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ABSTRACT The snow ablation optimization (SAO) is a new metaheuristic motivated by the melting and
sublimation properties of snow. In this work, the economic load dispatch (ELD) problem, one of the key
components of a power system, is solved using the SAO. There is one kind of ELD, that is focused on
minimizing fuel usage costs. Assessing the reliability of the SAO, its performance is compared against some
techniques. For the same case study, these techniques include the grey wolf optimization (GWO), the tunicate
swarm algorithm (TSA), the monarch butterfly optimization (MBO), and the rime-ice algorithm (RIME).
There are six cases used in this work: the first two cases are 6 generators at two loads 700 MW and 1000 MW
for the ELD problem. The second two cases are 10 generators at two loads 1000 MW and 2000 MW for
the ELD problem. The third two cases are 20 generators at two loads 2000 MW and 3000 MW for the
ELD problem. The methods were assessed across 30 different runs using metrics for the maximum, mean,
minimum objective function, and standard deviation. The primary component of ELD issues is the power
mismatch element. This factor’s optimal value must approach zero. The optimal power mismatch values
of 3.336E-13 and 1.57E-10 are obtained using the SAO method for six generator units at demand loads
of 1000 MW and 700 MW, respectively. The optimal power mismatch values of 6.83E-6 and 1.65E-7 are
obtained by the SAO method for ten generator units at demand loads of 1000 and 2000 MW, respectively. The
optimal power mismatch values of 1.82E-4 and 7.91E-5 are obtained using the SAO method for 20 generator
units at demand loads of 2000 and 3000 MW, respectively. The results produced for the six ELD case studies
show that the SAO surpasses all competing algorithms, proving its superiority.

INDEX TERMS Snow ablation optimization, economic load dispatch.

I. INTRODUCTION

The goal of economic load dispatch (ELD) in power systems
is to allocate power output from producing units as efficiently
as possible while satisfying operational requirements, pre-
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serving supply-demand balance [1], and determining the best
way to lower the power generation cost and minimize emis-
sions so that the problem of global warming is also reduced.
Coal is few, while demand for electrical power is rising [2].
It is significant to observe that the valve-point effects provide
a wavy pattern on the fuel consumption curve. As a result, the
economic load dispatch problem is a massive, very nonlinear,
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and restricted optimization problem. The unit output schedule
can be optimized to achieve significant cost savings. The
best output power from each producing unit must be reached
to lower overall fuel expenditures, as fuel prices are rising
every day. This may be done by using mathematical and
metaheuristic optimization approaches [3], [4], [5], [6], [7],
(81, [9].

The actual and reactive power of the electrical generat-
ing system was determined using the linear programming
methodology; however, such techniques have a significant
computation time and are occasionally unable to produce
a global solution for enormous data sets. To increase the
effectiveness of addressing the ELD issue, several optimiza-
tion techniques have been developed for this application or
another problem [10], [11], [12], [13]. The effects of valve
loading were taken into account, and the outline search tech-
nique was offered as a means to identify the optimum ELD
problem solution. To support the results, a variety of test data
were used to assess the approach, and it was compared to cur-
rent optimization methods [14]. Using a biogeography-based
optimization (BBO) technique, four separate ELD test sys-
tems, both large and small, with varying levels of complexity,
were subjected to this method [15]. By applying the modified
differential evolution technique to solve several test cases
of the ELD were discovered [16]. The search and rescue
optimization technique (SAR) was employed by the authors
to ascertain the optimal approach for the ELD. The research
results indicated that the SAR was the optimum option for all
cases of ELD [17].

The Harris Hawks optimizer technique was used in
six generation units to address ELD issues [18], while
with the incorporation of wind energy, the challenging
ELD problem was described using the heat transfer search
algorithm [19]. The authors proposed a multi-strategy ensem-
ble BBO (MSEBBO) to solve ELD issues. The MEEBBO
uses the no-free lunch theorem to strengthen the three compo-
nents of BBO. A strong repair technique is also recommended
to meet the different ELD issue restrictions [20]. A memetic
sine-cosine method was used to solve the ELD issue for six
practical cases: 40, 15, 13, 6, and 3 units of generator [21],
while the authors suggested the greedy sine-cosine nonhier-
archical gray wolf optimizer (G-SCNHGWO) as a solution to
ELD issues. These four power systems have a total of 140, 40,
15, and 10 power generators, each with a different valuation
time [22]. Using the ant lion optimization algorithm (ALO),
issues with the ideal ELD were resolved. The ALO algorithm
offers better possibilities than other strategies for the problem,
convergence velocity, and stability, according to the findings
of applying it to all three scenarios [23]. A fully decentral-
ized approach (DA) technique may be used to solve the ED
problem extremely effectively while accurately accounting
for transmission losses in a fully decentralized manner. Three
case studies were looked at [24].

The exchange market algorithm (EMA) is a reliable and
efficient method for identifying the optimal option for global
optimization in ELD scenarios. Additionally, it was devel-
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oped using four test systems in four different dimensions-
3, 6, 15, and 40 units-with both convex and non-convex cost
functions [25]. The modified crow search algorithm (MCSA)
was used to resolve the non-convex ELD issue and apply
the results to five well-known test systems [26], while four
economic dispatch issues with generator counts of 6, 15, 40,
and 80 were examined using the hybrid grey wolf optimizer
(HGWO) [27]. To assess the performance of the modified
symbiotic organisms, search algorithm (MSOS), five systems
13-unit, 40-unit, 80-unit, 160-unit, and 320-unit systems—
with varying features, limitations, and dimensions were
employed [28]. the enhanced moth-flame optimizer (EMFO)
approach was used to address the non-convex ELD issue with
valve-point effects and emissions on three representative test
systems with 6, 40, and a large-scale 80 generating units that
had non-convex fuel cost functions [29].

The one-rank cuckoo search algorithm (ORCSA) approach
was successful in resolving ELD difficulties. Complete test-
ing on some systems with different constraints and thermal
unit characteristics was also provided [30]. As benchmarks
for small- and large-scale problems, a range of economic
dispatch instances made up of 6, 13, 15, 40, 160, and 640-
unit generating systems were examined using the adaptive
charged system search (ACSS) approach [31]. The complex
ELD issue was presented using the artificial cooperative
search algorithm (ACS), which is based on a co-evolutionary
technique [32]. the efficient distributed auction optimization
algorithm (DAOA)was used to determine the ELD prob-
lem’s best solution [33]. A new firefly algorithm (FA) via a
non-homogeneous population provided a solution to the ELD
issues. Using 10 benchmark functions, a 15-unit ELD issue
with several considerations for each generator was solved,
as well as a 13-unit non-convex system with a valve-point
loading impact [34].

The authors used the modified krill herd algorithm (MKH)
to resolve an ELD problem. The MKH was found to perform
pretty well compared to other metaheuristics, and changing
its settings was also not too difficult [35]. the oppositional
pigeon-inspired optimizer (OPIO) algorithm was used to find
asolution to the ELD problem for small test systems (13 units,
40 units), medium (140 units, 160 units), and big (320 units,
640 units) [36]. The performance of the evolutionary simplex
adaptive Hooke—Jeeves algorithm (ESAHJ) was assessed on
five valve-point affected generating systems. The test results
for the proposed technique demonstrated good convergence
characteristics and cheap generating costs, making them
very effective and enticing [37]. The teaching learning-based
optimization (TLBO) approach was used to handle ELD
issues while taking transmission losses into account. This
approach investigates the global optimum point’s solution
space [38]. For non-convex CEED issues, the conventional
IEEE 30 bus with its six generators, fourteen generators,
and forty heat-generating units was put to the test [39]. The
Nelder-Mead hybrid method can easily handle non-convex
ED problems with a variety of limitations. Many conventional
test systems with different numbers of generating units were
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simulated [40]. The distributed auction-based technique was
used to address the non-convex ELD issue, which has a
lot of restrictions including the valve-point loading impact,
a wide range of fuel options, and constrained operating
zones [41]. The authors developed a turbulent flow of water
optimization (TFWO) approach to address the ELD and
CEED problems [42]. The SAO is based on the melting and
sublimation properties of snow. Snow’s sublimation and melt-
ing characteristics served as the model for the SAO. The SAO
algorithm’s dual-population mechanism, exploration stage,
exploitation stage, and initialization stage will all be covered
in the analysis of the SAO method [43].

The main items of objectives and contributions in this work
are illustrated as follows:

o The ELD issue is discussed for three network studies
based on the number of generator units such as 6 units,
10 units, and 20 units.

« A new metaheuristic method called snow ablation opti-
mization (SAO) is performed to solve the case study of
ELD.

o The proposed SAO algorithm is evaluated with the grey
wolf optimization (GWO), the tunicate swarm algorithm
(TSA), the monarch butterfly optimization (MBO), and
the rime-ice algorithm (RIME) for the cases study of
6 units, 10 units, and 20 units.

o The evaluation of all techniques is implemented for
30 runs based on computing the convergence and robust-
ness curves.

e The minimum, standard deviation, maximum, and mean
fitness function values over 30 runs are used for the
statistical data of all employed algorithms.

o The evaluation of SAO and all methods are realized
according to the mismatch of power between the unit’s
power generated and the load demand.

o The suggested SOA algorithm is also compared to other
literature techniques including the sine cosine algorithm,
elephant herding optimization, Artificial Bee Colony,
slime mold algorithm, Earth Worm Algorithm, and
Chimp Optimization Algorithm

The manuscript is ordered as follows: the analysis of the
ELD problem is considered in section two. The SAO method
is clarified in section three. The results discussion is offered in
section four. The future work and conclusions are described
in section five.

Il. ANALYSIS OF THE ELD PROBLEM
ELD is one of the issues with how power systems operate.
Reducing fuel consumption costs is the main obstacle to
resolving the ELD issue and optimizing the financial benefit
for power plants. In the ELD problem, the main variable
defines the resource distribution vector that maximizes power
output per unit. An explanation of ELD analysis with losses
is given below.

The following descriptions can be applied to the ELD
mathematical equations with losses. The cost of fuel usage
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for running n generators will be determined as follows:
Min (F) = F1 (P1) + - Fu (Ppn) ey

where F represents the net fuel cost, F, is the fuel cost in
the nth generator, and F; the fuel cost in the first generator.
The gasoline cost function will be obtained in quadratic form
using the following methods:

n n
Min(F) = > Fi(P) = > aPi+biPi+c; ()
k=1 k=1
where a, b, and ¢ are the weight constants of the fuel cost.
Furthermore, the generator limitations for every unit can be
adjusted from zero to 500 MW by utilizing Equations (3)
and (5).

n
> Pi—Pp—PL=0 )
k=1
where Pp stands for the network’s total demand and P;, for
the network’s six transmission losses, which are computed as
follows:

n n
P; = Z ZPiBiij (@)
i=1 j=1
where P; denotes the power generated at the ith generator, P;

is the power generated at the jth generator, and B;; stands for
the loss factor.

PR < Py < PP ©)

Ill. SNOW ABLATION OPTIMIZATION (SAO)

This section provides the idea behind SAO [43], which is
based on the melting and sublimation properties of snow. Fol-
lowing that, this algorithm’s mathematical model is shown.
In conclusion, we present the SAO pseudo-code and exam-
ine its temporal complexity: snow’s sublimation and melting
characteristics served as the model for the SAO. The SAO
algorithm’s dual-population mechanism, exploration stage,
exploitation stage, and initialization stage will all be covered
in the sections that follow [43].

A. INITIALIZATION STAGE

The iteration process in SAO begins with a swarm that is gen-
erated at random. The entire swarm is typically represented
as a matrix with Dim columns and N rows, where N is the
size of the swarm and Dim is the number of dimensions in
the solution space, as shown in Equation (6).

Z=L+6xU-~=L)

21,1 21,2
2,1 22,2

Z1,D im—1
22,D im—1

Z1,Dim
22,D im

IN-1,1 ZN-1,2 *** ZN—-1,D im—1 ZN—1,D im

ZN,1 ZN,2 ZN.,D im—1 ZN,Dim N xDim

(6)
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L and U denote the solution space’s lower and upper bounds,
respectively, among them. A randomly generated number in
[0, 1] is represented by 6.

B. EXPLORATION STAGE

This section provides a detailed description of SAO’s explo-
ration approach. Because of the erratic movement, the search
agents exhibit a high-decentralized feature when the snow
or the liquid water that was once snow turns into steam.
Brownian motion is used in this work to model this scenario.
Brownian motion is a stochastic process that is widely used to
simulate various phenomena such as animal foraging behav-
ior [44], infinitesimal and erratic particle movement [45], etc.
For a typical Brownian motion, the step size is determined by
the probability density function based on the normal distribu-
tion with mean zero and variance one. The following is the
corresponding mathematical representation [44]:

1 x?
v (x;0,1) = — X ex (——) @)
/i 5z xer| =3
The following is the formula to determine positions through-
out the exploration process:

Zi(t + 1) = Elite (1) + BMi(t) ® (6) x (G(t) — Zi(1))
+ 1 =0 x (Zt) — Zv))) (®)

Among them, the symbol & indicates entry-wise multipli-
cations, ¢ indicates a number randomly selected from [[0, 1],
Z(t) identifies the i individual during the ™ iteration, and
BM;(t) indicates a vector including random values based
on Gaussian distribution signifying the Brownian motion.
Additionally, Z(¢) indicates the centroid position of the entire
swarm, Elite (¢) is a randomly chosen member of a group
of many elites in the swarm, and G(t) refers to the current
best solution. The following lists the associated mathematical
expressions [43]:

- 1
20= > 70 ©)
Elite(t) € [G(?), Zsecond (), Zinira (1), Zc(1)] (10)

where Ziirg (f) and Zgecond () denote, respectively, the third
and second-best individuals in the current population. The
centroid position of those whose fitness values fell inside
the top 50% is indicated by Z.(¢). For the sake of simplicity,
the leaders in this study are those whose fitness levels fell
within the top 50%. Furthermore, Z.(¢) is computed using the
mathematical formula found in Equation (11).

1 i
20 = 3 3 70 (i1

where Z;(t) denotes the i best leader and N; denotes the
number of leaders, or half the size of the entire swarm. As a
result, the Elite (¢) is chosen at random from a set that includes
the centroid location of leaders, the current best solution, the
second-best individual, and the third-best individual during
each iteration.

VOLUME 12, 2024

C. EXPLOITATION STAGE

This section introduces the exploitative nature of SAO. When
the snow melts and becomes liquid water, search agents
are urged to take use of high-quality solutions surrounding
the current best solution, rather than growing with a highly
decentralized feature in the solution area. The degree-day
technique [46] is one of the most often used models of
snowmelt and is used to depict the melting process. The
following is how this strategy is generally presented:

M = DDF x (T —T}) (12)

M stands for the snowmelt rate among them, that is an
important parameter to mimic the melting behavior during
the exploitation phase. T is the daily average temperature,
according to [46] T7 denotes the basal temperature, which is
often set to 0. This leads to:

M = DDF x T (13)

where DDF', which varies from 0.35 to 0.6, represents the
degree-day factor [47]. The following is the mathematical
expression that updates the DDF' value in each iteration:

t
e max — 1

DDF = 0.35+0.25 x 1 (14)

where the termination condition is denoted by fyax. The
melting rate in SAO is then computed using the subsequent
formula:

e@ —1
M = (0.35 +0.25 x ——T

) X T(1), T(1) = etmax

15)

Next, the position updating equation is shown as follows
during the SAO exploitation stage:

Zi(t +1) =M x G(1) + BMi(1) ® (62 x (G(1) — Zi(1))
+ (1 =60 x (Zi(t) — Zi(1))) (16)

where 6, denotes the random integer selected from [—1, 1].,
and M is the snowmelt rate. This characteristic makes it
easier for people to communicate with one another. During
this phase, individuals are more likely to take advantage
of promising regions thanks to the cross terms —6, X
(G(1)=Zi(1)) and (1 — 62) x (Z(1)—Z(1)), which are depen-
dent on the centroid position of the swarm and the current
best search agent.

D. DUAL POPULATION MECHANISM

Understanding that there is a trade-off between exploration
and exploitation is crucial when using metaheuristic algo-
rithms. As stated in Section III-A, the exploration process
can also be carried out by turning some of the liquid water
that was formed from the snow into steam. That is, as time
goes on, there is a greater chance that people will exhibit
erratic movements with a high degree of decentralization.
After that, the algorithm starts to progressively explore the
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TABLE 1. Techniques parameters situating.

Algorithms Parameter Setting
General setting Ite'rations numbgr =1000
Size of population = 30

A number generated at random in [0,1] is represented by 61.

SAO The random number selected from [—1,1] is indicated by 62.
The base temperature, or T'1, is typically set to 0.
ry and r; within (=1 and 1)
RIME r, within (0 and 1)
peri indicates the migration period and is set to 1.2
MBO .
p is set to 5/12

GWO a decrease linearly from 2 to 0
TSA Ppin and Py, equal 1 and 4 respectively

TABLE 2. Statistical data for 6 generators based on all techniques ($/h).

Load (MW) Method Minimum SD Mean Maximum

SAO 8382.727669 206.1561217 8727.147026 9021.198839

RIME 50754.47178 63861730.36 45116935.91 238818316.5

700 MBO 8674.446349 33928.26209 40033.77354 120579.4628
TSA 219863.0447 12544977.14 12030685.27 45849466.82

GWO 8622.319269 11427750.13 10171247.74 48628295.93

SAO 12136.07434 107.9008060 12332.42292 12591.74905

RIME 49234.87133 45494471.37 36546372.51 145220781.5

1000 MBO 13487.29747 952363656.6 173938783.8 5216372332
TSA 513017.4415 25787851.34 2387672091 100550789.9

GWO 148048.4999 12648583.39 11320795.73 39692087.16

TABLE 3. Fuel consumption optimum costs for 6 generators ($/h).

Algorithm 700 MW 1000 MW
SAO 8381.566642 12136.06674
RIME 8584.553322 12366.11251
MBO 9867.999120 13610.58675
TSA 8564.395710 12352.53542
GWO 8642.455914 12152.88082
TABLE 4. The optimal allocation power (MW) from 6 generators at 700 MW demand.

SAO RIME MBO TSA GWO
283.9706564 188.5609427 63.39673076 274.5143750 228.4890274
91.51507435 62.69305005 67 55.66328378 187.8982842
148.5370566 188.6938083 76 108.2715919 83.01780354
55.40151926 90.14606030 84 82.13205507 59.76621669
77.11685416 119.3436240 89 71.46526845 79.55895424
54.72064672 63.73841438 331.3759462 120 73.30278090

solution space. The dual-population mechanism in our work
is designed to account for this circumstance and sustain
both exploration and exploitation. In the initial stage of
the iteration, the entire population is randomly split into
two equal-sized subpopulations, as shown in Algorithm 1.

We refer to these two subpopulations as P,, and Py, respec-
tively, and the whole population as P. Furthermore, P, P,,
and Py, sizes are represented by N, N,, and Np, respectively.
Of them, P, is dependable to the exploration while P is
dependable to the exploitation. The size of P, increases
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TABLE 5. The optimal allocation power (MW) from 6 generators at 1000 MW demand.

SAO RIME MBO TSA GWO
411.6378804 421.1289227 73 500 386.5595810
149.9604020 136.8855647 120 190.2175803 167.3580317
189.3951100 80.00408067 150 94.11613766 172.9999006
65.56040239 131.1884710 159 73.19660117 101.1928302
138.04100120 179.8868556 200 111.8730319 138.5084774
68.77892844 75.33657988 322.5836124 52.34908180 56.99831529

8
25 x10

Robustness curve of algorithms for 6 unit at load demand 700 MW

Fitness Function

- =-=-SA0 —RIME

MBO ——GWO ——TSA

20

5 10 15 25 30
Number of Independent Run
FIGURE 1. Robustness curves of 6 generators at load 700 MW.
TABLE 6. Statistical data for 10 generators based on all techniques ($/h).
Load (MW) Method Minimum SD Mean Maximum

SAO 91476538.31 58434347.61 141856741.8 299607764.5

1000 RIME 102814042.9 73152719.81 170877907.2 419309767.9

TSA 96372268.63 35949849.45 138366640.8 243144533.6

GWO 103412018.6 23744665.78 135068736.8 193230140.2

SAO 477169048.2 35357978.80 572604477.6 623604982.6

2000 RIME 498709381.5 78297821.92 619049388.7 801965397.7
TSA 495956050.1 43768776.45 610577122.9 686002804.2

GWO 521673866.1 33901845.49 588719837.6 649327385.2

with the progressive decrease in Pj size in the following

iterations.

Elite () + BM;(t) ® (01 x (G(1)—Zi(t))

+(1 = 61) x (Z(1) — Zi(v))) , i € index,
In conclusion, the following illustrates the SAO algorithm’s M xG BM: 0 % (G Z.
whole position updating equation: x GO + ~ 1) ® (B2 (G(1) = Zi(1)
+(1 — 02) x (Z(t) — Zi(1))) i € index;,

Zi(t+1)

VOLUME 12, 2024
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«108 Robustness curve of algorithms for 6 unit at load demand 1000 MW
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FIGURE 2. Robustness curves of 6 generators at load 1000 MW.
3 «10M Convergence curve of algorithms for 6 unit at load demand 700 MW
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----------- AY
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Number of Iteration

FIGURE 3. Convergence curves of 6 generators at load 700 MW.

In actuality, the entire population is a position matrix,
as stated in Equation (6). For this reason, in Equation (17),
index, and indexyp, respectively, indicate a set of indexes that
include the line numbers of the persons in P, and P, over
the whole position matrix. Algorithm 2 encapsulates the SAO
algorithm’s whole process.
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IV. RESULTS OF NUMERICAL ANALYSIS

The SAO performance is tested for the ELD. The proposed
SAO technique was evaluated with the grey wolf optimization
(GWO) [48], the tunicate swarm algorithm (TSA) [49], the
monarch butterfly optimization (MBO) [50], and the rime-ice
algorithm (RIME) [10] using MATLAB 2015Ra established
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5 %1010 Convergence curve of algorithms for 6 unit at load demand 1000 MW
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FIGURE 4. Convergence curves of 6 generators at load 1000 MW.

TABLE 7. Fuel consumption optimum costs for 10 generators ($/h).

Algorithm 1000 MW 2000 MW
SAO 91408138.73 477167397.4
RIME 95774255.60 495979709.5
TSA 95323180.17 493139938.1
GWO 99997353.4 506204174.8
TABLE 8. The optimal allocation power (MW) from 10 generators at 1000 MW demand.

SAO RIME TSA GWO
150.1248562 160.7928639 150 174.4586993
135.0794828 135 150.2416518 144.6575843
160.8922306 109.9704204 153.5644468 125.5607168
145.0204447 108.4324292 120.4851057 109.6776448
106.4223734 219.7927205 73 96.34011645
59.17198045 57 128.3733879 157.9323651
110.2250583 20 64.03199783 114.7999461
96.52976737 92.87012217 107.3681686 50.40706448
20.01487386 52.92807737 35.37319066 20
25.48445124 54.11982570 26.88315974 17.62904106

onintel corei7 (2.1 GHz) and 8 GB of ram. The ELD problem

was applied to several case studies as follows:

« The first case study is 6 generators at two different loads

(1000 and 700 MW).

VOLUME 12, 2024

o The second case study is 10 generators at two different
loads (1000 and 2000 MW).
o The third case study is 20 generators at two different
loads (2000 and 3000 MW).
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FIGURE 5. Robustness curves of 10 generators at load 1000 MW.
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FIGURE 6. Robustness curves of 10 generators at load 2000 MW.

The common parameters for all algorithms are clarified in
Table 1.

A. RESULTS OF 6-UNIT GENERATORS

Case research of 6 generators at two loads is applied in testing
the ELD issue. Numerous methods were pertained, such as
the SAO, TSA, GWO, MBO, and RIME. The effectiveness of
every rival approach was evaluated using thirty separate runs.
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As can be seen in Table 2, these runs were used to record the
mean, maximum, minimum, and standard deviation values as
statistical data at each load level. The SAO obtains the best
objective function and standard deviation based on this data.
Thus, the SAO algorithm is the most precise and dependable
one for ELD. The optimal fuel cost for each scenario is shown
in Table 3. Table 4 shows the optimal power generated by
each unit for a load demand of 700 MW, created on the
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FIGURE 8. Convergence curves of 10 generators at load 2000 MW.

best objective function across all methods. Table 5 shows
the optimal power generated by each unit for a load demand
of 1000 MW, created on the best objective function across all
methods. Based on the recorded outcomes from all techniques
throughout the 30 runs, the robustness curve identifies the
value of the target function for each run. Figures 1-2 show
the properties of the robustness curve for each load for the
6 units’ system. Figure 2 contains 2 subgraphs; the low graph
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is a magnified of the high figure to explain the intersection
between plotting. Based on the recorded results from every
method among the top 30 runs that yield the best fitness func-
tion, the convergence curve describes the quickest method
that achieves the objective function. Figures 3—4 display the
features of the convergence curve for each load level for
the 6 units’ system. Figures 3 and 4 contain 2 subgraphs;
the low graph is a magnified of the high figure to explain
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FIGURE 10. Robustness curves of 20 generators at load 3000 MW.

the intersection between plotting. The SAO realizes the best
global solution based on the convergence and robustness
properties.

B. RESULTS OF 10-UNIT GENERATORS

Case research of 10 generators at two loads is used in the
testing of the ELD issue. Numerous methods were pertained,
such as the SAO, TSA, GWO, MBO, and RIME. The effec-

17700

tiveness of every rival approach was evaluated using thirty
separate runs. As can be seen in Table 6, these runs were
used to record the mean, maximum, minimum, and standard
deviation values as statistical data at each load level. The SAO
obtains the best objective function and standard deviation
based on this data. Thus, the SAO algorithm is the most pre-
cise and dependable one for ELD. The optimal fuel cost for
each scenario is shown in Table 7. Table 8 shows the optimal

VOLUME 12, 2024
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FIGURE 12. Convergence curves of 20 generators at load 3000 MW.

power generated by each unit for a load demand of 700 MW,
created on the best objective function across all methods.
Table 9 shows the optimal power generated by each unit for
a load demand of 1000 MW, created on the best objective
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function across all methods. Based on the recorded outcomes
from all techniques throughout the 30 runs, the robustness
curve identifies the value of the target function for each
run. Figures 5-6 show the properties of the robustness curve
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TABLE 9. The optimal allocation power (MW) from 10 generators at 2000 MW demand.

SAO RIME TSA GWO
421.7444271 406.7144664 388.3530707 470
331.9962798 375.6091023 390.4128598 327.2463921
324.8437439 340 340 340
299.9999995 300 232.1927614 300
241.9771641 197.2058403 228.1910008 206.2300426
159.9998492 87.38506616 137.4819032 57
129.5029286 101.2144177 117.8275913 130
47.04868646 99.23091826 98.18173173 106.2348635
62.33904412 80 72.80401239 80
26.25793238 55 39.13108271 24.9843736
TABLE 10. Statistical data for 20 generators based on all techniques ($/h).
Load (MW) Method Minimum SD Mean Maximum
SAO 206350163.1 72002912.01 288312190.0 451797905.2
2000 RIME 210483640.9 47793956.09 280648189.3 435127973.2
TSA 215533558.1 28314998.02 262647777.4 323187351.3
GWO 221140711.5 43577338.57 274345925.6 421530487.7
SAO 380388985.2 94693458.50 660672742.3 857898161.4
3000 RIME 439184820.8 96610953.20 631164946.7 842339414.2
TSA 554112543.3 112700647.1 697427585.7 1010486886
GWO 510171774.2 101536499.9 685754012.9 965294670
TABLE 11. Fuel consumption optimum costs for 20 generators ($/h).
Algorithm 2000 MW 3000 MW
SAO 204528254.5 379597887.8
RIME 209395514.2 436398458.1
TSA 210709710.1 521458574.5
GWO 216801551.9 492334302.8

Algorithm 1 Dual-Population Mechanism

1. Initialization: t = 0. N, = N, = N, where N means

the size of population and #,,,

while (t < tayx)
if N, <N

end
t=t+1
end

Nk wn

Np =Np—1,N, =N, + 1

Algorithm 2 SAO Pseudo Code

for each load for 10 units’ system. Based on the recorded
results from every method among the top 30 runs that yield
the best fitness function, the convergence curve describes
the quickest method that achieves the objective function.
Figures 7-8 display the features of the convergence curve
for each load level for the 10-unit system. Figures 7 and 8

contain 2 subgraphs; the low graph is a magnified of the high
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1. Initialization: Z.t = 0. N, = N, and tygx.

AN

Evaluation the fitness
Record G (¢) ; the current best individual
while (t < tax)
Calculate M; the snowmelt rate from Equation (15)
Divide the entire population P into Pj and P,

subpopulations at random

7. for each individual do
8. Update each individual’s
Equation (17)
9. end
10. t=t+1

11. Evaluation of the fitness
12. Update G(¢)

13. end

14. Return G(¢)

position

VOLUME 12, 2024
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TABLE 12. The optimal allocation power (MW) from 20 generators at 2000 MW demand.

TABLE 13. The optimal alloc

figure to explain the intersection between plotting. The SAO
realizes the best global solution based on the convergence and

robustness properties.
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SAO RIME TSA GWO
150.4979409 150 192.9629338 150
166.9118788 150.0466471 170.4411376 135
73.04970211 138.7709097 174.4737479 182.6455009
66.07744376 69.69811274 131.3356197 233.1174361
80.89049187 116.0905954 81.81422840 74.53651841
135.5816331 58.42084911 122.5408877 66.1565480
71.66816524 39.58410420 27.93030915 31.26033211
67.13876542 120 55.60410577 86.7605740
78.96542895 79.99922740 40.98733522 53.16391203
10.08733713 38.50048272 20.22929998 42.46522987
154.2581300 242.5875992 150 167.7469301
180.3591563 137.9460713 151.5361168 210.4598639
128.5270011 105.1261017 150.7771368 87.91754827
62.18161930 187.8933464 61.99015651 155.4209198
227.4665010 73 116.5752264 94.57424847
57.00864126 119.7105746 155.0815497 66.76377315
60.51869134 20 81.56252018 33.06698272

117.8085459

75.69914011

48.66027502

53.19348312

59.49404868

27.28501436

55.24501755

58.14058966

51.50906007

49.64111510

10.25287818

17.60917560

ation power (MW) from

20 generators at 3000 MW demand.

SAO RIME TSA GWO
217.8989538 254.2777498 194.8593026 257.0323604
229.3884389 154.7463353 330.6281393 135.3759895
167.0872394 228.3226657 117.9914913 303.9696309
112.1585480 175.2440360 211.4451964 238.2057905
242.5881500 104.2378414 155.4336745 178.3905035
96.40470877 140.7282178 143.5900903 61.89430417
116.9890823 81.71907749 83.31521860 105.2878221
118.0922344 102.6310999 120 50.89194393

80 66.74773708 38.0537140 66.92045562
54.06438527 53.89392817 41.53431619 11.00276612
150.0357110 364.7435737 337.2748720 361.0734356
135.0172451 144.2190517 228.3354707 255.4231904
255.8586667 219.3117391 258.5109439 196.9619736
299.2954168 264.8400175 178.2131901 235.3570136
242.9949148 241.1338869 243 177.7873041
149.3666235 83.20973686 57 119.1406517
113.2956538 122.1935569 102.9421412 126.8690338
119.7385126 98.02889946 51.76211329 60.30198923

59.39962774

72.74783559

65.71576015

32.32046776

40.32596648

27.02329226

40.39763104

25.79158967

C. RESULTS OF 20-UNIT GENERATORS

Case research of 20 generators at two loads is applied in
testing the ELD issue. Numerous methods were pertained,
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TABLE 14. The power mismatch for 6-unit generators based on all algorithms.

Case Method 700 MW 1000 MW
SAO 1.157E-10 3.446E-13
RIME 4.22E-06 3.69E-06
MBO 8.624894662 10.11850299
TSA 2.11E-05 5.01E-05
GWO 6.70E-05 1.36E-05
6 units SCA [9] 0.00076719 0.000182
ABC [14] 8.85E-05 0.000172518
ChOA [14] 0.000284475 0.000476787
EWA [9] 5.71 20.1
EHO [14] 2.239431602 9.904979361
SMA [14] 5.61E-9 4.18E-9
TABLE 15. The optimal allocation power (MW) extracted from SAO for 6 generators at 700 MW.
Run Generator power
1 100.0061486 54.56388631 299.9505249 51.65138075 159.4793474 50.43274908
2 291.5644841 83.36984542 148.938611 70.34882563 55.95793331 60.91392993
3 283.9706564 91.51507435 148.5370566 55.40151926 77.11685416 54.72064672
4 207.6942382 95.81262119 162.1194594 97.36360487 57.54666403 91.74855536
5 170.3339745 106.4741928 84.61659475 106.8771399 162.9385324 82.38057815
6 258.4248869 78.74800914 133.0250562 60.01430485 130.8356218 51.02829651
7 211.3078759 147.2848343 97.30984833 50.26859369 150.3791854 56.0655393
8 1.51E+02 89.23732763 259.179463 104.2547904 50.01170369 60.29876738
9 2.05E+02 73.97407718 164.3694987 70.28004812 94.45326214 104.9446342
10 113.4801884 88.28453078 117.8067361 112.3581735 199.5715439 83.34439043
11 1.67E+02 50 213.9744073 140.4163183 88.40473331 53.96904343
12 110.9671226 55.09401544 297.9058259 147.5624719 52.83355742 50.81927072
13 149.2688389 131.4541626 89.93477858 88.18455273 174.9751055 79.98032572
14 126.7056713 125.5306273 164.770001 87.3176138 138.967616 70.28529278
15 259.3623487 52.7908398 82.11956676 116.3815363 150.9133418 51.18860161
16 260.399308 81.82804825 100.4310293 52.17264465 142.7124911 74.77299958
17 339.9536553 68.09188449 80.00000004 105.4960803 50.00013378 67.19753997
18 217.1641823 102.8470397 140.250415 84.65501863 102.4984953 64.7924967
19 100.9103328 72.30859879 282.4409245 149.0101224 51.08205809 59.15557385
20 164.481678 56.43658615 285.5905918 70.4431106 51.25590404 86.00053994
21 134.0416647 171.1526408 257.1133122 50.05444266 51.23936681 50.0231248
22 181.4534356 70.11452272 171.909802 76.75232896 156.920342 56.33109069
23 100.504145 159.5805331 145.7349573 86.58589276 142.695139 78.71910986
24 130.2969923 165.5390547 92.55250535 134.7522482 134.449326 55.95946128
25 188.9447274 197.8629739 81.69468826 75.44284445 118.6896002 50.02926207
26 139.7845481 65.98401788 80.04949264 146.9313778 193.2757016 89.03021567
27 257.658546 77.55470248 141.2542124 61.7543979 107.624481 66.08160734
28 151.2820351 94.65898443 228.0090339 93.20661582 89.36713238 56.8922577
29 128.8510833 53.9577098 267.0002158 148.9629604 61.86495129 53.91719521
30 104.531898 196.7795238 130.9765552 50.32519427 139.4542386 91.81486307

such as the SAO, TSA, GWO, MBO, and RIME. The effec-
tiveness of every rival approach was evaluated using thirty
separate runs. As can be seen in Table 10, these runs were
used to record the mean, maximum, minimum, and standard
deviation values as statistical data at each load level. The SAO
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obtains the best objective function and standard deviation
based on this data. Thus, the SAO algorithm is the most
precise and dependable one for ELD. The optimal fuel cost
for each scenario is shown in Table 11. Table 12 shows the
optimal power generated by each unit for a load demand
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TABLE 16. The optimal allocation power (MW) extracted from SAO for 6 generators at 1000 MW.

Run Generator power

1 499.4773579 90.75228704 138.762008 112.8737547 103.2858036 76.84630596
2 356.4356487 193.5778648 97.88707178 58.69716543 199.9015447 119.2206778
3 411.6378804 149.960402 189.39511 65.56040239 138.0410012 68.77892844
4 373.0930479 70.22660271 200.2176876 139.1500397 170.5200985 72.15204736
5 496.1396133 199.9461365 88.67698982 135.0270254 50.11912896 51.54900734
6 332.1716845 94.12014468 210.2940285 91.29102188 181.9042213 116.3932557
7 405.1880901 174.878404 203.2317089 95.38714015 58.35272855 85.70782289
8 3.72E+02 124.0930309 191.0118805 107.4601719 169.0436678 61.18843638
9 3.54E+02 158.9648158 150.0034607 85.11866111 180.2048318 96.53545228
10 284.9504405 199.7490056 249.6083907 50.10201654 121.4351133 119.989792
11 4.71E+02 168.8193645 80.62484741 79.92799196 162.2943706 60.5300686
12 499.9948309 50.00567368 250.8988668 108.2491905 50.02033489 62.96416197
13 388.2144998 50.01231057 290.7466252 149.9639781 93.47567555 52.60245216
14 466.8844806 159.7361861 80.47521719 50.17338297 173.5335612 92.75142176
15 476.8392689 193.4282286 152.7209062 58.80657954 58.37418342 81.41697075
16 378.1623346 85.53561622 207.305576 58.51133815 199.9297253 96.2421169
17 446.7204912 179.2250208 99.00559908 127.6714954 50.00139008 119.9990913
18 499.8774293 54.13927156 81.58975357 97.42949127 196.6584269 94.64832048
19 369.1290098 62.28832574 258.7786816 148.6330684 80.54866276 105.5959459
20 493.2318499 74.95653543 87.97169594 50.00000364 199.7107534 118.5884338
21 301.7217487 132.7519436 136.7212423 143.7727734 200 111.7293024
22 495.9119795 191.5486121 1354714831 68.9464636 78.41431138 50.99109097
23 316.756281 117.6721153 297.5026903 84.94463956 88.88682612 119.9999635
24 383.6208275 189.352549 132.3151144 112.3278455 107.8501076 98.16695156
25 495.6004552 56.8564242 83.70147245 149.4276662 180.9157799 57.53317777
26 458.8898802 97.75051481 109.8633736 106.2785358 130.686253 120
27 199.725272 199.4592964 271.2537415 50.95448641 188.0510293 118.722389
28 335.2457873 193.3907347 125.683745 140.5155595 175.8726052 54.39111118
29 497.0159265 61.91226875 88.49553888 110.9296025 181.3484143 84.17485259
30 479.0850898 101.3696407 103.173352 123.9126602 95.32629696 119.8956443

of 700 MW, created on the best objective function across
all methods. Table 13 shows the optimal power generated
by each unit for a load demand of 1000 MW, created on
the best objective function across all methods. Based on
the recorded outcomes from all techniques throughout the
30 runs, the robustness curve identifies the value of the target
function for each run. Figures 9-10 show the properties of
the robustness curve for each load for 20 units’ system.
Based on the recorded results from every method among the
top 30 runs that yield the best fitness function, the conver-
gence curve describes the quickest method that achieves the
objective function. Figures 11-12 display the features of the
convergence curve for each load level for the 20-unit system.
Figures 11 and 12 contain 2 subgraphs; the low graph is
a magnified of the high figure to explain the intersection
between plotting. The SAO realizes the best global solution
based on the convergence and robustness properties.

D. DISCUSSION
The value of the power mismatch is the primary compo-
nent in ELD difficulties. the exact discrepancy between
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the total demand and transmission losses and the units
of generated electricity. The high-performance methodol-
ogy is used to retrieve the power mismatch value because
it is almost nil. The value of this factor for ELD is
explained in Table 14. Together with the five approaches
utilized in the run, the suggested SOA algorithm is also
compared to other literature techniques including the sine
cosine algorithm, elephant herding optimization, Artificial
Bee Colony, slime mould algorithm, Earth Worm Algorithm,
and Chimp Optimization Algorithm, as explained in Table 14.
The SOA approach consistently delivers the optimal power
mismatch value based on this data. The optimal alloca-
tion power (MW) from the 6-unit generator at each MW
demand extracted from the SAO method is explained in
Tables 15-16.

The original Snow Ablation Optimization (SAO) algorithm
has demonstrated competitive performance when compared
to other cutting-edge algorithms, demonstrating features like
fast convergence, simplicity, and dependability, avoiding
local optima, and maintaining the equilibrium between explo-
ration and exploitation.
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We use Optimum Allocation of Generator Units, which
maintains extremely complicated issue landscapes, for the
thorough evaluation of the SAO. Subsequently, the SAO’s
superiority and practicability are thoroughly confirmed
through comparison with multiple counterparts. The compar-
ison’s findings show that the SAO is a strong and attractive
solution for solving the optimal allocation of the generator
unit’s problem.

In addition to its advantages, the SAO has certain limita-
tions, which are covered below:

e The NFL theorem states that no single optimization
approach can handle all optimization problems.

e We do not evaluate the SAO’s performance with high
Optimum Allocation of Generator Units. The authors con-
clude that the SAO technique adheres to the same principles
as the other metaheuristics methods, even though it out-
performs several other well-known and contemporary algo-
rithms.

V. CONCLUSION

A new metaheuristic technique called snow ablation opti-
mization (SAO) imitates the melting and sublimation proper-
ties of snow. Furthermore, the SAO’s efficacy was compared
to that of four different algorithms. This work uses the
SAO to solve a critical problem: economic load dispatch
(ELD). In particular, ELD contributes to the reduction of
fuel costs. The primary concern in optimizing the ELD
problem is the cost of fuel use, which the SAO seeks to mini-
mize while maximizing the power system’s economic worth.
The vector of unit-specific allocation that establishes the
optimal result for every system is reflected in the main vari-
able of the ELD problem. The rime-ice algorithm (RIME),
grey wolf optimization (GWO), the monarch butterfly opti-
mization (MBO), and the tunicate swarm algorithm (TSA)
were among the algorithms with which the SAO’s perfor-
mance was contrasted. The optimum fuel cost values of
12136.06674 and 8381.566642 are achieved using the SAO
method for six generator units at demand loads of 1000 MW
and 700 MW, respectively. The optimum fuel cost values
of 91408138.73 and 477167397.4 are achieved by the SAO
method for ten generator units at demand loads of 1000 and
2000 MW, respectively. The optimum fuel cost values of
204528254.5 and 379597887.8 are achieved using the SAO
method for 20 generator units at demand loads of 2000 and
3000 MW, respectively. In the end, the results confirmed that,
when compared to the alternatives, the SAO was successful
in reducing the cost of fuel for all cases of ELD. The SAO
approach may be used in the future to solve further signif-
icant, real-world optimization problems about solar energy
and power system and real world power system cases with
thousands of generators and loads.
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