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ABSTRACT The snow ablation optimization (SAO) is a new metaheuristic motivated by the melting and
sublimation properties of snow. In this work, the economic load dispatch (ELD) problem, one of the key
components of a power system, is solved using the SAO. There is one kind of ELD, that is focused on
minimizing fuel usage costs. Assessing the reliability of the SAO, its performance is compared against some
techniques. For the same case study, these techniques include the grey wolf optimization (GWO), the tunicate
swarm algorithm (TSA), the monarch butterfly optimization (MBO), and the rime-ice algorithm (RIME).
There are six cases used in this work: the first two cases are 6 generators at two loads 700MW and 1000MW
for the ELD problem. The second two cases are 10 generators at two loads 1000 MW and 2000 MW for
the ELD problem. The third two cases are 20 generators at two loads 2000 MW and 3000 MW for the
ELD problem. The methods were assessed across 30 different runs using metrics for the maximum, mean,
minimum objective function, and standard deviation. The primary component of ELD issues is the power
mismatch element. This factor’s optimal value must approach zero. The optimal power mismatch values
of 3.336E-13 and 1.57E-10 are obtained using the SAO method for six generator units at demand loads
of 1000 MW and 700 MW, respectively. The optimal power mismatch values of 6.83E-6 and 1.65E-7 are
obtained by the SAOmethod for ten generator units at demand loads of 1000 and 2000MW, respectively. The
optimal power mismatch values of 1.82E-4 and 7.91E-5 are obtained using the SAOmethod for 20 generator
units at demand loads of 2000 and 3000MW, respectively. The results produced for the six ELD case studies
show that the SAO surpasses all competing algorithms, proving its superiority.

INDEX TERMS Snow ablation optimization, economic load dispatch.

I. INTRODUCTION
The goal of economic load dispatch (ELD) in power systems
is to allocate power output from producing units as efficiently
as possible while satisfying operational requirements, pre-
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serving supply-demand balance [1], and determining the best
way to lower the power generation cost and minimize emis-
sions so that the problem of global warming is also reduced.
Coal is few, while demand for electrical power is rising [2].
It is significant to observe that the valve-point effects provide
a wavy pattern on the fuel consumption curve. As a result, the
economic load dispatch problem is a massive, very nonlinear,
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and restricted optimization problem. The unit output schedule
can be optimized to achieve significant cost savings. The
best output power from each producing unit must be reached
to lower overall fuel expenditures, as fuel prices are rising
every day. This may be done by using mathematical and
metaheuristic optimization approaches [3], [4], [5], [6], [7],
[8], [9].
The actual and reactive power of the electrical generat-

ing system was determined using the linear programming
methodology; however, such techniques have a significant
computation time and are occasionally unable to produce
a global solution for enormous data sets. To increase the
effectiveness of addressing the ELD issue, several optimiza-
tion techniques have been developed for this application or
another problem [10], [11], [12], [13]. The effects of valve
loading were taken into account, and the outline search tech-
nique was offered as a means to identify the optimum ELD
problem solution. To support the results, a variety of test data
were used to assess the approach, and it was compared to cur-
rent optimization methods [14]. Using a biogeography-based
optimization (BBO) technique, four separate ELD test sys-
tems, both large and small, with varying levels of complexity,
were subjected to this method [15]. By applying the modified
differential evolution technique to solve several test cases
of the ELD were discovered [16]. The search and rescue
optimization technique (SAR) was employed by the authors
to ascertain the optimal approach for the ELD. The research
results indicated that the SAR was the optimum option for all
cases of ELD [17].

The Harris Hawks optimizer technique was used in
six generation units to address ELD issues [18], while
with the incorporation of wind energy, the challenging
ELD problem was described using the heat transfer search
algorithm [19]. The authors proposed a multi-strategy ensem-
ble BBO (MSEBBO) to solve ELD issues. The MEEBBO
uses the no-free lunch theorem to strengthen the three compo-
nents of BBO.A strong repair technique is also recommended
to meet the different ELD issue restrictions [20]. A memetic
sine-cosine method was used to solve the ELD issue for six
practical cases: 40, 15, 13, 6, and 3 units of generator [21],
while the authors suggested the greedy sine-cosine nonhier-
archical gray wolf optimizer (G-SCNHGWO) as a solution to
ELD issues. These four power systems have a total of 140, 40,
15, and 10 power generators, each with a different valuation
time [22]. Using the ant lion optimization algorithm (ALO),
issues with the ideal ELD were resolved. The ALO algorithm
offers better possibilities than other strategies for the problem,
convergence velocity, and stability, according to the findings
of applying it to all three scenarios [23]. A fully decentral-
ized approach (DA) technique may be used to solve the ED
problem extremely effectively while accurately accounting
for transmission losses in a fully decentralized manner. Three
case studies were looked at [24].
The exchange market algorithm (EMA) is a reliable and

efficient method for identifying the optimal option for global
optimization in ELD scenarios. Additionally, it was devel-

oped using four test systems in four different dimensions-
3, 6, 15, and 40 units-with both convex and non-convex cost
functions [25]. The modified crow search algorithm (MCSA)
was used to resolve the non-convex ELD issue and apply
the results to five well-known test systems [26], while four
economic dispatch issues with generator counts of 6, 15, 40,
and 80 were examined using the hybrid grey wolf optimizer
(HGWO) [27]. To assess the performance of the modified
symbiotic organisms, search algorithm (MSOS), five systems
13-unit, 40-unit, 80-unit, 160-unit, and 320-unit systems—
with varying features, limitations, and dimensions were
employed [28]. the enhanced moth-flame optimizer (EMFO)
approach was used to address the non-convex ELD issue with
valve-point effects and emissions on three representative test
systems with 6, 40, and a large-scale 80 generating units that
had non-convex fuel cost functions [29].

The one-rank cuckoo search algorithm (ORCSA) approach
was successful in resolving ELD difficulties. Complete test-
ing on some systems with different constraints and thermal
unit characteristics was also provided [30]. As benchmarks
for small- and large-scale problems, a range of economic
dispatch instances made up of 6, 13, 15, 40, 160, and 640-
unit generating systems were examined using the adaptive
charged system search (ACSS) approach [31]. The complex
ELD issue was presented using the artificial cooperative
search algorithm (ACS), which is based on a co-evolutionary
technique [32]. the efficient distributed auction optimization
algorithm (DAOA)was used to determine the ELD prob-
lem’s best solution [33]. A new firefly algorithm (FA) via a
non-homogeneous population provided a solution to the ELD
issues. Using 10 benchmark functions, a 15-unit ELD issue
with several considerations for each generator was solved,
as well as a 13-unit non-convex system with a valve-point
loading impact [34].

The authors used the modified krill herd algorithm (MKH)
to resolve an ELD problem. The MKH was found to perform
pretty well compared to other metaheuristics, and changing
its settings was also not too difficult [35]. the oppositional
pigeon-inspired optimizer (OPIO) algorithm was used to find
a solution to the ELDproblem for small test systems (13 units,
40 units), medium (140 units, 160 units), and big (320 units,
640 units) [36]. The performance of the evolutionary simplex
adaptive Hooke–Jeeves algorithm (ESAHJ) was assessed on
five valve-point affected generating systems. The test results
for the proposed technique demonstrated good convergence
characteristics and cheap generating costs, making them
very effective and enticing [37]. The teaching learning-based
optimization (TLBO) approach was used to handle ELD
issues while taking transmission losses into account. This
approach investigates the global optimum point’s solution
space [38]. For non-convex CEED issues, the conventional
IEEE 30 bus with its six generators, fourteen generators,
and forty heat-generating units was put to the test [39]. The
Nelder-Mead hybrid method can easily handle non-convex
ED problemswith a variety of limitations.Many conventional
test systems with different numbers of generating units were
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simulated [40]. The distributed auction-based technique was
used to address the non-convex ELD issue, which has a
lot of restrictions including the valve-point loading impact,
a wide range of fuel options, and constrained operating
zones [41]. The authors developed a turbulent flow of water
optimization (TFWO) approach to address the ELD and
CEED problems [42]. The SAO is based on the melting and
sublimation properties of snow. Snow’s sublimation andmelt-
ing characteristics served as the model for the SAO. The SAO
algorithm’s dual-population mechanism, exploration stage,
exploitation stage, and initialization stage will all be covered
in the analysis of the SAO method [43].

Themain items of objectives and contributions in this work
are illustrated as follows:

• The ELD issue is discussed for three network studies
based on the number of generator units such as 6 units,
10 units, and 20 units.

• A new metaheuristic method called snow ablation opti-
mization (SAO) is performed to solve the case study of
ELD.

• The proposed SAO algorithm is evaluated with the grey
wolf optimization (GWO), the tunicate swarm algorithm
(TSA), the monarch butterfly optimization (MBO), and
the rime-ice algorithm (RIME) for the cases study of
6 units, 10 units, and 20 units.

• The evaluation of all techniques is implemented for
30 runs based on computing the convergence and robust-
ness curves.

• The minimum, standard deviation, maximum, and mean
fitness function values over 30 runs are used for the
statistical data of all employed algorithms.

• The evaluation of SAO and all methods are realized
according to the mismatch of power between the unit’s
power generated and the load demand.

• The suggested SOA algorithm is also compared to other
literature techniques including the sine cosine algorithm,
elephant herding optimization, Artificial Bee Colony,
slime mold algorithm, Earth Worm Algorithm, and
Chimp Optimization Algorithm

The manuscript is ordered as follows: the analysis of the
ELD problem is considered in section two. The SAO method
is clarified in section three. The results discussion is offered in
section four. The future work and conclusions are described
in section five.

II. ANALYSIS OF THE ELD PROBLEM
ELD is one of the issues with how power systems operate.
Reducing fuel consumption costs is the main obstacle to
resolving the ELD issue and optimizing the financial benefit
for power plants. In the ELD problem, the main variable
defines the resource distribution vector that maximizes power
output per unit. An explanation of ELD analysis with losses
is given below.

The following descriptions can be applied to the ELD
mathematical equations with losses. The cost of fuel usage

for running n generators will be determined as follows:

Min (F) = F1 (P1) + · · ·Fn (Pn) (1)

where F represents the net fuel cost, Fn is the fuel cost in
the nth generator, and F1 the fuel cost in the first generator.
The gasoline cost function will be obtained in quadratic form
using the following methods:

Min (F) =

n∑
k=1

Fi (Pi) =

n∑
k=1

akP2k + bkPk + ck (2)

where a, b, and c are the weight constants of the fuel cost.
Furthermore, the generator limitations for every unit can be
adjusted from zero to 500 MW by utilizing Equations (3)
and (5).

n∑
k=1

Pk − PD − PL = 0 (3)

where PD stands for the network’s total demand and PL for
the network’s six transmission losses, which are computed as
follows:

PL =

n∑
i=1

n∑
j=1

PiBijPj (4)

where Pi denotes the power generated at the ith generator, Pj
is the power generated at the jth generator, and Bij stands for
the loss factor.

Pmink ≤ Pk ≤ Pmaxk (5)

III. SNOW ABLATION OPTIMIZATION (SAO)
This section provides the idea behind SAO [43], which is
based on the melting and sublimation properties of snow. Fol-
lowing that, this algorithm’s mathematical model is shown.
In conclusion, we present the SAO pseudo-code and exam-
ine its temporal complexity: snow’s sublimation and melting
characteristics served as the model for the SAO. The SAO
algorithm’s dual-population mechanism, exploration stage,
exploitation stage, and initialization stage will all be covered
in the sections that follow [43].

A. INITIALIZATION STAGE
The iteration process in SAO begins with a swarm that is gen-
erated at random. The entire swarm is typically represented
as a matrix with Dim columns and N rows, where N is the
size of the swarm and Dim is the number of dimensions in
the solution space, as shown in Equation (6).

Z = L + θ × (U − L)

=


z1,1 z1,2 · · · z1,D im−1 z1,Dim
z2,1 z2,2 · · · z2,D im−1 z2,D im
...

...
...

...
...

zN−1,1 zN−1,2 · · · zN−1,D im−1 zN−1,D im
zN ,1 zN ,2 · · · zN ,D im−1 zN ,Dim


N×Dim

(6)
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L and U denote the solution space’s lower and upper bounds,
respectively, among them. A randomly generated number in
[0, 1] is represented by θ .

B. EXPLORATION STAGE
This section provides a detailed description of SAO’s explo-
ration approach. Because of the erratic movement, the search
agents exhibit a high-decentralized feature when the snow
or the liquid water that was once snow turns into steam.
Brownian motion is used in this work to model this scenario.
Brownian motion is a stochastic process that is widely used to
simulate various phenomena such as animal foraging behav-
ior [44], infinitesimal and erratic particle movement [45], etc.
For a typical Brownian motion, the step size is determined by
the probability density function based on the normal distribu-
tion with mean zero and variance one. The following is the
corresponding mathematical representation [44]:

fBM (x; 0, 1) =
1

√
2π

× exp
(

−
x2

2

)
(7)

The following is the formula to determine positions through-
out the exploration process:

Zi(t + 1) = Elite (t) + BMi(t) ⊗ (θ1 × (G(t) − Zi(t))

+ (1 − θ1) ×
(
Z̄ (t) − Zi(t)

))
(8)

Among them, the symbol ⊗ indicates entry-wise multipli-
cations, θ1 indicates a number randomly selected from [[0, 1],
Zi(t) identifies the ith individual during the t th iteration, and
BMi(t) indicates a vector including random values based
on Gaussian distribution signifying the Brownian motion.
Additionally, Z̄ (t) indicates the centroid position of the entire
swarm, Elite (t) is a randomly chosen member of a group
of many elites in the swarm, and G(t) refers to the current
best solution. The following lists the associated mathematical
expressions [43]:

Z̄ (t) =
1
N

∑N

i=1
Zi(t) (9)

Elite(t) ∈ [G(t),Zsecond (t),Zthird (t),Zc(t)] (10)

where Zthird (t) and Zsecond (t) denote, respectively, the third
and second-best individuals in the current population. The
centroid position of those whose fitness values fell inside
the top 50% is indicated by Zc(t). For the sake of simplicity,
the leaders in this study are those whose fitness levels fell
within the top 50%. Furthermore, Zc(t) is computed using the
mathematical formula found in Equation (11).

Zc(t) =
1
N1

∑N1

i=1
Zi(t) (11)

where Zi(t) denotes the ith best leader and N1 denotes the
number of leaders, or half the size of the entire swarm. As a
result, the Elite (t) is chosen at random from a set that includes
the centroid location of leaders, the current best solution, the
second-best individual, and the third-best individual during
each iteration.

C. EXPLOITATION STAGE
This section introduces the exploitative nature of SAO.When
the snow melts and becomes liquid water, search agents
are urged to take use of high-quality solutions surrounding
the current best solution, rather than growing with a highly
decentralized feature in the solution area. The degree-day
technique [46] is one of the most often used models of
snowmelt and is used to depict the melting process. The
following is how this strategy is generally presented:

M = DDF × (T − T1) (12)

M stands for the snowmelt rate among them, that is an
important parameter to mimic the melting behavior during
the exploitation phase. T is the daily average temperature,
according to [46] T1 denotes the basal temperature, which is
often set to 0. This leads to:

M = DDF × T (13)

where DDF , which varies from 0.35 to 0.6, represents the
degree-day factor [47]. The following is the mathematical
expression that updates the DDF value in each iteration:

DDF = 0.35 + 0.25 ×
e

t
tmax − 1
e− 1

(14)

where the termination condition is denoted by tmax. The
melting rate in SAO is then computed using the subsequent
formula:

M =

(
0.35 + 0.25 ×

e
t

tmax − 1
e− 1

)
× T (t),T (t) = e

−t
tmax

(15)

Next, the position updating equation is shown as follows
during the SAO exploitation stage:

Zi(t + 1) = M × G(t) + BMi(t) ⊗ (θ2 × (G(t) − Zi(t))

+ (1 − θ2) ×
(
Z̄i(t) − Zi(t)

))
(16)

where θ2 denotes the random integer selected from [−1, 1].,
and M is the snowmelt rate. This characteristic makes it
easier for people to communicate with one another. During
this phase, individuals are more likely to take advantage
of promising regions thanks to the cross terms −θ2 ×

(G(t)−Zi(t)) and (1 − θ2) ×
(
Z̄ (t)−Zi(t)

)
, which are depen-

dent on the centroid position of the swarm and the current
best search agent.

D. DUAL POPULATION MECHANISM
Understanding that there is a trade-off between exploration
and exploitation is crucial when using metaheuristic algo-
rithms. As stated in Section III-A, the exploration process
can also be carried out by turning some of the liquid water
that was formed from the snow into steam. That is, as time
goes on, there is a greater chance that people will exhibit
erratic movements with a high degree of decentralization.
After that, the algorithm starts to progressively explore the
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TABLE 1. Techniques parameters situating.

TABLE 2. Statistical data for 6 generators based on all techniques ($/h).

TABLE 3. Fuel consumption optimum costs for 6 generators ($/h).

TABLE 4. The optimal allocation power (MW) from 6 generators at 700 MW demand.

solution space. The dual-population mechanism in our work
is designed to account for this circumstance and sustain
both exploration and exploitation. In the initial stage of
the iteration, the entire population is randomly split into
two equal-sized subpopulations, as shown in Algorithm 1.

We refer to these two subpopulations as Pa, and Pb, respec-
tively, and the whole population as P. Furthermore, P,Pa,
and Pb sizes are represented by N ,Na, and Nb, respectively.
Of them, Pa is dependable to the exploration while Pb is
dependable to the exploitation. The size of Pa increases
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TABLE 5. The optimal allocation power (MW) from 6 generators at 1000 MW demand.

FIGURE 1. Robustness curves of 6 generators at load 700 MW.

TABLE 6. Statistical data for 10 generators based on all techniques ($/h).

with the progressive decrease in Pb size in the following
iterations.

In conclusion, the following illustrates the SAO algorithm’s
whole position updating equation:

Zi(t + 1)

=


Elite (t) + BMi(t) ⊗ (θ1 × (G(t)−Zi(t))

+(1 − θ1) ×
(
Z̄ (t) − Zi(t)

))
, i ∈ indexa

M × G(t) + BMi(t) ⊗ (θ2×(G(t) − Zi(t))

+(1 − θ2)×
(
Z̄ (t) − Zi(t)

))
, i ∈ indexb

(17)
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FIGURE 2. Robustness curves of 6 generators at load 1000 MW.

FIGURE 3. Convergence curves of 6 generators at load 700 MW.

In actuality, the entire population is a position matrix,
as stated in Equation (6). For this reason, in Equation (17),
indexa and indexb, respectively, indicate a set of indexes that
include the line numbers of the persons in Pa and Pa over
the whole position matrix. Algorithm 2 encapsulates the SAO
algorithm’s whole process.

IV. RESULTS OF NUMERICAL ANALYSIS
The SAO performance is tested for the ELD. The proposed
SAO technique was evaluated with the greywolf optimization
(GWO) [48], the tunicate swarm algorithm (TSA) [49], the
monarch butterfly optimization (MBO) [50], and the rime-ice
algorithm (RIME) [10] using MATLAB 2015Ra established
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FIGURE 4. Convergence curves of 6 generators at load 1000 MW.

TABLE 7. Fuel consumption optimum costs for 10 generators ($/h).

TABLE 8. The optimal allocation power (MW) from 10 generators at 1000 MW demand.

on intel core i7 (2.1 GHz) and 8GB of ram. The ELD problem
was applied to several case studies as follows:

• The first case study is 6 generators at two different loads
(1000 and 700 MW).

• The second case study is 10 generators at two different
loads (1000 and 2000 MW).

• The third case study is 20 generators at two different
loads (2000 and 3000 MW).
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FIGURE 5. Robustness curves of 10 generators at load 1000 MW.

FIGURE 6. Robustness curves of 10 generators at load 2000 MW.

The common parameters for all algorithms are clarified in
Table 1.

A. RESULTS OF 6-UNIT GENERATORS
Case research of 6 generators at two loads is applied in testing
the ELD issue. Numerous methods were pertained, such as
the SAO, TSA, GWO,MBO, and RIME. The effectiveness of
every rival approach was evaluated using thirty separate runs.

As can be seen in Table 2, these runs were used to record the
mean, maximum, minimum, and standard deviation values as
statistical data at each load level. The SAO obtains the best
objective function and standard deviation based on this data.
Thus, the SAO algorithm is the most precise and dependable
one for ELD. The optimal fuel cost for each scenario is shown
in Table 3. Table 4 shows the optimal power generated by
each unit for a load demand of 700 MW, created on the
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FIGURE 7. Convergence curves of 10 generators at load 1000 MW.

FIGURE 8. Convergence curves of 10 generators at load 2000 MW.

best objective function across all methods. Table 5 shows
the optimal power generated by each unit for a load demand
of 1000 MW, created on the best objective function across all
methods. Based on the recorded outcomes from all techniques
throughout the 30 runs, the robustness curve identifies the
value of the target function for each run. Figures 1–2 show
the properties of the robustness curve for each load for the
6 units’ system. Figure 2 contains 2 subgraphs; the low graph

is a magnified of the high figure to explain the intersection
between plotting. Based on the recorded results from every
method among the top 30 runs that yield the best fitness func-
tion, the convergence curve describes the quickest method
that achieves the objective function. Figures 3–4 display the
features of the convergence curve for each load level for
the 6 units’ system. Figures 3 and 4 contain 2 subgraphs;
the low graph is a magnified of the high figure to explain
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FIGURE 9. Robustness curves of 20 generators at load 2000 MW.

FIGURE 10. Robustness curves of 20 generators at load 3000 MW.

the intersection between plotting. The SAO realizes the best
global solution based on the convergence and robustness
properties.

B. RESULTS OF 10-UNIT GENERATORS
Case research of 10 generators at two loads is used in the
testing of the ELD issue. Numerous methods were pertained,
such as the SAO, TSA, GWO, MBO, and RIME. The effec-

tiveness of every rival approach was evaluated using thirty
separate runs. As can be seen in Table 6, these runs were
used to record the mean, maximum, minimum, and standard
deviation values as statistical data at each load level. The SAO
obtains the best objective function and standard deviation
based on this data. Thus, the SAO algorithm is the most pre-
cise and dependable one for ELD. The optimal fuel cost for
each scenario is shown in Table 7. Table 8 shows the optimal
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FIGURE 11. Convergence curves of 20 generators at load 2000 MW.

FIGURE 12. Convergence curves of 20 generators at load 3000 MW.

power generated by each unit for a load demand of 700 MW,
created on the best objective function across all methods.
Table 9 shows the optimal power generated by each unit for
a load demand of 1000 MW, created on the best objective

function across all methods. Based on the recorded outcomes
from all techniques throughout the 30 runs, the robustness
curve identifies the value of the target function for each
run. Figures 5–6 show the properties of the robustness curve
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TABLE 9. The optimal allocation power (MW) from 10 generators at 2000 MW demand.

TABLE 10. Statistical data for 20 generators based on all techniques ($/h).

TABLE 11. Fuel consumption optimum costs for 20 generators ($/h).

Algorithm 1 Dual-Population Mechanism
1. Initialization: t = 0. Nb = Na = N , where N means

the size of population and tmax
2. while (t < tmax)
3. if Na < N
4. Nb = Nb−1, Na = Na + 1
5. end
6. t = t+1
7. end

for each load for 10 units’ system. Based on the recorded
results from every method among the top 30 runs that yield
the best fitness function, the convergence curve describes
the quickest method that achieves the objective function.
Figures 7–8 display the features of the convergence curve
for each load level for the 10-unit system. Figures 7 and 8
contain 2 subgraphs; the low graph is a magnified of the high

Algorithm 2 SAO Pseudo Code
1. Initialization: Z .t = 0. Nb = Na and tmax .
2. Evaluation the fitness
3. Record G (t) ; the current best individual
4. while (t < tmax)
5. CalculateM; the snowmelt rate from Equation (15)
6. Divide the entire population P into Pb and Pa

subpopulations at random
7. for each individual do
8. Update each individual’s position through

Equation (17)
9. end
10. t = t +1
11. Evaluation of the fitness
12. Update G(t)
13. end
14. Return G(t)

17702 VOLUME 12, 2024



A. A. K. Ismaeel et al.: Performance of SAO for Solving Optimum Allocation of Generator Units

TABLE 12. The optimal allocation power (MW) from 20 generators at 2000 MW demand.

TABLE 13. The optimal allocation power (MW) from 20 generators at 3000 MW demand.

figure to explain the intersection between plotting. The SAO
realizes the best global solution based on the convergence and
robustness properties.

C. RESULTS OF 20-UNIT GENERATORS
Case research of 20 generators at two loads is applied in
testing the ELD issue. Numerous methods were pertained,
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TABLE 14. The power mismatch for 6-unit generators based on all algorithms.

TABLE 15. The optimal allocation power (MW) extracted from SAO for 6 generators at 700 MW.

such as the SAO, TSA, GWO, MBO, and RIME. The effec-
tiveness of every rival approach was evaluated using thirty
separate runs. As can be seen in Table 10, these runs were
used to record the mean, maximum, minimum, and standard
deviation values as statistical data at each load level. The SAO

obtains the best objective function and standard deviation
based on this data. Thus, the SAO algorithm is the most
precise and dependable one for ELD. The optimal fuel cost
for each scenario is shown in Table 11. Table 12 shows the
optimal power generated by each unit for a load demand
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TABLE 16. The optimal allocation power (MW) extracted from SAO for 6 generators at 1000 MW.

of 700 MW, created on the best objective function across
all methods. Table 13 shows the optimal power generated
by each unit for a load demand of 1000 MW, created on
the best objective function across all methods. Based on
the recorded outcomes from all techniques throughout the
30 runs, the robustness curve identifies the value of the target
function for each run. Figures 9–10 show the properties of
the robustness curve for each load for 20 units’ system.
Based on the recorded results from every method among the
top 30 runs that yield the best fitness function, the conver-
gence curve describes the quickest method that achieves the
objective function. Figures 11–12 display the features of the
convergence curve for each load level for the 20-unit system.
Figures 11 and 12 contain 2 subgraphs; the low graph is
a magnified of the high figure to explain the intersection
between plotting. The SAO realizes the best global solution
based on the convergence and robustness properties.

D. DISCUSSION
The value of the power mismatch is the primary compo-
nent in ELD difficulties. the exact discrepancy between

the total demand and transmission losses and the units
of generated electricity. The high-performance methodol-
ogy is used to retrieve the power mismatch value because
it is almost nil. The value of this factor for ELD is
explained in Table 14. Together with the five approaches
utilized in the run, the suggested SOA algorithm is also
compared to other literature techniques including the sine
cosine algorithm, elephant herding optimization, Artificial
Bee Colony, slime mould algorithm, Earth Worm Algorithm,
and ChimpOptimization Algorithm, as explained in Table 14.
The SOA approach consistently delivers the optimal power
mismatch value based on this data. The optimal alloca-
tion power (MW) from the 6-unit generator at each MW
demand extracted from the SAO method is explained in
Tables 15-16.
The original SnowAblationOptimization (SAO) algorithm

has demonstrated competitive performance when compared
to other cutting-edge algorithms, demonstrating features like
fast convergence, simplicity, and dependability, avoiding
local optima, andmaintaining the equilibrium between explo-
ration and exploitation.
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We use Optimum Allocation of Generator Units, which
maintains extremely complicated issue landscapes, for the
thorough evaluation of the SAO. Subsequently, the SAO’s
superiority and practicability are thoroughly confirmed
through comparison with multiple counterparts. The compar-
ison’s findings show that the SAO is a strong and attractive
solution for solving the optimal allocation of the generator
unit’s problem.

In addition to its advantages, the SAO has certain limita-
tions, which are covered below:

• The NFL theorem states that no single optimization
approach can handle all optimization problems.

• We do not evaluate the SAO’s performance with high
Optimum Allocation of Generator Units. The authors con-
clude that the SAO technique adheres to the same principles
as the other metaheuristics methods, even though it out-
performs several other well-known and contemporary algo-
rithms.

V. CONCLUSION
A new metaheuristic technique called snow ablation opti-
mization (SAO) imitates the melting and sublimation proper-
ties of snow. Furthermore, the SAO’s efficacy was compared
to that of four different algorithms. This work uses the
SAO to solve a critical problem: economic load dispatch
(ELD). In particular, ELD contributes to the reduction of
fuel costs. The primary concern in optimizing the ELD
problem is the cost of fuel use, which the SAO seeks to mini-
mize while maximizing the power system’s economic worth.
The vector of unit-specific allocation that establishes the
optimal result for every system is reflected in the main vari-
able of the ELD problem. The rime-ice algorithm (RIME),
grey wolf optimization (GWO), the monarch butterfly opti-
mization (MBO), and the tunicate swarm algorithm (TSA)
were among the algorithms with which the SAO’s perfor-
mance was contrasted. The optimum fuel cost values of
12136.06674 and 8381.566642 are achieved using the SAO
method for six generator units at demand loads of 1000 MW
and 700 MW, respectively. The optimum fuel cost values
of 91408138.73 and 477167397.4 are achieved by the SAO
method for ten generator units at demand loads of 1000 and
2000 MW, respectively. The optimum fuel cost values of
204528254.5 and 379597887.8 are achieved using the SAO
method for 20 generator units at demand loads of 2000 and
3000MW, respectively. In the end, the results confirmed that,
when compared to the alternatives, the SAO was successful
in reducing the cost of fuel for all cases of ELD. The SAO
approach may be used in the future to solve further signif-
icant, real-world optimization problems about solar energy
and power system and real world power system cases with
thousands of generators and loads.
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