . . . , ti+s], ||Le ts < T
Is = FCL(||NPAD(X (||Le ts, n, :)))

(2)

where Is ∈ RT×N×d , ||
Le denotes the concentrate operation

for the heterogeneous sequences based on contextual data
(e.g., meteorological conditions), which influences traffic
flow regularities. ts is the number of time slots occupied
by one contextual condition. Note that, for different nodes
n, the lengths of heterogeneous sequences ts are different,
thus we need to adopt the zero-padding operation to ensure
that the sequences are equal time window length T . ||

N

denotes the concentration for the latent representations on
different nodes. Is is used to learn the contextual influence-
aware vectored representation of each node. According to
the influence of contextual conditions on different nodes,
it has the ability to enhance important features and reduce
the influence of features that are not relevant to the current
task. This allows each node to have unique expression, which
is helpful for subsequent graph structure calculation.

We apply Gating Mechanisms (GM) to capture the
important-aware temporal trend of each process. This allows
each process to make distinctive representations, which is
beneficial for subsequent similarity calculations. At each time
step, the Xt and previous time step Ht−1 are concatenated as
the input of gated linear unit:

qe = tanh(ψ1(Xt ||Ht−1)T + a)⊙

σ (ψ2(Xt ||Ht−1)T + b) ∈ RN×d (3)

⊙ denotes the element-wise product, a and b denote
parameters of convolution, ψ1 and ψ2 denote the dilated
causal convolution (DCC). Is is used to generate the dynamic
latent representation of each node as causal weighted.

Et = Is(t, :, :) ⊙ qe ∈ RN×d (4)

where Et is used as input feature for next equation.

B. SPREAD TIME-DELAY
The use of traffic flow forecasting is often time-sensitive and
can be affected by contextual conditions like weather and
accidents [45]. Traffic patterns in the real-life transportation
network typically spread under ‘‘trigger effect’’, and time
of propagation to reach the adjacent locations is modeled
as time-varying delays. Furthermore, traffic patterns (such
as congestion) at a certain location spread along the road
(line) on the network, ultimately evolving into regional
time-delay propagation [46]. In other words, time-varying
delay refers to the inclusion of neighbors’ previous state
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FIGURE 2. Framework of graph structural causality spread delay-aware model (GSCSDM).

information and also tends to diffuse to non-adjacent
locations. Hence, we capture the global information-passing
delaying triggered by contextual conditions based on pattern
matching mechanism.

First, the global dependencies representation St ∈ RN×d ′

is generated by Transformer layer as:

QSt = Et::W S
Q,K

S
t = Et::W S

K ,V
S
t = Et::W S

V (5)

St = softmax(
(QSt )(K

S
t )

⊤

√
D

)V S
t (6)

where W S
Q,W

S
K and W S

V ∈ Rd×d ′

are learnable parameters
and d ′ is the dimension of the query, key, and value matrix
in this work. Next, latent traffic patterns representation from
the historical information of all nodes embedding St by u-
shapelets [47]. This method utilizes the differences of local
features among different time series for clustering, and its
results are more accurate. Each cluster is represented by
its centroid cm, which is a slice data of length L. Then,
C = {cm|m ∈ [1, . . . ,K ]} ∈ RK×L represents the
centroid set as representation of different traffic patterns,
whereK is the total number of centroid. Here, we are inspired
by memory networks that memorizes common features in
similar traffic pattern [48]. Notably, we generate memory
items with global context from St , which allows the attention

score to effectively reflect traffic pattern similarity between
nodes within long-range regions directly, rather than only in
neighboring regions.We thereby leverage the idea of memory
networks to match the feature with patterns and build a
memory pattern matching (MPM), where we set pT ∈ RK×d̈

as memory item, K and d̈ denote the number of items and
dimension of each item in the memory, respectively. Finally,
we additionally specify the following as the primary purposes
of MPM: 

q(i)t = FCL(h(i)t )
pTm = FCL(cm)

α(i)m = softmax(q(i)t × pm)

M (i)
t =

K∑
m=1

α(i)m × pm

(7)

where we use superscript (i) as row index. For instance,
h(i)t ∈ R1×d

′

represents i-th node vector in St ∈ RN×d ′

.
We directly use the fully connect layer (FCL) to transform
the final hidden state h(i)t to the query q(i)t ∈ R1×ḋ and
traffic pattern cm to the memory pTm ∈ R1×d̈ . α(i)m is a global
attention score that is obtained by matching the q(i)t with
the multi-hop pTm. Afterwards, augmenting representation is
performed followed by concatenation of ht and Mt to obtain
the representation Zt = [ht ,Mt ] ∈ RN×(ḋ+d̈) that is used as
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input feature for next equation. Finally, we follow the idea of
self-interaction to make the inter-similarity learn randomness
and injected dynamic causality into the graph structure:

Act = ReLU (φ(
ZtZT

t√
ḋ + d̈

)) ∈ RN×N (8)

where φ denotes the learnable weighted parameters.

C. MULTI-GRAPH CONVOLUTION
Graph structure is influenced by node distance and feature
similarity in addition to contextual conditions and causal-
ity [49]. Therefore, we propose a multi-graph convolution
network (MGCN) to combine a nodes connection graph,
a similarity graph, and an dynamic graph. This network takes
into account both static and dynamic relationships between
nodes.

The predefined graph structure also shows the hidden
potential inter-node dependence from other perspectives. For
predefined graph structure, we construct the geographical
similarity graph Ageo based on Euclidean distance and the
temporal feature similarity graph Adtw based on time-series
shape. Their respective weighted adjacency matrices as
follow:

Ageoi,j =

 exp(−
d2i,j
σ 2 )), i ̸= j and exp(−

d2i,j
σ 2 )) ⩽ ϵ

0, otherwise
(9)

where ϵ is a threshold. Ageo is base on Tobler’s first law of
geography, roads in close to each other, are likely to share
similar usage patterns.

Adtwi,j =

{
1, exp(−DTW (i, j)) > ρ

0, otherwise
(10)

where ρ is a threshold. Adtw is based on the Dynamic
TimeWarping (DTW) [51] algorithm can effectively measure
similarity of traffic flow.

The MGCN can be defined as follows:

A′
t =

1
2
(ReLu(At ) + ReLu(ATt )) ∈ RN×N

Lt =
1
2
D

−
1
2

t (Dt − A′
t )D

−
1
2

t ∈ RN×N

X n
t = ψ1L

geo
t X n−1

t + ψ2Ldtwt X n−1
t +

ψ3Lct X n−1
t ∈ RN×Ḋ

X out
t = σ (X⋆G2) = σ (Linear(X n

t )) ∈ RN×C

(11)

where A′
t ensures symmetry of the original ATt , Dt is degree

matrix ofA′
t , L

geo, Ldtw and Lc denotes symmetric normalized
Laplacian, ψ1, ψ2, and ψ3 are trainable parameters that
measure the contribution levels of different graphs, n
represents the convolutional depth.

We input the results of multi-graph convolution into the
spatio-temporal graph convolutional operation and recurrent
unit (RU) to denote STGCRU as a basic encoder-decoder unit

for prediction:
ut = σ ([X̂t , Ĥt−1]Wu + bu)
rt = σ ([X̂t , Ĥt−1]Wr + br )
Ct = tanh([rt ⊙ Ĥt−1, X̂t ]Wc + bc)
Ĥt = ut ⊙ Ct + (1 − ut ) ⊙ Ĥt−1

(12)

X̂t is the input vector time t , and Ĥt−1 is the hidden state
at time t − 1. W denotes graph convolution operation, ⊙ is
the element-wise multiplication and σ denotes the nonlinear
activation function.

D. TRAINING LOSS
As a supervisory model, to improve its ability to distinguish
between different traffic patterns on various nodes, we adjust
the memory parameters using two constraints. We integrate
the three loss functions: feature loss, contrast loss and
consistency loss to train our model [50]:

argmin(L) = argmin(Lfea + k1Lcont + k2Lcons) (13)

E. FEATURE LOSS
By penalizing the variations in intensity, the feature loss helps
the decoder to recreate the traffic flow in a way that is more
similar to its original state. Here, RMSE can reflect the error
between the decoder output X̃ and the ground truth X :

Lfea =

√√√√ 1
N

N∑
i=1

(X̃ i − X i)2 (14)

where n is the number of samples. For all metrics, a lower
value denotes better performance.

F. CONTRAST LOSS
By promoting queries to be closer to the nearest memory item,
the feature contrast loss reduces differences within the same
class. It calculates the differences between them using the L2
norm and applies penalties:

Lcont =

T∑
t

N∑
i

∥qit − pj∥ (15)

where j represents the index of the closest item to the query
qit . As demonstrated in our experimental results, the act of
solely training our model via the compactness loss feature
typically results in homogenized items and condensed queries
within the embedding space. This, however, results in a loss
of capacity to capture diverse normal patterns.

G. CONSISTENCY LOSS
All items exhibit a high degree of similarity. It should be
noted, however, that the items within the memory require
sufficient separation from each other to effectively account
for multiple normal data patterns. Thus, feature separateness
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loss is denoted as:

Lcons =

T∑
t

N∑
i

[∥qit − pj∥ − ∥qit − pe∥ + α] (16)

where the query qit is established as the query, alongside its
closest item pj and secondary nearest item pe, which serve as
anchoring points for the positive and hard negative samples,
respectively.

V. EXPERIMENTS
In this section, we perform extensive experiments on
two public datasets and assess our framework in relation
to downstream prediction tasks. The results indicate that
GSCSDM surpasses state-of-the-art models by a significant
margin.

A. DATASETS
We used two datasets: METR-LA and PEMS-BAY, which
contain the traffic speed data from 207 sensors in LosAngeles
ranging from 1-3-2012 to 30-6-2012 and 325 sensors in
Bay Area ranging from 1-1-2017 to 31-5-2017 respectively.
Meteorological data comes from the NCEI website (National
Centers for Environmental Information). Table 1 shows the
details of the two datasets. Nodes data was collected and
combined in 5 minutes intervals. We use a sliding window
strategy to generate samples, and then split each data set into
the training, validation, and test sets with a ratio of 7:1:2
follow the tradition.

B. PARAMETER SETTINGS
For the two datasets, we used the first 12 time steps to
predict the next 12 time steps. The Adam optimizer was
employed with a learning rate of 0.01 and a batch size of
64 in the present study. The optimizer was subject to early
stopping if the validation error converged terminated after
100 epochs. The evaluation of the model performance was
based on the three metrics: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), andMean Absolute Percentage
Error (MAPE). All experiments are implemented in Python
3.10 software with twoNVIDIAGeForce RTX 3080 graphics
cards.

C. BASELINES
In the experiments, we compare our method with ten state
of-the-art methods:

• HA [7]: HA considers traffic flow as a seasonal pattern
and forecasts future flow based on the average of past
seasons.

• FC-LSTM [52]: Sequence To Sequence Learning With
Neural Networks (FC-LSTM) is a large deep LSTM,
which belong to a special kind of RNN models.

• STGCN [40]: STGCN employs graph convolution and
gated causal convolution instead of LSTM or GRU.

• AGCRN [33]: AGCRN uses adaptive modules to
augment graph convolution and integrate them into
RNN.

• DCRNN [30]: DCRNNcaptures spatio-temporal depen-
dence through bi-directional randomwalks and encoder-
decoder.

• ST-LGSL [53]: Spatio-Temporal Latent Graph Struc-
ture Learning (ST-LGSL) is trained on the entire dataset,
using graph nodes with time-aware features.

• Graph WaveNet [54]: Graph WaveNet proposed wave
network, which incorporated an dynamic adjacency
matrix into convolution layers.

• MTGNN [55]: Multivariate Time Series Forecasting
with Graph Neural Networks (MTGNN) introduces
a unique combination of mix-hop spread and dilated
inception layers to capture self-adaptive spatio-temporal
dependence.

• GMAN [56]: Graph Multi-Attention Network (GMAN)
uses an Encoder-decoder architecture, which consists of
multiple attention mechanisms.

• SLC [57]: Spatio-Temporal Graph Structure Learning
(SLC) expands the capabilities of a traditional CNN to
learn structure of network with graphs.

D. COMPARISON WITH BASELINES
Table 2 displays the prediction accuracy of various models
on two datasets at different time intervals (15 minutes,
30 minutes and 60 minutes) and in general. GSCSDM
exhibits superior performance in long-term prediction.

The conventional machine learning approach, HA, is prone
to inadequate prediction performance owing to its deficient
nonlinear representation capability. In contrast, deep learning
strategies exhibit impressive nonlinear representation poten-
tial. Within the purview of deep learning methodologies,
FC-LSTM, despite its temporal correlation handling ability,
exhibits deficient predictive efficiency due to its exclusion
of spatial correlations. STGCN, AGCRN, DCRNN, ST-
LGSL, DetectorNet, Graph WaveNet, MTGNN, and GMAN
enhanced prediction accuracy by incorporating spatio-
temporal dependency. The more recent model SLCNN has
a better performance in a baseline approach. At training time,
our model continuously optimizes and tends to converge
during training.

Based on our observations, our proposed framework
GSCSDM has generally outperformed the other models on
two datasets in 12 horizons. This highlights the superiority
of our approach. The reason is that STGCN, AGCRN,
DCRNN, and MTGNN only used a static adjacency matrix.
DetectorNet, GMAN, Graph WaveNet, and SLCNN utilized
both dynamic and static adjacency matrix, but they are
all based on simple tensor multiplication or attention
mechanism. In addition, all of these methods ignored the
impact of contextual conditions. At training time, our model
continuously optimizes and tends to converge during training.
The possible reason is that METR-LA and PEMS-BAY
are relatively small-scale datasets, and the strong feature
similarity is captured by GSCSDM. The only shortcoming
is that our model is only slightly weaker in horizon 12 than
SLCNN onMETR-LA. The possible reason is that our model
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TABLE 1. Details of two datasets.

TABLE 2. The prediction performance of different model on the METR-LA and PEMS-BAY dataset.

separately learns spatio-temporal features, while SLCNN can
learn both simultaneously. In addition, Figure 3 shows the
predicted results for the 15 minutes more detail.

Our proposed memory-augment mechanism can better
detect conditions causality with time-delay with significantly
improved prediction performance. From the predicted results,
it can be seen that GSCSDM responds more quickly and
accurately to dynamic changes in peak traffic.

E. ABLATION STUDY
In this section, we will demonstrate the effectiveness of the
fusion by presenting three variant models. We conducted
ablation experiments with these models on METR-LA.

• CCG w/o CCR: It removes the contextual causality
representations from contextual causality graph.

• CCG w/o GM: It removes the gated linear unit from
contextual causality graph.

• CCGw/ DCC: It replaces the element-wise product with
concatenation in (4).

• PTR w/o MPM: It removes the memory pattern match-
ing from spread time-delay.

• MGC w/o Lc: It removes the dynamic causality graph
Lc.

• MGC w/o Lgeo: It removes the geographical similarity
graph Lgeo.

TABLE 3. Comparison with variants of GSCSDM on METR-LA.

• MGC w/o Ldtw: It removes the feature similarity
graph Ldtw.

As shown in Table 3, it shows that each module contributes
to the model. Blocking each module will reduce the perfor-
mance. The performance of CCG w/o CCR is the lowest,
which indicates that the causality of contextual conditions
cannot be ignored. Dynamic causal graphs Ac are more
important than the other two types of graphs in terms of their
contribution. The introduction of causal graphs can greatly
enhance performance as they capture implicit causality
that static feature graphs cannot. In addition, geographical
similarity graph and temporal similarity graph are also essen-
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FIGURE 3. Prediction result on two datasets.

tial. Dynamic causal graphs can work together with static
feature graphs to effectively model complex traffic networks.
As shown in Figure 4, we represented the change process of
the contribution coefficient ψ in the multi-graph convolution
during the training period. The dynamic graph Lc has
relatively large weights, whereas the two static graphs have
relatively small weights. For the information-passing delay,
Lc is crucial for modeling the similarity of traffic pattern into
the dynamic graph. As the model is trained, it captures the
dense local correlation and sparse long-range dependency,
which aligns with the similarity of global traffic patterns.
This illustrates that delivery time-delay and causality have a
significant effect on graph structure. In addition, the model
cannot ignore static graph structure and needs to extract
potential spatial dependencies from multi-view graphs.

The performance of CCG w/ DCC is relatively low. This
indicates that the integration methods are less effective in
capturing the effect of contextual conditions compared to
the causal method. The low performance of CCG w/o DCC
also suggests that contextual conditions have a significant
causal effect on predictive performance, and the model
captures this potential relationship well. If these conditions
are not taken into account, the model cannot effectively
handle the disturbances caused by them. Removing MPM
would significantly increase prediction loss.MPMeffectively
matches traffic patterns with data features to extract delay
effects triggered by contextual conditions.

F. COMPUTATIONAL COMPLEXITY
We further evaluate the computational costs for DCRNN,
STGCN, Graph WaveNet, and GMAN. All the experiments
are conducted on the same GPU. Table 4 reports the average
training speed for one epoch. STGCN is efficient with fully
convolutional structures. DCRNN is highly time-consuming

TABLE 4. The computation cost on the PEMS-BAY dataset.

due to the recurrent structures for training with joint loss for
multiple time steps. Graph WaveNet is low time-consuming
due to the stacked dilated 1D convolution component.
GMAN’s training time is proportional to the number of
multiple attention mechanisms. GSCSDM runs 3.1 times
faster than Graph WaveNet but 2.5 times slower than GMAN
in training. GSCSDM yields an approximate computational
cost in comparison toDCRNN. The 3D convolution operation
of SLCNN is time consuming. In addition, GSCSDM
demonstrates the highest efficiency at the inference stage,
except slightly weaker than STGCN. Note that GSCSDM
can be scales to achieve higher predictive performance
under contextual conditions without excessive computational
complexity, whereas the other models ignore the effect of
contextual conditions.

G. OPTIMIZER
We tested the performance of four common optimizers
(such as SGD, Adagrad, RMSProp, and Adam) during the
training process. Here, we set the maximum number of
epochs to 100, and when 35% epochs do not exceed the
previous best performance, we will stop the training process
early. SGD is hard to train and performs the validation loss
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FIGURE 4. The change process of the contribution coefficient ψ in the multi-graph convolution during
the training period of two datasets.

FIGURE 5. The absolute error of GSCSDM on METR-LA.

20.6166 due to its weight update direction not being correct.
In addition, SGD also fails to independently overcome the
problem of local optimum, resulting in worst performance.
The convergence performance of the other three optimizers
is similar on two datasets respectively. Specifically, the
overall validation loss based on Adam is 2.8225, Adagrad is
2.8838 and RMSprop is 2.8656 on METR-LA. Thus, the loss
functions obtained based on Adam, Adagrad, and RMSprop
have the optimal solution, while SGD carries the risk of local
optimal solution. Furthermore, in the case of large datasets,
the Adam optimizer has faster convergence speed and better
performance.

H. VISUALIZATION
Figure 5 and 6 depict the absolute errors of the GSCSDM
model on various prediction tasks for METR-LA and PEMS-

FIGURE 6. The absolute error of GSCSDM on PEMS-BAY.

BAY. The model exhibits favorable performance for short-
term prediction, effectively capturing the temporal trend.
However, due to the complexity and variability of real-
world traffic conditions, its effectiveness decreases as the
prediction range increases. Furthermore, we find that our
model predict the diffusion of traffic patternsmore accurately.
Our model also performs feature extraction in both the
temporal and spatial dimensions, and incorporates a multi-
graph mechanism to respond more quickly to dynamic
changes in traffic trends.

VI. CONCLUSION
We considered the ‘‘triggering effect’’ of contextual condi-
tions on traffic flow as a challenge to describe the prediction
problem. It shows that due to the integration approach, there
are spurious graph structure in spatial correlation extraction,
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failing in coping with ‘‘triggering effect’’ caused by the
contextual conditions. Thus, we proposed a method called
GSCSDM that decomposes ‘‘triggering effect’’ into causality
and time-delay. Among them, the contextual causality graph
is a basis for GSCSDM to enhance important features caused
by contextual conditions. It embeds the contextual influence-
aware vectored representation into the causal weighted,
which enables the model to capture the causality. Then,
we propose a memory pattern matching, which captures the
information-passing delaying based on pattern similarity. The
experimental results demonstrated that our GSCSDM over
various state-of-the-art prediction methods.

Discussion: In future works, there are some more interest-
ing issues can be further discussed,

• The effectiveness of GSCSDM further demonstrates
that it is not rational to learn spatial relationship
directly ignoring contextual conditions, which are key
factors for the graph structure evolving. In addition, the
trend of road state evolving is always continuous and
instantaneous under contextual conditions. Therefore,
how to effectively model these two dynamics of the road
simultaneously in order to extract the graph structure
features requires further exploration.

• GSCSDM effectively captures the spread time-delay
in the regional network by global attention mech-
anism. However, due to the over-smoothing phe-
nomenon between multi-hop nodes, how to mitigate
over-smoothing deserves further investigation in traffic
network.
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