
Received 16 November 2023, accepted 5 January 2024, date of publication 23 January 2024, date of current version 31 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3357714

Scalable Security Enforcement for
Cyber Physical Systems
ALEX BAIRD 1, ABHINANDAN PANDA 2, HAMMOND PEARCE 3, SRINIVAS PINISETTY 2,
AND PARTHA ROOP 1, (Member, IEEE)
1Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
2School of Electrical Sciences, Indian Institute of Technology (IIT) Bhubaneswar, Bhubaneswar 752050, India
3School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Corresponding author: Partha Roop (p.roop@auckland.ac.nz)

This work was supported in part by the Ministry of Human Resource Development, Government of India under Grant SPARC P#701; and
in part by the Indian Institute of Technology (IIT) Bhubaneswar Seed Grant SP093.

ABSTRACT The security of Cyber-Physical Systems (CPSs) is increasingly important as more and more of
these systems are added to the Internet of Things (IoT). As we increase the complexity and connectivity of
our smart systems, we likewise broaden their digital attack surface. Recorded attacks on CPSs have caused
significant physical impacts making methods for mitigation of attacks of paramount importance. The use
of runtime enforcement (RE) can prevent violation of security policies. Here, runtime enforcers intervene
before the CPS is compromised. Two key challenges are presented: (1) for complex systems, methods for
automatically composing multiple policies are lacking; and (2) runtime enforcers are themselves executed
digitally—meaning they too could have potential security vulnerabilities.We present the first comprehensive
runtime enforcement framework which addresses both challenges. It can compose a lot of security policies
in parallel and synthesize these policies into the more trustworthy hardware layers of a system. This removes
reliance on potentially vulnerable firmware and software layers. We demonstrate our approach with policies
to mitigate a set of attacks on a Fused Filament Fabrication (FFF) 3D printer. The experimental results
show linear growth in logic element and register usage as the number of policies increase. This compares
favourably to the exponential state space explosion that occurs with the conventional approach of monolithic
composition. Additionally, we find higher enforcer clock frequencies are possible with the proposed parallel
approach compared to existing serial approaches.

INDEX TERMS Security, runtime enforcement, synchronous programming, cyber-physical systems.

I. INTRODUCTION
Cyber-Physical Systems (CPSs) combine the physical and
digital worlds, where embedded digital controllers interact
with the physical world through environmental sensors and
actuators [1]. Our modern world is reliant on their function—
from when you turn your lights on in the morning, which
requires electrical generation and distribution (smart grids),
to having your smart coffee machine brew your morning
coffee automatically based on your wake-up time, to your
commute via car, bus, train, or e-bike, which is enhanced by

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Yu .

integrated embedded systems for both their operation and in
their manufacturing processes.

It is thus imperative that designers of CPSs take into
account security when implementing their systems. This is
not trivial, as illustrated by the range of high profile CPS
attacks including the Stuxnet worm damaging Iranian cen-
trifuges [2], the German Steel Mill attack, which prevented
a blast furnace from shutting down and caused significant
damage [3], and the ransomware attack on Colonial Pipeline,
which caused serious disruption to gasoline supply in the
United States and resulted in a multi-million dollar payout
to the attackers [4].

However, attacks are not just limited to industrial plants,
Internet of Things (IoT) devices have been compromised

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 14385

https://orcid.org/0000-0001-5504-8683
https://orcid.org/0000-0001-5469-7032
https://orcid.org/0000-0002-3488-7004
https://orcid.org/0000-0001-7779-8231
https://orcid.org/0000-0001-9654-5678
https://orcid.org/0000-0003-4522-7340

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

and used to launch Distributed Denial of Service (DDoS)
attacks [5], [6], weaknesses in over-the-counter drones
have been demonstrated [7], and compromise of Additive
Manufacturing (AM) can cause propeller defects which fail
in flight [8].

In this work, we focus our attention on Fused Filament
Fabrication (FFF) AM, known commonly as filament 3D
printers. These devices have become increasingly ubiquitous,
with a range of models available for hobbyist to commercial
use. Filament 3D printers are CPSs as they sense the
environment through sensors (for example, temperature),
impact the environment through actuators (for example,
heaters and motors) to create 3D objects, and are controlled
by an embedded controller. These printers are subject to a
number of threats, as illustrated in Figure 1.

FIGURE 1. Threats to the security of 3D printers and the potential impacts
of successful attacks.

For example, as 3D printers are connected to the internet
for remote monitoring and control, they are exposed to
internal and external network threats from malicious actors.
Attackers could take advantage of security vulnerabilities
in the printer’s firmware or software to take control of the
device. The attacker could then cause a range of damage
potentially including: defects in printed objects, damage
to the printer, and start a fire, which poses a significant
safety risk. These threats and potential impacts follow a
pattern shared by many CPS, where successful attacks have
significant impact on the physical world.

Research in formal methods gives us a reliable mechanism
for mitigating security vulnerabilities. The area of runtime
verification (RV) [9], [10], [11], [12], [13] considers methods
to generate runtime monitors which verify a set of policies
while the system is running. If a policy is violated the monitor
will raise an alarm. RV approaches are often applied where
the systems are black-box (where the inputs and outputs of
a system are known but internal behaviour and mechanics
are not) or too complex for traditional model checking [14].
A key limitation of RV is that it fails to prevent the
violation from occurring, and in security, violations cannot
be tolerated. The area of runtime enforcement (RE) [15], [16],
[17], [18], [19] extends these monitors to intervene before a
violation occurs.

In this work, we consider FFF 3D printers as synchronous
reactive cyber physical systems. Synchronous reactive sys-
tems are those which react to input stimuli and produce
outputs continuously. Their function can be separated into
logical ticks that consist of reading inputs, performing

computation, and emitting outputs. Following the synchrony
hypothesis, these logical ticks are considered as atomic events
which occur infinitely faster than the environment produces
input stimuli.

The system view of a synchronous reactive bidirectional
enforcer is illustrated in Figure 2. The enforcer is placed
between the environment (labelled Env.) and controller
(labelled Ctrl.) such that it can observe and alter Env. inputs
and Ctrl. outputs. For every tick of the controller, the enforcer
first inspects Env. Inputs I and as necessary edits these to
satisfy the set of policies (ϕ) before emitting Safe and Secure
Inputs I’ to the controller. The controller then executes it’s
reaction to these inputs and emitsCtrl. Outputs O. The output
enforcer inspects and, as necessary to satisfy the policy (ϕ),
edits these outputs to produce Safe and Secure Outputs O’,
which are then exposed to the environment. This cycle repeats
for every tick.

FIGURE 2. System view of bidirectional reactive enforcement.

The number of security policies increases as CPSs and the
threat landscape become more complex. Therefore, the need
to enforce multiple policies simultaneously has emerged.
To simultaneously enforce multiple policies, there exist three
methods of composition: monolithic, serial, and parallel.

The monolithic approach consists of taking the product of
individual policies to produce a single large policy. This is
then synthesised into a single enforcer. This approach has
been shown to scale poorly due to state space explosion [20].
The serial approach, introduced for bidirectional synchronous
reactive systems in [20], synthesises multiple enforcers that
are executed sequentially. This overcomes the scalability
issues of the monolithic approach, but is implemented in
software, which assumes the firmware and software stack to
be safe and secure. The myriad of security vulnerabilities
and successful compromises of this stack challenge this
assumption. This suggests enforcers executing on software
platforms are at risk of being compromised by malicious
actors exploting software vulnerabilities. This motivates our
work to provide a high-trust method for compositional
enforcement in bidirectional synchronous systems, as illus-
trated in Figure 2. We develop a generic framework that
supports parallel composition of enforcers in hardware and

14386 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

can be applied to a range of CPSs. To demonstrate this
framework, we consider a range of attacks on a FFF 3D
printer and develop a range of policies, that we synthesise into
enforcers, to defend against the attacks. These enforcers are
synthesised to be executed simultaneously and then, through
a merge block, a final set of signals, that satisfies all policies,
is emitted.
Contributions. The contributions of this work are as

follows:
• We propose a novel compositional framework for
bidirectional RE that supports multiple policies with the
parallel approach.

• We provide a tool which compiles multiple policies to
a hardware description language for parallel composi-
tions. This is an extension to the compiler easy-rte-
incremental [20] which we call easy-rte-hardware.

• We consider an FFF 3D printer as our CPS case study
for which we develop a set of attacks that may be
carried out by amalicious actor. Tomitigate these attacks
we develop a set of defense policies. These policies
are synthesised into hardware runtime enforcers with
monolithic, serial, and parallel compositions.

• Our evaluation and analysis comparesmonolithic, serial,
and parallel compositions of non-functional metrics as
the number of policies increases. The results demon-
strate exponential growth in compile time, compiled
code size, synthesised logic elements, and synthesised
registers for the monolithic approach. The serial and
parallel approaches compare favourably with linear
growth for these metrics.

Outline. In Section II, we introduce and discuss related
work. In Section III, we introduce the preliminaries and
notations for RE of synchronous systems. We recall, from
existing work, the RE framework for synchronous programs
in Section IV. In Section V, we discuss compositional
approaches to enforcement, recalling, where appropriate,
existing work in monolithic and serial composition before
discussing limitations. This motivates our high-trust parallel
composition, which we introduce in Section VI. In Sec-
tion VII, we present the security of 3D printers, with a
set of potential attacks and policies that mitigate them.
We then explain the synthesis of hardware enforcers using
monolithic, serial, and our proposed parallel framework in
Section VIII. Results of this implementation are presented
Section IX, where we compare monolithic, serial, and
parallel composition of enforcers in hardware. In Section X,
we discuss challenges, trade offs, and applications of the
presented work. Finally, conclusions are drawn in Section XI.

II. RELATED WORK
The generation of enforcers from properties is an existing
field of research with varying approaches and applications.
Schneider [15] proposes enforcers which delay execution
with buffering when a sequence of events does not satisfy
the security automata. Edit automata [16] allow enforcers
to alter the input sequence by suppressing and/or inserting

events. The methods in [18] enable the buffering of events,
which are released once the sequence satisfies the required
policy. These approaches consider only a single direction of
communication, often from the controller to the environment,
which limits properties to enforce only outputs.

Bi-directional runtime enforcement was added in Manda-
tory Result Automata (MRAs) [21] which can reason
over communication between two parties. Pearce et al. [22]
proposed bidirectional runtime enforcement for various
cyber-physical threats in industrial applications with timed
policies and, in previous work, we modelled bidirectional
jamming, injection, and edit attacks to create enforcers that
attack a simulated drone system.

In the security domain there are a number of scenarios
where policies need to be composed. A prevalent example
is firewall policies. There are many simultaneously active
policies, such as allowing the flow of traffic between
company IP addresses and port ranges, and blocking
access to untrustworthy domains and IP addresses. Often
these are supported informally by firewalls or device level
security applications. Examples are the Fang [23] and
Firmato tools [24] that allow the composition of security
policies for firewall management. Other applications include
developing, updating, and visualising access control policies,
a subset of runtime enforceable policies, in [25]. Policies
are not just limited to access and firewalls. In [26], a tool
polymer is proposed for enforcing composable policies in
java applications. Such tools and approaches are com-
mon but often informal, meaning they may not gurantee
correctness.

In [27], Pinisetty and Tripakis investigated the composi-
tionality of enforcers for a unidirectional RE architecture
that allows the enforcer to buffer events (this is equivalent
to delaying events). This work explored the synthesis of
multiple enforcers, one for each policy, and then if composing
these in series or parallel could satisfy all policies. However,
buffering of events is not possible in reactive systems.

For reactive systems, the enforcer must react instantly,
and so these approaches which allow combinations of
halting or delaying are not adequate. However, enforcement
frameworks developed in works such as [19], [20], and [28]
are relevant.

Unidirectional reactive enforcers, termed shields, are
introduced in [28], where safety properties are synthesised
into shields which observe environment input and controller
outputs. The shields then transform outputs as little as
possible to ensure correctness by the safety properties.

Our work is based on [19], which introduces a framework
for bidirectional RE, but does not consider composition of
multiple policies, and [20], which introduces a framework for
incrementally composing policies but considers only serial
composition in software.

No existing RE framework considers parallel composition
for reactive security enforcers in hardware. The contributions
of this work address the risk of security vulnerabilities in
software platforms, which undermine enforcer integrity, and

VOLUME 12, 2024 14387

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

simultaneously supports composing multiple policies for
increasingly complex reactive systems.

A. RELATIONSHIP TO PHYSICAL LAYER FAULT TOLERANCE
The hardware runtime enforcement we propose is similar
in spirit to other approaches that use hardware to ensure
a minimum quality of service such as physical layer fault
tolerance.

Physical layer fault tolerance can be improved with a
variety of approaches that use the principles of redundancy,
error detetion, and correction. In [29] and [30], fault
tolerance is considered for multi-agent distributed systems
where concensus between agents must be reached without
continious communication. Our work differs as a single agent
(enforcer) is responsible satisfying multiple policies. This
requires exammining bidirectional communication between
the system plant and controller, rather than communication
between agents in a multi-agent system.

However, there remains a largely unexplored area of
runtime enforcement, called distributed enforcement, where
policies can be applied to and between agents. Elements of
control theory from multi-agent systems, like those in [29]
and [30], may be leveraged for distributed enforcement,
though this is beyond the scope of this work.

III. PRELIMINARIES
In this section, we introduce the notations and the safety
automata formalism used to define security policies to be
monitored and enforced. We also briefly recall the RE
problem for synchronous programs (all the constraints that
an enforcer should fulfill).

A finite word over a finite alphabet 6 is a finite sequence
σ = a1 ·a2 · · · an of members of 6, and 6∗ denotes the set of
finite words over 6. Considering a finite word σ , its length
is denoted as |σ |. ϵ6 is used to denote the empty word over
6 is denoted by ϵ6 , or ϵ (when the context makes it evident).
Given two words σ and σ ′, their concatenation is indicated
as σ · σ ′. A word σ ′ is a prefix of a word σ , represented as
σ ′ ≼ σ , whenever a word σ ′′ is present such that σ = σ ′

·σ ′′;
σ is called an extension of σ ′.

A reactive system with finite ordered sets of Boolean
inputs I = {i1, i2, · · · , in} and Boolean outputs O =

{o1, o2, · · · , om} is considered. 6I = 2I denotes the input
alphabet, 6O = 2O denotes the output alphabet, and the
input-output alphabet is6 = 6I×6O. A bit-vector/complete
monomial will be used to represent each input (resp. output)
event. For example, let us consider I = {P,Q}. Then, the
input {P} ∈ 6I is denoted as 10, while {Q} ∈ 6I is denoted
as 01 and {P,Q} ∈ 6I is denoted as 11. A reaction (or
input-output event) has the following structure: (xi, yi), where
xi ∈ 6I and yi ∈ 6O.

Given σ = (x1, y1) · (x2, y2) · · · (xn, yn) ∈ 6∗ which is an
input-output word, the input word acquired from σ is σI =

x1 · x2 · · · xn ∈ 6I , which is a projection that ignores outputs
and is based on inputs. Similarly, the output word obtained

from σ is σO = y1 ·y2 · · · yn ∈ 6O is the projection on outputs
ignoring inputs.

A policy denoted as ϕ (over 6) represents a set L(ϕ) ⊆

6∗. Given a word σ ∈ 6∗, σ |H ϕ iff σ ∈ L(ϕ). A policy
ϕ is prefix-closed if all prefixes of all words from L(ϕ) are
also in L(ϕ): L(ϕ) = {w | ∃w′

∈ L(ϕ) : w ≼ w′
}. Prefix-

closed policies are the focus of this study. Security policies
are formalized as safety automata, which we define next in
this section.

Synchronous programming languages [31] are ideal for
developing synchronous reactive systems. They express
safety properties via observers [32], which are statically ver-
ified (using model checking). Safety automata are analogous
to observers but are enforced at runtime.
Definition 1 (Safety Automaton): A safety automaton (SA)

A = (Q, q0, qv, 6,−→) is a tuple, where Q denotes the set
of states, known as locations, q0 ∈ Q is a distinct starting
location, qv ∈ Q is a distinct non-accepting (violating)
location, the alphabet is 6 = 6I × 6O, and the transition
relation is −→⊆ Q × 6 × Q. Except for qv, all the other
locations are accepting (i.e., all the locations in Q \ {qv}).
Location qv is a distinct violating (trap) location, thus no
transitions in −→ from qv to a location in Q \ {qv} exist.
Whenever there exists (q, a, q′) ∈−→, we denote it as q

a
−→ q′.

Relation −→ is extended to words σ ∈ 6∗ by noting q
σ.a
−→ q′

whenever there exists q′′ such that q
σ
−→ q′′ and q′′ a

−→ q′.
A location q ∈ Q is reachable from q0 if there exists a word
σ ∈ 6∗ such that q0

σ
−→ q.

An SA A = (Q, q0, qv, 6,−→) is deterministic if ∀q ∈

Q, ∀a ∈ 6, (q
a
−→ q′

∧ q
a
−→ q′′) H⇒ (q′

= q′′). A is
complete if ∀q ∈ Q, ∀a ∈ 6, ∃q′

∈ Q, q
a
−→ q′. A word σ is

accepted by A if there exists q ∈ Q \ {qv} such that q0
σ
−→ q.

The set of all words accepted by A is denoted as L(A).
Remark 1: We can first determinize and complete a

non-deterministic or incomplete automaton provided by the
user. We further assume that Q has no (redundant) locations
that are unreachable from q0. Hence, in the rest of this work,
ϕ is a safety policy specified as deterministic and complete
SA Aϕ = (Q, q0, qv, 6,−→).
The enforcer must first alter inputs from the environment

in each step according to policy ϕ specified as SA Aϕ

according to the causality requirement. As a result, we must
examine the input policy obtained by projecting on inputs
from Aϕ .
Definition 2 (Input SA AϕI): Given ϕ ⊆ 6∗, specified as

SA Aϕ = (Q, q0, qv, 6,→), by discarding outputs on the
transitions, input SA AϕI = (Q, q0, qv, 6I , →I) is derived

from Aϕ .That is, for every transition q
(x,y)
−−→ q′

∈→ where
(x, y) ∈ 6, there is a transition q

x
−→ q′

∈→I , where x ∈ 6I .
L(AϕI) is represented as ϕI ⊆ 6∗

I .
Example 1 (Example policy defined as SA and its input SA):

Consider I = {B,Q} and O = {X}. Let us consider the
policy: P: ‘‘B and Q can’t happen at the same time and Q
and X can’t happen at the same time.’’ Policy P is defined by
the safety automaton in Figure 3a. The input SA for the SA

14388 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

in Figure 3a defining policy P is shown in Figure 3b. Though
the SA Aϕ is deterministic, the input SA AϕI may be non-
deterministic. This is the case with the considered example
as shown in Figure 3b.

FIGURE 3. Safety Automaton (SA) (left) and its input SA (right).1

Lemma 1: Consider AϕI = (Q, q0, qv, 6I , →I) be the
input automaton derived from Aϕ = (Q, q0, qv, 6,→). The
policies we have are as follows:

1 ∀(x, y) ∈ 6, ∀q, q′
∈ Q : q

(x,y)
−−→ q′

H⇒ q
x
−→I q′.

2 ∀x ∈ 6I , ∀q, q′
∈ Q : q

x
−→I q′

H⇒ ∃y ∈ 6O : q
(x,y)
−−→

q′.
Lemma 1 is an immediate consequence from Defini-
tions 1 and 2. Policy 1 states that if there is a transition from
state q ∈ Q to state q′

∈ Q in the automaton Aϕ upon
input-output event (x, y) ∈ 6, then there is a transition from
state q to state q′ in the input automaton AϕI upon the input
event x ∈ 6I . Policy 2 states that if there is a transition from
state q ∈ Q to state q′

∈ Q upon input event x ∈ 6I , then
there must be an output event y ∈ 6O s.t. there is a transition
from state q to state q′ upon event (x, y) in the automatonAϕ .
Definition 3 (Product of SA): Given two SA Aϕ1 =

(Q1, q10, q
1
v, 6,→1), and Aϕ2 = (Q2, q20, q

2
v, 6,→2), their

product SA Aϕ1 × Aϕ2 = (Q, q0, qv, 6,→) where Q =

Q1
× Q2, q0 = (q10, q

2
0), qv = (q1v, q

2
v), and the transition

relation →⊆ Q × 6 × Q with ((q1, q2), a, (q′1, q′2)) ∈→ if
(q1, a, q′1) ∈→1 and (q2, a, q′2) ∈→2.
In the product SA Aϕ1 × Aϕ2 , all the locations in (Q1

×

q2v)∪(q1v×Q2) are trap locations. All the outgoing transitions
from these locations can be replaced with self-loops, and all
such locations can be merged into a single violating location
labeled as qv. Any outgoing transition from a location in Q \

(Q1
× q2v)∪ (q1v ×Q2) to a location in (Q1

× q2v)∪ (q1v ×Q2)
goes to qv instead.
The product of SAs is useful to enforce multiple policies

using the monolithic approach by first constructing a product
of the given SAs. Given two deterministic and complete SAs
Aϕ1 andAϕ2 , the product SAAϕ1 ×Aϕ2 is deterministic and
complete which recognizes the language L(Aϕ2) ∩ L(Aϕ2).

A. EDIT FUNCTIONS
Let us consider policy ϕ ⊆ 6∗, specified as SA Aϕ =

(Q, q0, qv, 6,→), and SA AϕI = (Q, q0, qv, 6I , →I)
derived fromAϕ by discarding outputs. The enforcer utilizes
the following editIϕI (resp. editOϕ), for editing input (resp.

1Here, 6 = {(00, 0), (00, 1), (01, 0), (01, 1), (10, 0),
(10, 1), (11, 0), (11, 1)}. So 6\{(11, 1), (11, 0), (01, 1)} =
{(00, 0), (00, 1), (01, 0), (10, 0), (10, 1)}.

output) events (when required), as per the policy ϕI (resp.
ϕ).
• editIϕI(σI): Given σI ∈ 6∗

I , editIϕI (σI) is the set of input
events x ∈ 6I s.t. the word obtained by concatenating x
after σI satisfies policy ϕI . Formally,

editIϕI (σI) = {x ∈ 6I : σI · x |H ϕI }.

When we consider the SA AϕI = (Q, q0, qv, 6I , →I), the
members in 6I that allow to reach a state in Q \ {qv} from
a state q ∈ Q \ {qv} is defined as:

editIAϕI
(q) = {x ∈ 6I : q

x
−→I q′

∧ q′
̸= qv}.

Let us, for example, consider the SA in Figure 3b derived
from the SA in Figure 3a by projecting on inputs. If we
consider σ = (10, 0) · (01, 1), we have σI = 10 · 01.
Then, editIϕI (σI) = 6I \ {11}. Moreover, q0

10·01
−−−→I q0,

and editIAϕI
(q0) = 6I \ {11}.

• randEditIAϕI
(q) If editIAϕI

(q) is non-empty, then
randEditIAϕI

(q) returns an element (chosen randomly)
from editIAϕI

(q) and is undefined if editIAϕI
(q) is empty.

• editOϕ(σ, x): Consider an input event x ∈ 6I , and an
input-output word σ ∈ 6∗. We have editOϕ(σ, x), the set
of output events y in6O s.t. the input-output word obtained
by concatenating σ followed by (x, y) (i.e., σ · (x, y))
satisfies policy ϕ. Formally,

editOϕ(σ, x) = {y ∈ 6O : σ · (x, y) |H ϕ}.

When we consider the automatonAϕ = (Q, q0, qv, 6,→)
specifying policy ϕ, and an input event x ∈ 6I , the set of
output events y in 6O permitting to reach a state in Q\ {qv}
from a state q ∈ Q \ {qv} with (x, y) is defined as:

editOAϕ
(q, x) = {y ∈ 6O : q

(x,y)
−−→ q′

∧ q′
̸= qv}.

For example, consider policy P defined by the automaton
in Figure 3. We have editOAϕ

(q0, 01) = {0}.
• randEditOAϕ

(q, x) If editOAϕ
(q, x) is not empty,

then randEditOAϕ
(q, x) returns a random element

from editOAϕ
(q, x), and if editOAϕ

(q, x) is empty
randEditOAϕ

(q, x) is undefined.

B. SELECT FUNCTIONS
In this section, we recall the Select functions, the minD
function, and the incremental enforcement function. The
incremental security enforcement schemes that we shall be
discussing are defined using these Select functions.
• SelectIϕI (σI,X): Given an input word σI ∈ 6∗

I , and a set
of input events X ⊆ 6I , SelectIϕI (σI ,X) is the set of input
events x that belong to set X such that the word obtained
by extending σI with x satisfies policy ϕI . Formally,

SelectIϕI (σI ,X) = {x ∈ X : σI · x |H ϕI }.

Considering the SA AϕI = (Q, q0, qv, 6I , →I), the set of
events in X that allow to reach a state in Q \ {qv} from a

VOLUME 12, 2024 14389

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

state q ∈ Q \ {qv} is defined as:

SelectIAϕI
(q,X) = {x ∈ X : q

x
−→I q′

∧ q′
̸= qv}.

For example, let us consider the input automaton corre-
sponding to policy P in Figure 3b. Initially, when σI = ϵ

we have X = {00, 01, 10, 11}, and SelectIP(ϵ,X) =

{00, 01, 10}. If we consider σI = 00 · 01 · 01, and X =

{00, 01, 10}, we have SelectIP(00 · 01,X) = {00, 01, 10}.

Also, q0
00·01
−−−→I q0, and SelectIP(q0, {00, 01, 10}) =

{00, 01, 10}.
• SelectOϕ(σ, x, Y): Given an input-output word σ ∈ 6∗,
an input event x ∈ 6I , and a set of output events Y ⊆

6O, SelectOϕ(σ, x,Y) is the set of output events y in Y s.t.
the input-output word obtained by extending σ with (x, y)
satisfies policy ϕ. Formally,

SelectOϕ(σ, x,Y) = {y ∈ Y : σ · (x, y) |H ϕ}.

Considering the automaton Aϕ = (Q, q0, qv, 6,→)
defining policy ϕ, and an input event x ∈ 6I , the set of
output events y in Y that allow to reach a state in Q \ {qv}
from a state q ∈ Q \ {qv} with (x, y) is defined as:

SelectOAϕ
(q, x,Y) = {y ∈ Y : q

(x,y)
−−→ q′

∧ q′
̸= qv}.

For example, consider policy P illustrated in Figure 3.
We have SelectOP(q0, 01, {0, 1}) = {0}.

• MinD(x,X ′) (resp. MinD(y, Y ′)): Consider X ′ (resp.
Y ′) as a set of input (resp. output) events acceptable
to all policies ϕ, and x (resp. y) as the original input
(resp. output). MinD(x,X ′) (resp. MinD(y,Y ′)) non-
deterministically selects an edit x ′

∈ X ′ (resp. y′ ∈ Y ′)
such that it is of minimum deviation from the original input
event x (resp. output event y).

IV. RUNTIME ENFORCEMENT WITH SAFETY AUTOMATA
To set the scene, we recall the runtime enforcement approach
from [19] which presents how any given word σ ∈ 6∗ is
transformed to comply with the policy ϕ.
An enforcer for the policy ϕ can only alter an input-output

event when it’s absolutely essential; it can’t block, postpone,
or suppress events.
An enforcer may be thought of as a function that modifies

input-output words at a high level. An enforcement function
for the policy ϕ takes an input-output word over 6 as input
and produces an input-output word over 6 that conforms to
ϕ as output.
We briefly recall the constraints that an enforcer for any

given policy ϕ should satisfy. Formal definitions of these
constraints and more details are given in [19].
Constraints that should be satisfied by an enforcer for a

given property ϕ:
Several constraints, such as Soundness, Transparency,

Monotonicity, Instantainety, and Causality, must be met by
an enforcer for a given property ϕ.
To be considered sound, the enforcer’s output for each

input word must always satisfy the property ϕ. In order to

maintain transparency, the enforcer leaves the input event
undisturbed when no changes are needed to comply with
policy ϕ. The monotonicity condition means that the enforcer
cannot undo what has already been transmitted as output. The
instantainety constraint states that when the enforcer receives
a new event, it must respond immediately and provide
an output event instantaneously. The causality constraint
specifies that, the enforcer has to first transform inputs
from the environment in each step according to property ϕ,
followed by reading and transforming the output.
Remark 2 (Enforceability): Let ϕ ⊆ 6∗ be a policy.

We recall from [20] that ϕ is enforceable iff an enforcer
Eϕ , for ϕ, satisfying all the constraints such as Soundness,
Transparency, Monotonicity, Instantainety, and Causality
exists. As discussed in [20], not all safety properties are
enforceable. The conditions for enforceability (defining when
a given policy is said to be enforceable) are also discussed
in [20]. Informally, we can understand the SA defining the
policy to satisfy the enforceability condition when every
accepting state in the SA has one (or more) transition(s) to
an accepting state.
We now recall the definition of an enforcement function

from [19] that satisfies the above discussed constraints.
Every reaction of the system is an input-output event pair
(x, y), where x ∈ 6I is the input, and y ∈ 6O is
the output. When an enforcer receives an input-output pair
(x, y) it immediately produces the transformed input-output
pair (x ′, y′). The enforcer first processes the input x to
produce x ′, and then the output y, to produce y′ and form
the pair (x ′, y′). The enforcement function Eϕ consists of
two subfunctions: input enforcement function EI and output
enforcement functionEO.EI requires the environment input x
to produce transformed input x ′. EO requires the transformed
input x ′ and the controller output y (obtained by running
the controller) to produce the transformed event pair (x ′, y′)
which is appended to the output of the enforcer.
Definition 4 (Enforcement Function): The enforcement

function Eϕ : 6∗
→ 6∗ for a policy ϕ ⊆ 6∗, is defined

as EO(EI (σI), σO):
where:

• EI : 6∗
I → 6∗

I is defined as:

EI (ϵ6I) = ϵ6I

EI (σI · x) =

{
EI (σI) · x if EI (σI) · x |H ϕI ,

EI (σI) · x ′ otherwise

where x ′
= randEditIϕI (EI (σI)).

• EO : 6∗
I × 6∗

O → (6I × 6O)∗ is defined as:

EO(ϵ6I , ϵ6O) = ϵ6

EO(σI · x, σO · y) =



EO(σI , σO)· if
(x, y) EO(σI , σO)·

(x, y) |H ϕ,

EO(σI , σO)· otherwise
(x, y′)

14390 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

where y′ = randEditOϕ(EO(σI , σO), x).
The function Eϕ takes a word over 6∗ and outputs another
word over 6∗. For a word σ ∈ 6∗ the projection of σ on
inputs is σI ∈ 6∗

I , and the projection of σ on outputs is
σO ∈ 6∗

O. The output of function Eϕ is defined through two
functions, EI and EO.
Function EI : The input enforcement function EI takes,

as input, a word projected on inputs σI ∈ 6∗
I and returns

a word in 6∗
I for a given word σ ∈ 6∗.

Inductively, the function EI is defined. When the input
σI = ϵ6I , it returns ϵ6I . When 6I is read as input and EI (σI)
is returned as output, there are two possible scenarios:
• If EI (σI) followed by the input x satisfies input policy ϕI
then the input x is concatenated to the previous output of
function EI : EI (σI · x) = EI (σI) · x.

• Alternatively, EI (σI) ·x does not satisfy ϕI and so input x is
transformed to input x ′ using randEditIϕI (EI (σI)), which is
appended to the previous output of function EI : EI (σI ·x) =

EI (σI) · x ′. Note that randEditIϕI (EI (σI)) returns x
′
∈ 6I ,

such that ϕI is satisfied by the EI (σI) followed by x ′.
Function EO: The output enforcement function EO takes,

as input, an input word from 6∗
I and an output word from

6O∗ and returns an input-output word in 6∗, which is a
sequence of tuples with an input and an output for each event.
Inductively, the function EO is defined. The output of EO is ϵ

when both the input and output words are empty.
If σI ∈ 6∗

I and σO ∈ 6∗
O is read, the output will be

EO(σI , σO). If another input event x and output event y are
observed, there are two possibilities:
• If EO(σI , σO) followed by (x, y) satisfies ϕ, then (x, y) is
added to the previous output of EO: EO(σI · x, σO · y) =

EO(σI , σO) · (x, y).
• Alternatively, EO(σI , σO) · (x, y) does not satisfy ϕ. In this
case, randEditOϕ(EO(σI , σO), x) alters output y to obtain
y′, and the event (x, y′) is added to the previous output of the
function EO: EO(σI · x, σO · y) = EO(σI , σO) · (x, y′). Note
that randEditOϕ(EO(σI , σO), x) outputs y′ ∈ 6O such that
ϕ is satisfied by EO(σI , σO) followed by (x, y′).
Remark 3 (Functional definition satisfies constraints):

In [19], it is proved that for any given policy ϕ that is
enforceable, the enforcer defined as function Eϕ (Defini-
tion 4) satisfies the Soundness, Transparency, Monotonicity,
Instantainety, and Causality constraints.

FIGURE 4. Example policy P .

Example 2 (Functional definition): For example, consider
the policy P: ‘‘MAX_CURRENT and HEATER can’t
happen at the same time, and MAX_TEMP and HEATER
can’t happen at the same time’’ illustrated in Figure 4,

where I = {MAX_CURRENT, MAX_TEMP} and O =

{HEATER}. The output of functions EI and EO is illustrated
in Table 1. The complete the input sequence σ = (01, 0) ·

(01, 1) (where σI = 01 · 01 and σO = 0 · 1) is processed
gradually by the enforcer function. Initially, the input and
output words are empty, ϵI and ϵO respectively, and so
enforcer output is empty, ϵ. The first event, when σ is (01,0)
(i.e. MAX_TEMP), it satisfies policy P, so is emitted without
any edit. The second event (01,1) (i.e. MAX_TEMP and
HEATER) (σ = (01, 0) · (01, 1)) is acceptable to the input
enforcer and so EI (σI) = 01 · 01. However, the HEATER
output of 1 violates P, and so the enforcer transforms the
HEATER signal to 0 to satisfy the policy. Thus, the enforcer
outputs (01, 0) · (01, 0).

TABLE 1. Functional definition example for policy P .

V. RUNTIME ENFORCEMENT WITH MULTIPLE POLICIES
In this section, we discuss monolithic, incremental, and
parallel composition methods for enforcing a set of policies
expressed as Safety Automaton (SA) in the reactive systems
framework.
Example 3 (Example Policies): Let I = {A,B,C} and

O = {R}. Consider the following policies: S1: ‘‘A and B
cannot happen simultaneously, and also B and R cannot
happen simultaneously’’ and S2: ‘‘B and C cannot happen
simultaneously.’’ The safety automaton in Figure 5a and
Figure 5b define policies S1 and S2 respectively.

A. MONOLITHIC SECURITY ENFORCEMENT
The monolithic approach to the composition of a collection
of (SA) policies takes the product of policies. We take the
product of SA as defined in [20] as the intersection of policies.
We can then synthesise one enforcer for the resulting policy
(product of policies) if this resulting policy is enforceable (as
discussed in Remark 2).
Specifically, given any two policies ϕ1 and ϕ2, to enforce

both these policies, we first compute ϕ = ϕ1 ∩ ϕ2 (by
computing the product of SA for ϕ1 and ϕ2). Then if the
resulting SA for ϕ is enforceable, we synthesize an enforcer
for ϕ using the approach described in Section IV.
Example 4 (Monolithic Approach): Consider policies S1

and S2 defined as SA illustrated in Figure 5. The product of
these automata, defining S1 ∩ S2, is shown in Figure 6. The
policy S1 ∩S2 is enforceable as every accepting state has one
(or more) transition(s) to an accepting state (See Remark 2).
The behaviour of an enforcer for AS1∩S2 is illustrated in
Table 2 when the input-output word (100, 1)·(110, 1)·(011, 0)
is processed incrementally.

VOLUME 12, 2024 14391

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 5. Safety automaton for S1 and S2.

FIGURE 6. AS1∩S2
: Product of automaton S1 and S2.

TABLE 2. Example illustrating behavior of enforcer for AS1∩S2
.

As discussed in the problem description, we focus on how
to improve trust and scalability of enforcers with hardware
composition. In our framework we cannot use the existing
Definition 4 to compose enforcers as, in this definition,
an enforcer reads from the environment and edits any inputs
to satisfy the policy it is defined for. The same occurs
for controller output, the enforcer reads this and edits any
outputs to satisfy the underlying policy. This does not support
multiple policies as an edit made by one enforcer may not
be compatible with the other enforcer. In our framework we
require all enforcers acceptable solutions to be considered
before an edit is selected. In the following section we recall
incremental security enforcement [20] which addresses this
concern.

B. INCREMENTAL SECURITY ENFORCEMENT
In earlier work [20], the enforcement layer was incrementally
expanded to defend against new threats. This work introduced
a framework where each enforcer sequentially takes, as input,
a set of possible acceptable solutions. This required a
redefinition of the enforcement function from Definition 4
and the definition of Select functions. The Select functions
produce subsets of possible acceptable solutions which
satisfy the policy. This subset is reduced incrementally by
each enforcer’s Select function until a final set, which is
acceptable to all policies, is produced. A final function,
MinD, is then used to pick the edit action from the final set.
This is repeated for both input and output.
Definition 5 ([Incremental enforcement via serial compo-

sition): Given two properties ϕ1 and ϕ2 (where ϕ1I and

2Here, 6 = {(0, 0), (0, 1), (1, 0), (1, 1)}. So 6 \ (1, 1) =
{(0, 0), (0, 1), (1, 0)}.

3Here, 6 = {(0, 0), (0, 1), (1, 0), (1, 1)}. So 6 \ (0, 0) =
{(0, 1), (1, 0), (1, 1)}.

ϕ2I are their corresponding input policies), we define the
enforcement function Eϕ1 ⇛ Eϕ2 : 6∗

→ 6∗ as EO(EI (σI),
σO) where:

• EI : 6∗
I → 6∗

I is defined as:

EI (ϵ6I) = ϵ6I

EI (σ · a) = σ ′
I ·MinD(a, SelectIϕ2 (σ

′
I ,

(SelectIϕ1 (σ
′
I , 6I))))

where σ ′
I = EI (σ).

• EO : 6∗
I × 6∗

O → (6I × 6O)∗ is defined as:

EO(ϵ6I , ϵ6O) = ϵ6

EO(σI · x, σO · y) = σ ′
· (x, y′)

where σ ′
= EO(σI , σO)

y′ = MinD(y, SelectOϕ2 (σ
′, x,

SelectOϕ1 (σ
′, x, 6O))).

As per the incremental composition in Definition 5, all
possible inputs 6I are passed to the input enforcers. The set
obtained via SelectI satisfies all input policies, ϕ1 and ϕ2 in
this instance.

When a new input event a arrives, it is input to
the MinD function along with the output from SelectI.
MinD chooses (if required) a suitable element from the set
which satisfies all input policies to emit to the controller.
If the input a satisfies the policies, it will be in the set from
SelectI, and thus will be selected by MinD (this respects the
Transparency requirement).

Similarly, all possible output events 6O and the final input
event x are input to the output enforcers SelectO. The set
obtained from this satisfies all output policies, ϕ1 and ϕ2 in
this instance.

When an output event y arrives from the controller, it is
input to the MinD function along with the output from
SelectO, the set of all possible events which satisfy all
policies. MinD chooses (if required) a suitable element from
the set which satisfies all output policies to emit to the
environment. Similarly to the input enforcement, if y satisfies
all policies, it will be the set selected by MinD to respect the
Transparency requirement.

C. A NEW ENFORCEMENT APPROACH
We have now considered monolithic and incremental
enforcement approaches to composing multiple policies. The
problem of composing multiple enforcers is not straight
forward. Multiple enforcers as defined in Definition 4 cannot
simply be combined, as demonstrated in [20].

The incremental approach resolves this with the definition
of Select functions that output all acceptable solutions.

14392 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

Then a merge function, like Rand (which picks an element
randomly from the set), can determine the final output which
satisfies all policies.

In our workwe consider trust and scalability improvements
in hardware composition, and so the incremental approach
does not work either, for the following reasons:
• As the enforcers execute in parallel, they do not con-
sider other enforcer’s acceptable solutions as in the
incremental approach. Instead parallel enforcers con-
sider only current events (environment input(s) and/or
controller output(s)), the internal automaton location,
and any clocks. This prevents parallel enforcers from
snooping on output from other enforcers. This sup-
ports hidden or confidential policies and their respective
enforcers.

• As each enforcer produces a set of acceptable solutions
simultaneously, these must be combined (via intersection)
before an edit can be selected.

• From a practical perspective, passing sets of acceptable
solutions (i.e. sets of sets) between hardware components
does not scale. The initial set of acceptable solutions is
2(NI+NO) where NI is the number of input events and NO
is the number of output events. As such, there would be
at minimum 2NI+NO connections between each hardware
component.
For these reasons, the existing enforcement functions

are not suitable for parallel hardware enforcement and so
we propose a new high-trust enforcement scheme in the
following section.

VI. HIGH-TRUST HARDWARE ENFORCEMENT
In this section we motivate our hardware implementation of
the parallel enforcement strategy in hardware. Like previous
efforts proposing runtime enforcement in hardware [22], [33],
we also choose this strategy as pure-hardware systems are,
by definition, more secure than those relying on software.
Software-based systems, as they run atop a hardware
platform, must consider software security, hardware security,
and cross-domain security [34]. Pure hardware systems,
on the other hand, have a far smaller attack surface since they
only need to be concerned about the subset of the aspects of
hardware security. Software systems, which rises in complex-
ity from ‘bare-metal’ application code all the way through to
multi-threaded and networked operating systems, introduce a
wide attack surface depending on the nature of the application
in question. Without such a software layer, an entire class
of vulnerabilities are no longer applicable to pure hardware
systems.

Still, there are risks in hardware applications, including
in the supply chain, although we largely consider these
out of scope for this work (refer to the surveys [35], [36]
for problems and solutions posed in the broader hardware
security literature). The major concern in this work regards
functional bugswhichmay be exploitable bymalicious adver-
saries. This is because we target hardware implementations
which are immutable and without update functionality. The

only risk, if your production facilities are trustworthy, would
be in implementations that are faulty because these flaws
would not be patchable. Ergo, it is essential that the hardware
be implemented correctly—the procedures outlined in this
section present this formally.

A. PARALLEL HARDWARE ENFORCEMENT
To define a high-trust framework for multi-policy enforce-
ment in hardware we can repurpose the input and output
enforcement Select functions from incremental enforcement
function. To compose multiple enforcers in parallel we
need to redefine the enforcement function as illustrated in
Figure 7:
• composing all input enforcement functions in parallel, such
that each accepts input (x) and releases all satisfactory input
combinations (X1, X2) to a merge block where input that
satisfies all policies (x ′) is selected and released to the
controller.

• similarly, composing all output enforcement functions
in parallel, such that each accepts final input (x ′) and
controller output (y) then releases all satisfactory output
combinations (Y1, Y2) to a merge block where output that
satisfies all policies (y′) is selected and released to the
environment.

FIGURE 7. Parallel composition.

B. PARALLEL ENFORCEMENT FUNCTION
We now define the parallel composition of enforcers using
Select in Definition 6 below. We use Rand as our merge
function to reduce the complexity when implementing the
framework compared to MinD. The use of MinD would
require a comparison between the original signal and every
possible edit, causing an unscalable growth in the complexity
of selecting an edit.
Definition 6 (): Given two properties ϕ1 and ϕ2 (where ϕ1I

and ϕ2I are their corresponding input properties), we define
the enforcement function Eϕ1 ||Eϕ2 : 6∗

→ 6∗ as EO(EI (σI),
σO) where:

VOLUME 12, 2024 14393

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

· EI : 6∗
I → 6∗

I is defined as:

EI (ϵ6I) = ϵ6I

EI (σI · a) =



σ ′
I · a if a ∈ ∩(

SelectIϕ1 (σ
′
I , 6I),

SelectIϕ2 (σ
′
I , 6I))

σ ′
I · Rand(∩(otherwise

SelectIϕ1 (σ
′
I , 6I),

SelectIϕ2 (σ
′
I , 6I)))

where σ ′
I = EI (σI).

· EO : 6∗
I × 6∗

O → (6I × 6O)∗ is defined as:

EO(ϵ6I , ϵ6O) = ϵ6

EO(σI · x, σO · y) = σ ′
· (x, y′)

where σ ′ = EO(σI ,σO),

y′ =



y if y ∈ ∩(

SelectOϕ1 (σ
′, x, 6O),

SelectOϕ2 (σ
′, x, 6O))

Rand(∩(
SelectOϕ1 (σ

′, x, 6O), otherwise
SelectOϕ2 (σ

′, x, 6O))).

· Rand is a function that picks an element randomly for a set.
Note the parallel composition of enforcers using Select

functions always works. Given two properties, ϕ1, ϕ2, and
also ϕ1 ∩ ϕ2 are all enforceable, parallel composition of
enforcers of ϕ1 and ϕ2 as per the above definition works. The
final output obtained does satisfy ϕ1 ∩ ϕ2.
Let us consider input enforcement to understand this

(similar reasoning applies to output enforcement). As per
parallel composition, defined in Definition 6, all input
enforcers simultaneously consider all possible inputs, 6I .
The set obtained (using the intersection of individual
SelectI() output) is a valid one that satisfies all input
properties (ϕ1 and ϕ2 in this case). This set is provided to
randEdit which chooses, as required, a suitable edit.
Let us consider the following example to understand this

further.
Example 5 (Parallel Composition using Select): Let us

again consider properties S1 and S2 illustrated in Figure 5.
Both properties S1 and S2 are individually enforceable and
the property S1 ∩ S2 is also enforceable. When we compose
input and output enforcers for these properties in parallel as
per Definition 6, the final output obtained satisfies property
S1 ∩ S2. For example, as shown in Table 3, consider the word
(100, 1) · (110, 1) · (011, 0) to be processed. Whenever any
input is given, the function randEditIϕI always selects a valid
element to input to the output enforcement function always
satisfying all the properties.
Theorem 2 (Parallel composition using Select): Consider

two policies ϕ1, ϕ2 defined as SA, and where ϕ = ϕ1 ∩ ϕ2.
If policy ϕ is enforceable, then Eϕ1 ||Eϕ2 as per Definition 6

TABLE 3. Parallel composition scheme using Select.

is an enforcer for ϕ (satisfies the Soundness, Transparency,
Monotonicity, Instantainety, and Causality constraints).

VII. SECURITY OF 3D PRINTERS
Functionally, FFF 3D printers are a type of CPS. A filament
is fed into an extruder and hotend at the filament material’s
melting temperature (commonly used plastics range between
200◦C and 250◦C). The hotend nozzle is then moved
precisely in 3D space in combination with the extrusion of
melted filament to build up, layer by layer, the desired 3D
objects.

In recent years FFF printing has expanded rapidly. This
includes many quickly produced low-cost models, that enable
more hobbyists and consumers to begin printing at home,
and high-end commercial machines producing parts for
application in high-stake scenarios such as tissue and organ
printing [37], automotive [38], and aerospace [39].
These systems, like all digital systems, have potential

cybersecurity vulnerabilities [40]. Adversaries taking advan-
tage of these vulnerabilities will be motivated by reasons
falling into three broad threat categories for 3D printers [41]:
(i) Data Theft (which contains the subset of IP Theft), (ii)
Sabotage (where some—but not all—of the attack methods
will violate the integrity of the design file or the manufactured
part), and (iii) either unauthorized part manufacturing or
reverse engineering of parts, both of which can depend on
either theft of digital design files or their reproduction via
reverse engineering from a physical part. Since hardware
parts are manufactured for selling to customers, the reverse
engineering and authentication of genuine products is a major
challenge.

Attack vectors may fall into purely the digital realm
(whereby printer software and/or print files are impacted), the
physical realm (where attackers might seek to compromise
physical aspects of the print process such as by damaging
motors or sensors), or some combination thereof, including
compromising the raw printer materials [42]. Further com-
plicating matters, 3D printers are increasingly networked
for increased efficiency and monitoring—such features are
now commonly native to industry standard designs, and
even when not native, may be added via the use of Open
Source (OS) tools like OctoPrint [43]. This raises a host of
standard cyber-security risks [44], similar to those faced by
fast production low security IoT devices [45], [46]. Lateral
movement with networks with untrusted devices (such as
those fast production low security IoT devices!) compound
the risk to a networked 3D printer.

14394 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 8. 3D Printer case study.

Demonstrations of AM vulnerabilities include a sabotage
attack on 3D printed quadcopter propellers [8], which caused
propeller failure during flight, and FLAW3D [47], a Trojan
bootloader that caused a reduction in tensile strength by up
to 50%. Given the potential for these sabotage-type attacks
to compromise safety-critical design features (for instance,
imagine an automotive part which has been subtly damaged to
fail at high speeds) we focus primarily on how we can defend
against sabotage-type attacks.

A. 3D PRINTER MODEL
As illustrated in Figure 8, we consider a generalised and
abstracted 3D Printer5 with:

• A heated print bed and hotend, requiring two heaters
• Current sensors for each heater
• Temperature sensors for the hotend, heatbreak, heatbed,
and ambient temperature.

• Stepper motors for each axis: X, Y, Z, and the extruder
(E axis).

The following boolean controller inputs exist:
• MAX_TEMP_HOTEND, MAX_TEMP_HEATBREAK,
MAX_TEMP_HEATBED, andMAX_TEMP_AMBIENT
represent the maximum operating temperature for the
hotend, heatbreak, heatbed, and ambient respectively.

• MAX_CURRENT_HOTEND and
MAX_CURRENT_HEATBED represent the maximum
current limits for the hotend and heatbed respectively.

• STALL_AXIS_X, STALL_AXIS_Y, STALL_AXIS_Z,
and STALL_AXIS_E represent the back EMF based
detection of stall6 in each axis.

4The Prusa i3 MK3S+ website: https://www.prusa3d.com/category/
original-prusa-i3-mk3s/

5Specifications are based on the Prusa i3 MK4:
https://www.prusa3d.com/category/original-prusa-mk4/

6Available on stepper motor drivers such as the Trinamic 2130, termed
StallGuard2™ [48]

• RESET represents a user input reset to the startup state.
The following boolean controller outputs exist:
• EN_HEAT_HOTEND and EN_HEAT_HEATBED sig-
nals enable the heaters in the hotend and heatbed
respectively.

• EN_MOTOR_X, EN_MOTOR_Y, EN_MOTOR_Z,
and EN_MOTOR_E signals enable each axis motor or
motors for the X, Y, Z, and E axes respectively.

B. ATTACKS
We propose a set of actions an attacker may carry out:

• Instruct one or more heater(s) to heat (or operate) above
the safe temperature. This could impact the quality of
printed items, cause damage to hardware, or result in a
fire. Explicitly we consider:
A1 Overheat Hotend: Run the hotend heater above the

safe maximum temperature
A2 Overheat Heatbreak: Run the hotend heater when

heatbreak is above the safe maximum temperature
A3 Overheat Heatbed: Run the heatbed heater above

the safe maximum temperature
A4 Overheat Ambient: Run the hotend heater and/or

heatbed heater above the safe maximum ambient
temperature

• Operate one or more actuator(s) at or above maximums
to exceed safe current limits. While hardware fuses are
likely in most devices, replacing these takes time, and
repeatedly blowing fuses could be considered as a denial
of service attack. In the worst case, a hardware fuse
may fail or blow slowly, causing damage to the printer.
Explicitly we consider:
A5 Overcurrent Hotend: Run the hotend heater above

the safe maximum current
A6 Overcurrent Heatbed: Run the heatbed heater

above the safe maximum current

VOLUME 12, 2024 14395

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

• Drive stepper motors beyond their axis limits. Low
impact consequences could be damaged axes, stepper
motors, or printer frame, impacting print quality. The
higher impact consequence is a fire from the stepper
motor(s) overheating. Explicitly we consider:
A7 Stall X Axis: Run the X axis stepper motor while

stalling for more than one (1) second
A8 Stall Y Axis: Run the Y axis stepper motor while

stalling for more than one (1) second
A9 Stall Z Axis: Run the Z axis stepper motors while

stalling for more than one (1) second
A10 Stall E Axis: Run the E axis stepper motor while

stalling for more than one (1) second

C. MITIGATION WITH ENFORCEMENT
We propose a set of policies described as Discrete Timed
Automaton (DTA) to detect and mitigate each previously
introduced attack. Policies are defined in three groups
(thermal protection, current protection, and stepper motor
protection). Policies within groups share structure, but
different input and output (I/O). The policies are as follows:

• Thermal Protection
ϕ1 The hotend heater should not be enabled when

hotend temperature is at maximum (mitigates
A1 Overheat Hotend)

ϕ2 The hotend heater should not be enabled when
heatbreak temperature is at maximum (mitigates
A2 Overheat Heatbreak)

ϕ3 The heatbed heater should not be enabled when
heatbed temperature is at maximum (mitigates
A3 Overheat Heatbed)

ϕ4 Neither the hotend or heatbed heaters should
be enabled when the ambient temperature is at
maximum (mitigates A4 Overheat Ambient)

• Current Protection
ϕ5 The hotend heater should not be enabled when at

maximum current threshold (mitigates A5 Over-
current Hotend)

ϕ6 The heatbed heater should not be enabled when at
maximum current threshold (mitigates A6 Over-
current Heatbed)

• Stepper Motor Protection
ϕ7 The X axis motors should not be enabled when

stalling for longer than one (1) second (mitigates
A7 Stall X Axis)

ϕ8 The Y axis motors should not be enabled when
stalling for longer than one (1) second (mitigates
A8 Stall Y Axis)

ϕ9 The Z axis motors should not be enabled when
stalling for longer than one (1) second (mitigates
A9 Stall Z Axis)

ϕ10 The E (extruder) axis motor should not be enabled
when stalling for longer than one (1) second
(mitigates A10 Stall E Axis)

1) POLICY ϕ1 MITIGATING ATTACK A1 OVERHEAT HOTEND
The attack A1 Overheat Hotend runs the hotend (the
component responsible for melting the input filament so

that it can be extruded through the nozzle) heater by
setting EN_HEAT_HOTEND to true when the hotend is at
maximum temperature, indicated by the presence of input
signal MAX_TEMP_HOTEND. This risks damaging an in-
progress print, damaging the hotend, and causing a fire.
Policy ϕ1, as illustrated in Figure 9, mitigates this. The
policy consists of two accepting locations (l0, l1) and one
non-accepting violation location (lv).

FIGURE 9. Policy ϕ1 which captures the hotend heater should not be
enabled when hotend temperature is at maximum.

When the input reset signal RESET is present, the policy
remains in the initial location l0, otherwise, the policy
transitions to l1. The policy remains in location l1 if the
hotend heater is not enabled (EN_HEAT_HOTEND signal
absent) or if the maximum temperature of the hotend is not
reached (MAX_TEMP_HOTEND signal absent).

If the hotend heater is enabled (EN_HEAT_HOTEND sig-
nal present) while the hotend is at maximum temperature
(MAX_TEMP_HOTEND signal present) the policy transi-
tions to a violation. The synthesised enforcer will, therefore,
prevent violation by suppressing EN_HEAT_HOTEND,
ensuring the policy remains in l1.

2) POLICY ϕ2 MITIGATING ATTACK A2 OVERHEAT
HEATBREAK
The attack A2 Overheat Heatbreak runs the hotend heater
by setting EN_HEAT_HOTEND to true when the heatbreak
(a component, directly attached to the hotend, that is
responsible for preventing heat transfer up the filament to
prevent blockages) is at maximum temperature, indicated by
the presence of input signal MAX_TEMP_HEATBREAK.
This risks damaging an in-progress print with inconsistent
extrusion, damaging the heatbreak and surrounding compo-
nents, and causing a fire. Policyϕ2, as illustrated in Figure 10,
mitigates this. The policy consists of two accepting locations
(l0, l1) and one non-accepting violation location (lv).

When the input reset signal RESET is present, the policy
remains in the initial location l0, otherwise, the policy
transitions to l1. The policy remains in location l1 if the
hotend heater is not enabled (EN_HEAT_HOTEND signal
absent) or if the maximum temperature of the heatbreak is
not reached (MAX_TEMP_HEATBREAK signal absent).

If the hotend heater is enabled (EN_HEAT_HOTEND sig-
nal present) while the heatbreak is at maximum tem-
perature (MAX_TEMP_HEATBREAK signal present)

14396 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 10. Policy ϕ2 which captures the hotend heater should not be
enabled when heatbreak temperature is at maximum.

the policy transitions to a violation. The synthesised
enforcer will, therefore, prevent violation by suppressing
EN_HEAT_HOTEND, ensuring the policy remains in l1.

3) POLICY ϕ3 MITIGATING ATTACK A3 OVERHEAT HEATBED
The attack A2 Overheat Heatbreak runs the heatbed (base-
plate which the 3D prints are extruded onto and gradually
built on) heater by setting EN_HEAT_HEATBED to true
when the heatbed is at maximum temperature, indicated by
the presence of input signal MAX_TEMP_HEATBED. This
risks damaging an in-progress print, damaging the heatbed
and causing a fire. Policy ϕ2, as illustrated in Figure 11,
mitigates this. The policy consists of two accepting locations
(l0, l1) and one non-accepting violation location (lv).

FIGURE 11. Policy ϕ3 which captures the heatbed heater should not be
enabled when heatbed temperature is at maximum.

When the input reset signal RESET is present, the policy
remains in the initial location l0, otherwise, the policy
transitions to l1. The policy remains in location l1 if the
heatbed heater is not enabled (EN_HEAT_HEATBED signal
absent) or if the maximum temperature of the heatbed is not
reached (MAX_TEMP_HEATBED signal absent).
If the heatbed heater is enabled (EN_HEAT_HEATBED

signal present) while the heatbed is at maximum temperature
(MAX_TEMP_HEATBED signal present) the policy transi-
tions to a violation. The synthesised enforcer will, therefore,
prevent violation by suppressing EN_HEAT_HEATBED,
ensuring the policy remains in l1.

4) POLICY ϕ4 MITIGATING ATTACK A4 OVERHEAT AMBIENT
The attack A4 Overheat Ambient runs the hotend heater
by setting EN_HEAT_HOTEND to true and/or the heatbed
heater by setting EN_HEAT_HEATBED to true when the

ambient temperature at or above the printer’s maximum
operating temperature, indicated by the presence of input
signal MAX_TEMP_AMBIENT. This risks reducing the
life of printer components if operated beyond safe ambient
temperature. Policy ϕ4, as illustrated in Figure 12, mitigates
this. The policy consists of two accepting locations (l0, l1)
and one non-accepting violation location (lv).

FIGURE 12. Policy ϕ4 which captures that neither the hotend or heatbed
heaters should be enabled when ambient temperature is at maximum.

When the input reset signal RESET is present, the
policy remains in the initial location l0, otherwise, the
policy transitions to l1. The policy remains in location
l1 if the hotend and heatbed heaters are not enabled (both
EN_HEAT_HOTEND and EN_HEAT_HEATBED signals
absent) or if the ambient temperature is below maximum
(MAX_TEMP_AMBIENT signal absent).

If either or both hotend and heatbed heaters are enabled
(EN_HEAT_HOTEND and EN_HEAT_HEATBED signals
respectively) while the ambient temperature is maximum
(MAX_TEMP_AMBIENT signal present) the policy transi-
tions to a violation. The synthesised enforcer will, therefore,
prevent violation by suppressing both EN_HEAT_HOTEND
and EN_HEAT_HEATBEDsignals, ensuring the policy
remains in l1.

5) POLICY ϕ5 MITIGATING ATTACK A5 OVERCURRENT
HOTEND
The attack A5 Overcurrent Hotend runs the hotend heater,
by setting EN_HEAT_HOTEND to true, when at or above
the maximum hotend current, indicated by the presence
of input MAX_CURRENT_HOTEND. This risks wire
insulation melting which could cause a fire, and reduces the
life of the power supply if operated beyondmaximum current.
Policy ϕ5, as illustrated in Figure 13, mitigates this. The
policy consists of two accepting locations (l0, l1) and one
non-accepting violation location (lv).

When the input reset signal RESET is present, the
policy remains in the initial location l0, otherwise, the
policy transitions to l1. The policy remains in location
l1 if the hotend is not enabled (EN_HEAT_HOTEND sig-
nal absent) or if the hotend current is below maximum
(MAX_CURRENT_HOTEND signal absent).
If the hotend heater is enabled (EN_HEAT_HOTEND sig-

nal present) while the hotend current is at or above the
maximum (MAX_CURRENT_HOTEND signal present)
the policy transitions to a violation. The synthesised

VOLUME 12, 2024 14397

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 13. Policy ϕ5 which captures the hotend heater should not be
enabled when at maximum current threshold.

enforcer will, therefore, prevent violation by suppress-
ing the EN_HEAT_HOTEND signal, ensuring the policy
remains in l1.

6) POLICY ϕ6 MITIGATING ATTACK A6 OVERCURRENT
HEATBED
The attack A6 Overcurrent Heatbed runs the heatbed
heater, by setting EN_HEAT_HEATBED to true, when at
or above the maximum heatbed current, indicated by the
presence of input MAX_CURRENT_HEATBED, this risks
wire insulation melting which could cause a fire, and reduces
the life of the power supply if operated beyond maximum
current. Policy ϕ6, as illustrated in Figure 14, mitigates this.
The policy consists of two accepting locations (l0, l1) and
one non-accepting violation location (lv).

FIGURE 14. Policy ϕ6 which captures the heatbed heater should not be
enabled when at maximum current threshold.

When the input reset signal RESET is present, the
policy remains in the initial location l0, otherwise, the
policy transitions to l1. The policy remains in location
l1 if the hotend is not enabled (EN_HEAT_HEATBED sig-
nal absent) or if the hotend current is below maximum
(MAX_CURRENT_HEATBED signal absent).
If the heatbed heater is enabled (EN_HEAT_HEATBED

signal present) while the heatbed current is at or above the
maximum (MAX_CURRENT_HEATBED signal present)
the policy transitions to a violation. The synthesised
enforcer will, therefore, prevent violation by suppressing the
EN_HEAT_HEATBED signal, ensuring the policy remains
in l1.

7) POLICY ϕ7 MITIGATING ATTACK A7 STALL X AXIS
The attackA7Stall XAxis continues to run the X axis stepper
motor, by setting EN_MOTOR_X to true, when the motor is

stalling, indicated by the presence of input STALL_AXIS_X.
This risks damaging the stepper motor and the axis frame of
the 3D printer. Policy ϕ7, as illustrated in Figure 15, mitigates
this. The policy consists of three accepting locations (l0, l1,
l2), one non-accepting violation location (lv), and has one
clock, VX , responsible for timing the duration of a stall.

FIGURE 15. Policy ϕ7 which captures the X axis motors should not be
enabled when stalling for longer than one (1) second.

When the input reset signal RESET is present, the
policy remains in the initial location l0, otherwise, the
policy transitions to l1. The policy remains in location
l1 until the stepper motor is enabled and is sensed as
stalling (both EN_MOTOR_X and STALL_AXIS_X signals
present). If this occurs the policy transitions to l2 and the
clock VX is reset.

The following transitions can be taken when the policy is
in location l2:

• Themotor is no longer enabled (EN_MOTOR_X absent)
or no longer stalling (STALL_AXIS_X absent) and the
clock (VX) is less than one (1) second, then the policy
transitions to l1.

• The motor is enabled (EN_MOTOR_X present) and
stalling (STALL_AXIS_X present) while the clock (VX)
is less than one (1) second, then the policy remains in l2.

• The motor is enabled (EN_MOTOR_X present) and
stalling (STALL_AXIS_X present) and the clock (VX) is
greater than or equal to one (1) second, then the policy
transitions to lv. In this case the synthesised enforcer will
prevent violation by suppressing EN_MOTOR_X.

8) POLICY ϕ8 MITIGATING ATTACK A8 STALL Y AXIS
The attackA8Stall YAxis continues to run the Y axis stepper
motor, by setting EN_MOTOR_Y to true, when the motor is
stalling, indicated by the presence of input STALL_AXIS_Y,
this risks damaging the stepper motor and the axis frame of
the 3D printer. Policy ϕ8, as illustrated in Figure 16, mitigates
this. The policy consists of three accepting locations (l0, l1,
l2), one non-accepting violation location (lv), and has one
clock, VY , responsible for timing the duration of a stall. When
the input reset signal RESET is present, the policy remains
in the initial location l0, otherwise, the policy transitions to

14398 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 16. Policy ϕ8 which captures that the Y axis motors should not
be enabled when stalling for longer than one (1) second.

l1. The policy remains in location l1 until the stepper motor is
enabled and is sensed as stalling (both EN_MOTOR_Y and
STALL_AXIS_Y signals present). If this occurs the policy
transitions to l2 and the clock VY is reset.

The following transitions can be taken when the policy is
in location l2:

• Themotor is no longer enabled (EN_MOTOR_Y absent)
or no longer stalling (STALL_AXIS_Y absent) and the
clock (VY) is less than one (1) second, then the policy
transitions to l1.

• The motor is enabled (EN_MOTOR_Y present) and
stalling (STALL_AXIS_Y present) while the clock (VY)
is less than one (1) second, then the policy remains in l2.

• The motor is enabled (EN_MOTOR_Y present) and
stalling (STALL_AXIS_Y present) and the clock (VY) is
greater than or equal to one (1) second, then the policy
transitions to lv. In this case the synthesised enforcer will
prevent violation by suppressing EN_MOTOR_Y.

9) POLICY ϕ9 MITIGATING ATTACK A9 STALL Z AXIS
The attackA9 Stall Z Axis continues to run the Z axis stepper
motor, by setting EN_MOTOR_Z to true, when the motor is
stalling, indicated by the presence of input STALL_AXIS_Z,
this risks damaging the stepper motor and the axis frame of
the 3D printer. Policy ϕ9, as illustrated in Figure 17, mitigates
this. The policy consists of three accepting locations (l0, l1,
l2), one non-accepting violation location (lv), and has one
clock, VZ , responsible for timing the duration of a stall. When
the input reset signal RESET is present, the policy remains
in the initial location l0, otherwise, the policy transitions to
l1. The policy remains in location l1 until the stepper motor is
enabled and is sensed as stalling (both EN_MOTOR_Z and
STALL_AXIS_Z signals present). If this occurs the policy
transitions to l2 and the clock VZ is reset.

The following transitions can be taken when the policy is
in location l2:

• Themotor is no longer enabled (EN_MOTOR_Z absent)
or no longer stalling (STALL_AXIS_Z absent) and the

FIGURE 17. Policy ϕ9 which captures the Z axis motors should not be
enabled when stalling for longer than one (1) second.

clock (VZ) is less than one (1) second, then the policy
transitions to l1.

• The motor is enabled (EN_MOTOR_Z present) and
stalling (STALL_AXIS_Z present) while the clock (VZ)
is less than one (1) second, then the policy remains in l2.

• The motor is enabled (EN_MOTOR_Z present) and
stalling (STALL_AXIS_Z present) and the clock (VZ) is
greater than or equal to one (1) second, then the policy
transitions to lv. In this case the synthesised enforcer will
prevent violation by suppressing EN_MOTOR_Z.

10) POLICY ϕ10 MITIGATING ATTACK A10 STALL E AXIS
The attack A10 Stall E Axis continues to run the E axis
stepper motor, by setting EN_MOTOR_E to true, when
the motor is stalling, indicated by the presence of input
STALL_AXIS_E. This risks clogging the extruder, damaging
the stepper motor and the extruder. Policy ϕ10, as illustrated
in Figure 18, mitigates this. The policy consists of three
accepting locations (l0, l1, l2), one non-accepting violation
location (lv), and has one clock, VE , responsible for timing
the duration of a stall.

FIGURE 18. Policy ϕ10 which captures the E (extruder) axis motor should
not be enabled when stalling for longer than one (1) second.

VOLUME 12, 2024 14399

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

When the input reset signal RESET is present, the
policy remains in the initial location l0, otherwise, the
policy transitions to l1. The policy remains in location
l1 until the stepper motor is enabled and is sensed as
stalling (both EN_MOTOR_E and STALL_AXIS_E signals
present). If this occurs the policy transitions to l2 and the
clock VE is reset.
The following transitions can be taken when the policy is

in location l2:
• Themotor is no longer enabled (EN_MOTOR_E absent)
or no longer stalling (STALL_AXIS_E absent) and the
clock (VE) is less than one (1) second, then the policy
transitions to l1.

• The motor is enabled (EN_MOTOR_E present) and
stalling (STALL_AXIS_E present) while the clock (VE)
is less than one (1) second, then the policy remains in l2.

• The motor is enabled (EN_MOTOR_E present) and
stalling (STALL_AXIS_E present) and the clock (VE) is
greater than or equal to one (1) second, then the policy
transitions to lv. In this case the synthesised enforcer will
prevent violation by suppressing EN_MOTOR_E.

VIII. IMPLEMENTATION
To evaluate the proposed parallel enforcement method we
introduce easy-rte-hardware an extension of easy-rte [22]
and easy-rte-incremental [20]. The main contribution of this
extended compiler is support for policies to be compiled into
Verilog hardware components which are run in parallel. Addi-
tionally, it adds support for compilation of the monolithic
compositions (from easy-rte) and incremental compositions
(from easy-rte-incremental) to synthesisable Verilog. The
source code for easy-rte-hardware is available online.7

A. COMPILING PARALLEL HARDWARE ENFORCERS
The process for compilation, as illustrated in Figure 19,
consists of four steps:

• First, the original easy-rte parser creates an intermediate
XML file which describes each policy completely.

• Second, our main contribution to the compiler, the
easy-rte-hardware parser, ingests the intermediate XML
and computes the violation recovery table. This table
consists of a recovery to each and every combination
of violations that the policies have. This is explained
further in the following section.

• Third, our modified easy-rte templater takes the new
XML and produces synthesisable enforcer Verilog.

• Fourth, the Verilog file is passed to Quartus to synthesise
hardware.

1) VIOLATION RECOVERY TABLE
The following algorithm is pseudocode to produce the
violation recovery table:

7The compiler easy-rte-hardware, a fork of easy-rte, can be accessed at
https://github.com/PRETgroup/easy-rte-comp-hw. This includes support for
the proposed parallel composition, but also for monolithic and incremental
composition in hardware. The source code includes the 3D Printer case study
and other examples which can be compiled and run.

FIGURE 19. Compiler process flow.

1: xml = ParseInput()
2: // Get all possible violation combinations
3: for all policyinxml.policies do
4: for all violation, recoveriesinpolicy.Violations do
5: for all rowinviolationTable do
6: row.Append(violation, recoveries)
7: end for;
8: end for;
9: end for;
10: // Determine solutions to each violation combination
11: for all rowinviolationTable do
12: intersection = GetIntersection(row.recoveries)
13: edit = GetRandEdit(intersection)
14: solutions.Append(row.violations, edit)
15: end for;
16: // Add the solution table to XML
17: xmlOut = xml.Append(solutions)
18: Write xmlOut
The resulting xmlOut is then passed as input to the easy-

rte templater to produce synthesisable Verliog code. In the
next section, we discuss the synthesised hardware.

B. SYNTHESISED COMPOSITIONAL HARDWARE
ENFORCERS
The synthesised enforcers are placed between the sensors
and actuators (the environment) and the controller of the 3D
printer, as illustrated in Figure 20. As illustrated, the enforcer
is able to intercept and edit the controller’s inputs and outputs
as required.

FIGURE 20. 3D Printer secured with Compositional Enforcers.

In practice, the enforcers could be deployed with custom
hardware either on the printer controller’s printed circuit
board (PCB) or as a stand alone PCB. Alternatively,
if new or altered security policies are expected, a field-
programmable gate array (FPGA) could be used to maintain
reconfigurability.

14400 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

1) MONOLITHIC
Monolithic compositions result in a single hardware com-
ponent regardless of the number of policies composed.
This component is separated into four subparts (input edit,
output edit, transition logic, and storage of state and clocks)
as illustrated by Figure 21. The execution of monolithic
enforcement follows the four state Finite State Machine
(FSM) illustrated in Figure 22.

FIGURE 21. Monolithic block diagram.

FIGURE 22. Monolithic control FSM.

Initially, the enforcer waits for the environment (in location
Env.). When an environment input (Input) is produced the
FSM transitions to input enforcement (location EIn) and the
input signals are passed to input edit logic which, if required
to prevent a violation, the edits input. This input is then
guaranteed to satisfy the input policies and is sent to the
controller (FSM transitions to Ctrl).
Once the controller generates output (Output), the FSM

transitions to the output edit logic (EOut&Trans). Similarly
to the input edit logic, any potential violation is edited to
ensure the output policies are satisfied. The output is then
passed to the transition logic block which determines and
executes appropriate location transitions for the monolithic
policy. As illustrated in the center of Figure 21, the state
and clocks are stored such that each other component can
read the current location and value of the clocks. These are
updated only by the transition logic block. The output, which
is guaranteed to satisfy both input and output policies, is then
exposed to the environment as the FSM transitions to Env.
where the process begins again when the next input event
arrives.

2) INCREMENTAL
Incremental compositions result inmultiple hardware compo-
nents, each policy adds an input and output enforcement com-
ponent. Explicitly, there are 2+ 2(N) hardware components,

whereN is the number of policies. The hardware components
in an incremental composition are illustrated in Figure 23.
The FSM in Figure 24 controls sequential execution, as with
the hardware components, the FSM expands as additional
policies are added. The number of FSM states is 5 + 2N ,
where N is the number of policies.

FIGURE 23. Incremental block diagram.

FIGURE 24. Incremental control FSM.

Regardless of the number of policies, the following pattern
of execution occurs. First, the FSM is in location Env.
waiting for the environment to produce an input event
(Input) to transition to the first input enforcement location
(EIn1) where the first input enforcer edit logic determines
which, if any, violation recovery reference to emit (this
recovery reference is determined at compile time as described
in Section VIII-A1). Sequentially, each input enforcement
edit logic is executed as the FSM proceeds through each
remaining input enforcement location (EIn2 , · · · , EInN).
Then transitioning to input selection (location SelectIn) the

VOLUME 12, 2024 14401

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

violation resolution component takes each policy’s recovery
reference to determine if any edit action is required, and if
so, select the appropriate edit. The input then satisfies all
input policies and is exposed to the controller as the FSM
transitions to Ctrl.

When the controller produces an output event (Output),
similar to the input, each output edit logic component is
executed as the FSM transitions through EOut1 , EOut2 , · · · ,
EOutN . The violation resolution component then uses each
violation recovery reference to determine if any edit action
is required and select the appropriate edit. The output then
satisfies all output policies and is exposed to the environment
as the FSM transitions to Env.where the process begins again
when the next input event arrives.

3) PARALLEL
Parallel compositions result in multiple hardware compo-
nents, each policy adds an input and output enforcement com-
ponent. Explicitly, there are 2+ 2(N) hardware components,
whereN is the number of policies. The hardware components
in an parallel composition are illustrated in Figure 25. The
input enforcement component for each policy is responsible
for, given the policy’s location, determining and emitting
the appropriate violation recovery reference based on the
violation recovery table (explained in Section VIII-A1).
The output enforcement components are, in addition to
determining the appropriate violation recovery references,
responsible for policy location transitions, storing the policy
location and any clocks.

FIGURE 25. Parallel block diagram.

The FSM in Figure 26 controls execution, unlike the
incremental control FSM, the number of states is fixed at
seven. The FSM initially waits in location Env. for the
environment to produce Input at which point the FSM
transitions to the input enforcement location (EIn) where each
input enforcement component is executed simultaneously
to produce all violation recovery references. The FSM
transitions to SelectI where recovery references are supplied
to the violation recovery table which selects, as appropriate,

FIGURE 26. Parallel control FSM.

to edit the input signals. The input then satisfies all input
policies and is exposed to the controller as the FSM
transitions to Ctrl.
Once the controller produces Output the FSM transitions

to EOut where all output enforcement components are
executed simultaneously to produce their violation recovery
references. Then transitioning to SelectOut the violation
recovery table produces an appropriately edited set of input
which is used to update the locations of each enforcer
policy when the FSM transitions to ETrans.. Finally, the
output, which satisfies all output policies, is exposed to the
environment as the FSM transitions to Env.where the process
begins again when the next input event arrives.

4) UPDATING HARDWARE ENFORCERS
When the security landscape changes, policies may be added
or altered. This requires recompilation of Verilog and resyn-
thesis of some hardware blocks. The amount of recompilation
and resyntehsis varies by method of composition.

Monolithic composition requires complete recompilation
and resynthesis of hardware. This is the most time and
computationally expensive method

Incremental composition requires compilation and synthe-
sis of the new or altered policies, the FSM controller, and the
violation resolution block.

Our proposed parallel approach requires compilation and
synthesis of the new or altered policies, and the violation
resolution block needs to be recompiled and synthesised. This
means the the violation recovery block is resynthesised for
any new or altered policies. However, no existing enforcer
blocks need to be resynthesised.

IX. RESULTS
To benchmark the proposed scalable hardware enforcers for
the 3D printer we describe each policy from Section VII in
easy-rte specification language. We use easy-rte-hardware to
compile monolithic, incremental, and parallel compositions
of increasing complexity to Verilog. We do this by adding
mitigation policies gradually to each composition as follows:

1) ϕ1
2) ϕ1, and ϕ2
3) ϕ1, ϕ2, and ϕ3
4) ϕ1, ϕ2, ϕ3, and ϕ4

14402 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 27. Charts illustrating the growth in XML compilation time for Monolithic (Mono.), Incremental (Incr.), and Parallel (Para.). The
left chart includes all data points. The right chart excludes the Monolithic results to allow comparison of Incremental and Parallel results.
Note the chart scales differ.

FIGURE 28. Charts illustrating the growth in Verilog SV compilation time for Monolithic (Mono.), Incremental (Incr.), and Parallel (Para.). The
left chart includes all data points. The right chart excludes the Monolithic results to allow comparison of Incremental and Parallel results.
Note the chart scales differ.

5) ϕ1, ϕ2, ϕ3, ϕ4, and ϕ5
6) ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, and ϕ6
7) ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, and ϕ7
8) ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, and ϕ8
9) ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, and ϕ9

10) ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, ϕ9, and ϕ10

As the complexity of the composition increases, the number
of attacks mitigated increases, thus improving the security of
the 3D printer.

We collect performance results for the compilation and
hardware resource usage of each composed enforcer. All
compilation is performed on a Windows 10 machine with
an Intel i7-6700 processor running at 4GHz and with 32GB
RAM. For hardware synthesis the command line interface
for Quartus Prime Lite 22.1 is used with a Cyclone 5
(5CGXFC7C7F23C8) as the target device.

For compilation, we report on time for easy-rte to generate
the XML policy description and the Verilog composition,
and the time for Quartus to perform synthesis. We also
report on the size of XML and Verilog (SV) files. For

hardware resources, we report on logic elements, registers,
and maximum clock frequency.

Throughout all results the monolithic compositions are
completely up to a maximum of six policies. This is due
to scalability issues in the easy-rte compiler for product
automata. Compositions for seven and above policies were
terminated after running for longer than two weeks on highly
resourced virtual machines on the cloud. Improving easy-
rte monolithic composition performance is beyond the scope
of this work, but remains an area of exploration for future
work.

A. COMPILATION
1) COMPILE TIME
The XML compile time is reported in Figure 27. The left
chart includes all results and clearly illustrates exponential
growth in the monolithic XML compile time, with the six
policy composition taking 10,908 seconds (just over 3 hours).
The right chart removes monolithic compositions to better
visualise the incremental and parallel results. The beginning

VOLUME 12, 2024 14403

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 29. Charted Verilog SV compilation size for Monolithic (Mono.), Incremental (Incr.), and Parallel (Para.). The left chart includes
all data points and the right chart removes the 5th and 6th compositions for Monolithic to improve clarity of Incremental and Parallel
results. Note the chart scales differ.

of an exponential trend can be seen in compositions eight
through ten. The tenth composition took 2.21 seconds for
incremental and 3.89 seconds for parallel. Both incremental
and parallel demonstrate significantly more scalable XML
compile time than monolithic, however the developing
exponential trend for parallel and incremental may limit
scalability.

The Verilog compile time is reported in Figure 28. The left
chart includes all results and, as with XML compile time,
illustrates exponential growth in the monolithic compile time.
The peak monolithic compile time, for six policies, is similar
to XML compile time at 10,915 seconds (just over 3 hours).
The right chart removes monolithic compositions to better
visualise the incremental and parallel results. Similarly to
the XML compile time an exponential trend is starting to
be seen for the incremental and parallel compositions eight
through ten. The tenth composition took 2.42 seconds for
incremental and 4.10 seconds for parallel. Both incremental
and parallel demonstrate significantly more scalable XML
compile time than monolithic across the ten 3D printer policy
compositions, however the developing exponential trend may
limit scalability.

The Quartus synthesis time is reported in Figure 30.
A clear exponential trend is illustrated by the monolithic
compositions, with a peak of 365 seconds for six policies.
Parallel and incremental illustrate linear trends with peaks of
152 seconds and 114 seconds respectively. This demonstrates
parallel and incremental are significantly more scalable.

Compilation time results demonstrate parallel and incre-
mental methods are more scalable than monolithic. Results
from easy-rte-hardware show exponential trends for more
complex compositions in parallel and incremental. This is
likely due to the limited optimisation in the original easy-
rte for larger policies. An example is memory managment
when producing and reading XML files that do not fix into
memory. Results from Quartus illustrate linear scale parallel
and incremental time complexity which is encouraging, and
suggest that with appropriate optimisation easy-rte could
obtain similar trends.

FIGURE 30. Time taken for quartus to synthesise hardware for each
composition as the policy count increases.

2) COMPILE SIZE
The size of compiled XML files is reported in kilobytes
(kBs) in Figure 31. Exponential trends are illustrated for
each composition type, a steeper curve for monolithic with
a peak XML size of 16,877 kB in the six policy composition,
and a peak of 10,963 kB for incremental and parallel in the
10 policy compositions.

The size of compiled Verilog files is reported in kBs in
Figure 29. The left chart includes all data and the right has
monolithic compositions five and six removed to visualise the
incremental and parallel trends more clearly. An exponential
trend is illustrated for the monolithic Verilog files, with a
peak of 14,971 kB for the six policy composition. Parallel and
incremental results peak at 574 kB and 583 kB respectively.

Compile size trends show the proposed parallel and exist-
ing incremental methods are more scalable than monolithic.
However, these approaches still show exponential trends in
XML size. This suggests a XML structure specalised for
compositions may further improve scalability.

14404 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

B. HARDWARE
1) LOGIC ELEMENTS
The number of logic elements used, by the synthesised
hardware components, is illustrated in Figure 32. The
incremental and parallel trends are piecewise linear. The
first six policies (thermal and current protection policies) are
relatively simple compared to the final four (stepper motor
protection policies). This is reflected in the steeper linear
trend for compositions seven through to ten.

No significant monolithic trend is observed in the first six
compositions, however the final composition of six policies
consumed 27 logic elements compared to the previous three
which all consumed seven. This hints that the expected
exponential trend may be beginning. However, support for
more complex monolithic compositions would be required to
verify this.

These low total logic element counts demonstrate the
desired low overhead of runtime enforcement hold for our
proposed compositional runtime enforcement.

2) REGISTERS
The number of registers in synthesised hardware is illustrated
in Figure 33. The monolithic results show insignificant
register synthesis with a peak of eight registers for the
six policy composition, as they are only required to hold
the current state of the enforcer. Additional results for this
would be interesting to confirm the monolithic register count
remains relatively low.

The incremental and parallel results reflect a piecewise
linear trend consistent with the logic element results.
Specifically, the increased complexity of policies added in
compositions seven through ten results in a steeper linear
growth in synthesised registers.

FIGURE 31. Size of compiled XML policy descriptions for each
composition as the number of policies increases.

3) MAXIMUM CLOCK FREQUENCY
The maximum clock frequency, in MHz, is reported in
Figures 34 and 35. The chart in Figure 34 includes all results,

in which the monolithic method shows a downward trend as
policy complexity increases. However, Quartus optimisation
improves clock frequency for compositions four and five.

The chart in Figure 35 has monolithic results removed
to better illustrate the differences between incremental and
parallel compositions. The incremental method shows a
negative exponential decay trend in the maximum clock
frequency with a minimum of 6.5 MHz for the ten policy
composition. The parallel method shows a more inconsistent
frequency between 75 and 80 MHz for compositions one
to six. The frequency drops significantly to between 40 and
50 MHz when the more complex stepper motor policies are
added in compositions seven through to ten.

The results here reflect a key difference between the
incremental and parallel methods. As you increase the
number of policies, the time taken to execute the incremental
approach increases. In the parallel approach this is not the
case.

FIGURE 32. Number of logic elements synthesised for each composition
as the number of policies increases.

FIGURE 33. Number of registers synthesised for each composition as the
number of policies increases.

VOLUME 12, 2024 14405

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

FIGURE 34. Maximum clock frequencies for monolithic, incremental, and
parallel with includes all data points.

FIGURE 35. Maximum clock frequencies for incremental and parallel
compositions.

X. DISCUSSION
A. PARALLEL HARDWARE OR INCREMENTAL SOFTWARE?
In this work, we have proposed a framework for multiple
hardware enforcers to enforce simultaneously without suffer-
ing from the state space explosion of the monolithic approach
(which uses the product of policies). In earlier work, we pro-
posed multiple software enforcers to enforce sequentially,
or incrementally. For a designer wishing to deploy enforcers,
there is a trade-off between these approaches.

We have discussed hardware, relative to software, benefits
from a reduced attack surface, which malicious actors may
exploit (Section VI). Through our results we show the clock
frequency of the proposed parallel approach is higher than the
incremental approach. Therefore, for maximum speed and a
reduced attack surface, parallel enforcers in hardware may be
the designer’s best choice.

Incremental software enforcers, however, benefit from
reduced cost. This is due to software deployment on cheaper
microcontrollers, rather than more expensive FPGAs or

custom hardware required for hardware enforcers. This also
impacts the ability for redeployment or updates to enforcers.
The incremental approach supports adding new enforcers to
the chain, which can then be uploaded to the microcontroller.
The hardware approach requires partial re-synthesis (See
Section VIII-B4 for more) and either upload to the FPGA
or entirely new custom hardware. Therefore, in applications
where policies are expected to change or grow reguarly,
a software approach may be the designer’s approach.

Ultimately, the requirements of the application and desired
level of security determines which approach is most appro-
priate. We note the approach proposed in this work is
CPS-agnostic. This means it can be applied to any system
that can have policies modelled as DTA, with boolean
inputs and outputs, and can include applications more broad
than CPS.

B. CHALLENGES
During the development of this framework a number of
challenges were encountered, two of sigificance we now
discuss.

A key requirement of the parallel approach was to resolve
scalability challenges faced by the monolithic approach.
Therefore, the hardware design to support parallel compo-
sition needed to avoid any exponential growth in resource
consumption. This proved to be of significant challenge.

Conceptually, for each input/output event to be enforced,
there is a set of possible inputs and outputs that are possible.
Each enforcer has a subset of these events which it deems are
satisfactory to the policy. These subsets need to be combined
(intersection) and a final event needs to be selected. It was the
intersection operation that was most challenging to optimise.

After a range of approaches were trialled, the violation
recovery table design presented in Section VIII-A1 was
selected as the most resource efficient method. This rested on
the precalculation of intersections and a final look up table of
recovery actions.

The other noteworthy challenge was producing results
for the monolithic approach. As this approach is plagued
by rapid exponential growth, the time taken to compile
the enforcers quickly grew from minutes to hours. This
was amplified by the existing monolithic compiler not
having sufficient memory management to support larger
compositions. Depsite compilation attempts on cloud based
virtual machines with significant compute and memory
capacity, some compositions had not completed after a week,
and hence our monolithic results end after six combined
policies.

Though beyond the scope of this paper, there is value in
developing an improved monolithic compiler. This would
expand comparison with our propsed approach.

XI. CONCLUSION AND FUTURE WORK
The importance of safe and secure Cyber-Physical Systems
(CPSs) is made clear by the significant human impact
when they fail. Applying Runtime Enforcement to these

14406 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

CPSs provides a method to ensure security policies are not
violated during system execution. However, as the number
of policies increases, methods to compose these policies
becomes important.

In this work, we investigated parallel composition of
bi-directional hardware enforcers for enforcing security
policies for a FFF 3D printer. We use hardware enforcers
as this reduces reliance on a tech stack (e.g. firmware,
software, and operating system) with frequently discovered
vulnerabilities. In CPSs where updates can be limited, a high
trust execution platform is desirable.

We propose a novel bi-directional hardware RE framework
that composes policies in parallel. This is the first work
that addresses potential security vulnerabilities in software
based enforcers and supports parallel policy composition
for reactive systems. We provide a tool, easy-rte-parallel,
which produces Verilog descriptions of these enforcers from
a high-level policy description. We compare our proposed
approach with monolithic and serial (incremental) methods
to policy composition.

Our results demonstrate the expected state space explosion
in the monolithic approach and more scalable increases
in resource consumption by both serial (incremental) and
our proposed parallel approach. Specifically, we show the
consumption of resources is linear and proportional to
the complexity of the composed policies. We also show
higher clock frequencies compared to the serial (incremental)
approach for the same number of composed policies. The
results show our proposed approach is well suited where
numerous security policies are required, like CPSs such as
3D printers.

In the future, we would like to demonstrate our hardware
enforcers in a wider range of CPSs, study the possibility of
combining parallel and serial (incremental) approaches, and
distribution of enforcers.

APPENDIX A
proof of Theorem 2:

We prove that given two policies ϕ1, ϕ2 defined as SA,
and where ϕ = ϕ1 ∩ ϕ2, if policy ϕ is enforceable, then
Eϕ1 ||Eϕ2 as per Definition 6 is an enforcer for ϕ (satisfies the
Soundness, Transparency, Monotonicity, Instantainety, and
Causality constraints).

Let us first recall the constraints from [19] that an enforcer
for any given policy ϕ should satisfy. We have informally
discussed about these constraints in Section IV, and more
details and explanation about of Definition 7 is in [19].
Definition 7 (Enforcer for ϕ): An enforcer for a given

policy ϕ ⊆ 6∗ is a function Eϕ : 6∗
→ 6∗ satisfying the

following constraints:
Soundness

∀σ ∈ 6∗
: Eϕ(σ) |H ϕ. (Snd)

Monotonicity

∀σ, σ ′
∈ 6∗

: σ ≼ σ ′
⇒ Eϕ(σ) ≼ Eϕ(σ ′). (Mono)

Instantaneity

∀σ ∈ 6∗
: |σ | = |Eϕ(σ)|. (Inst)

Transparency

∀σ ∈ 6∗, ∀x ∈ 6I , ∀y ∈ 6O :

Eϕ(σ) · (x, y) |H ϕ H⇒

Eϕ(σ · (x, y)) = Eϕ(σ) · (x, y).
(Tr)

Causality

∀σ ∈ 6∗, ∀x ∈ 6I , ∀y ∈ 6O, ∃x ′
∈ editIϕI (Eϕ(σ)I),

∃y′ ∈ editOϕ(Eϕ(σ), x ′) : Eϕ(σ · (x, y)) =

Eϕ(σ) · (x ′, y′).
(Cau)

Let us prove this theorem using induction on the length of
the input sequence σ ∈ 6∗.
Induction basis. Theorem 2 holds for σ = (ϵ6I , ϵ6O) since

the function will not release any input-output event as output
and thus EO(EI (ϵ6I), ϵ6O) = ϵ6 .
Induction step. Assume that for every σ = (x1, y1) · · ·

(xk , yk) ∈ 6∗ of some length k ∈ N, let Eϕ(σ) =

(x ′

1, y
′

1) · · · (x
′
k , y

′
k) ∈ 6∗, and Theorem 2 holds for σ , i.e.,

Eϕ1 ||Eϕ2 (σ) satisfies the (Snd), (Tr), (Mono), (Inst), and
(Cau) constraints.We have Eϕ1 ||Eϕ2 (σ) ∈ ϕ and EI (σI) ∈ ϕI .
Let us denote Eϕ1 ||Eϕ2 (σ) using σ ′, and EI (σI) using σ ′

I .
We now prove that for any event (xk+1, yk+1) ∈ 6,

Theorem 2 holds for σ · (xk+1, yk+1), where xk+1 ∈ 6I
is the input event, and yk+1 ∈ 6O is the output event.
We have the following two possible cases based on whether
Eϕ(σ) · (xk+1, yk+1) ∈ ϕ1 ∩ ϕ2.

• Eϕ(σ) · (xk+1, yk+1) ∈ ϕ1 ∩ ϕ2.
Using Lemma 1, we also have EI (σI) · xk+1 ∈ ϕI . From
the definition ofEI in Def. 6, in this case, we have xk+1 ∈

∩(SelectIϕ1 (σ
′
I , 6I), SelectIϕ2 (σ

′
I , 6I)). Thus, EI (σI) ·

xk+1 = σ ′
I · xk+1.

From the Definition of EO, in this case, we have yk+1 ∈

∩(SelectOϕ1 (σ
′, xk+1, 6O), SelectOϕ2 (σ

′, xk+1, 6O)).
Thus, EO(σI · xk+1, σo · yk+1) = σ ′

· (xk+1, yk+1).
Thus the output of the enforcer is Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) · (xk+1, yk+1).

About the (Snd) constraint, what was earlier released
as output by the enforcer (before reading event
(xk+1, yk+1)) i.e.,Eϕ1 ||Eϕ2 (σ) followed by the input-output
event newly emitted as output (xk+1, yk+1) satisfies the
property ϕ1 ∩ ϕ2. Thus constraint (Snd) holds.

The constraint (Mono) holds because σ ≼ σ ·

(xk+1, yk+1), and Eϕ1 ||Eϕ2 (σ) which is σ ′ is a prefix of
Eϕ1 ||Eϕ2 (σ · (xk+1, yk+1)).

Regarding constraint (Inst) from the induction hypothe-
sis, we have for σ of some length k , |σ | = |Eϕ1 ||Eϕ2 (σ)|.
We also have Eϕ1 ||Eϕ2 (σ · (xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) ·
(xk+1, yk+1). Thus, |σ · (xk+1, yk+1)| = |Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1))| = k + 1, and constraint (Inst) holds.

VOLUME 12, 2024 14407

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

Constraint (Tr) holds in this case since the out-
put of the enforcer before reading (xk+1, yk+1) i.e.,
Eϕ1 ||Eϕ2 (σ) followed by the new input-output event
read (xk+1, yk+1) satisfies the property ϕ1 ∩ ϕ2 and we
already saw that the output event released by the enforcer
Eϕ1 ||Eϕ2 as per Definition 6 up on reading (xk+1, yk+1)
is Eϕ1 ||Eϕ2 (σ) · (xk+1, yk+1).

Regarding constraint (Cau), from the definitions
of SelectIϕI and SelectOϕ , we have xk+1 ∈

SelectIϕ1I (σ
′
I , 6I), and also xk+1 ∈ SelectIϕ2I (σ

′
I , 6I).

Also, we have yk+1 ∈ SelectOϕ1 (σ
′, xk+1, 6O), and

yk+1 ∈ SelectOϕ2 (σ
′, xk+1, 6O).

Theorem 2 thus holds for σ · (xk+1, yk+1) in this case.

• Eϕ(σ) · (xk+1, yk+1) /∈ ϕ1 ∩ ϕ2.
In this case, we have two sub-cases.

– Eϕ(σ) · xk+1 ∈ ϕI

From the definition of EI in Def. 6, in this case,
we have xk+1 ∈ ∩(SelectIϕ1 (σ

′
I , 6I), SelectIϕ2

(σ ′
I , 6I)). Thus, EI (σI) · xk+1 = σ ′

I · xk+1.
Now, since Eϕ(σ) · (xk+1, yk+1) /∈ ϕ1 ∩ ϕ2, we can
have y′k+1 ∈ 6O from the Definitions of EO and
SelectO, i.e., Rand(∩(SelectOϕ1 (σ

′, xk+1, 6O),
SelectOϕ2 (σ

′, xk+1, 6O))) = y′k+1.
So the output of the enforcer is Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) · (xk+1, y′k+1).

Regarding constraint (Snd), in this case, what has
been already released as output by the enforcer
earlier before reading event (xk+1, yk+1) (i.e.,
Eϕ1 ||Eϕ2 (σ)) followed by the new input-output
event released as output (xk+1, y′k+1) satisfies the
property ϕ1 ∩ ϕ2, and thus constraint (Snd) holds.

Regarding constraint (Mono), it holds since σ ≼ σ ·

(xk+1, yk+1) and also Eϕ1 ||Eϕ2 (σ) ≼ Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)).

Regarding constraint (Inst) from the induction
hypothesis, we have for σ of some length k ,
|σ | = |Eϕ1 ||Eϕ2 (σ)|. We also have Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) · (xk+1, y′k+1). Thus,
|σ · (xk+1, yk+1)| = |Eϕ1 ||Eϕ2 (σ · (xk+1, yk+1))| =

k + 1, and constraint (Inst) holds.

Constraint (Tr) holds in this case since the output
of the enforcer before reading (xk+1, yk+1) i.e.,
Eϕ1 ||Eϕ2 (σ) followed by the new input-output event
read (xk+1, yk+1) does not satisfy the property
ϕ1 ∩ ϕ2. Thus, (Tr) holds trivially in this case. We
already saw that the output event released by the
enforcer Eϕ1 ||Eϕ2 as per Definition 6 up on reading
(xk+1, yk+1) is Eϕ1 ||Eϕ2 (σ) · (xk+1, y′k+1).

Regarding constraint (Cau), from the definitions
of SelectIϕI and SelectOϕ , we have xk+1 ∈

6I = SelectIϕ1I (σ
′
I , 6I), and also xk+1 ∈

SelectIϕ2I (σ
′
I , 6I). Also we have, y′k+1 ∈ Y ⊆

6O = SelectOϕ1 (σ
′, xk+1, 6O), and y′k+1 ∈

SelectOϕ2 (σ
′, xk+1, 6O).

Theorem 2 thus holds for σ · (xk+1, yk+1) in this
case.

– Eϕ(σ) · xk+1 /∈ ϕI

Thus, from the Definitions of EI and SelectI,
we have
Rand(∩(SelectIϕ1 (σ

′
I , 6I), SelectIϕ2 (σ

′
I , 6I))) =

x ′

k+1
Now, we have two sub-cases.

∗ Eϕ(σ) · (x ′

k+1, yk+1) ∈ ϕ1 ∩ ϕ2.

From the definition of EO and SelectO, we have
yk+1 ∈ ∩(SelectOϕ1 (σ

′, x ′

k+1, 6O),
SelectOϕ2 (σ

′, x ′

k+1, 6O)).
So the output of the enforcer is Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) · (x ′

k+1, yk+1).

Regarding constraint (Snd), in this case, what has
been already released as output by the enforcer
earlier before reading event (xk+1, yk+1) (i.e.,
Eϕ1 ||Eϕ2 (σ)) followed by the new input-output
event released as output (x ′

k+1, yk+1) satisfies the
property ϕ1∩ϕ2, and thus constraint (Snd) holds.

Regarding constraint (Mono), it holds since
σ ≼ σ · (xk+1, yk+1) and also Eϕ1 ||Eϕ2 (σ) ≼
Eϕ1 ||Eϕ2 (σ · (xk+1, yk+1)).

Regarding constraint (Inst) from the induction
hypothesis, we have for σ of some length k ,
|σ | = |Eϕ1 ||Eϕ2 (σ)|. We also have Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) · (x ′

k+1, yk+1).
Thus, |σ · (xk+1, yk+1)| = |Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1))| = k + 1, and constraint (Inst)
holds.

Constraint (Tr) holds trivially in this case
since the output of the enforcer before reading
(xk+1, yk+1) i.e., Eϕ1 ||Eϕ2 (σ) followed by the
new input-output event read (xk+1, yk+1) does
not satisfy the property ϕ1 ∩ ϕ2.

Regarding constraint (Cau), from the definitions
of SelectIϕI and SelectOϕ , we have x ′

k+1 ∈

SelectIϕ1I (σ
′
I , 6I), and also

x ′

k+1 ∈ SelectIϕ2I (σ
′
I , 6I). Also we have,

yk+1 ∈ SelectOϕ1 (σ
′, x ′

k+1, 6O), and yk+1 ∈

SelectOϕ2 (σ
′, x ′

k+1, 6O).
Theorem 2 thus holds for σ · (xk+1, yk+1) in this
case.

∗ Eϕ(σ) · (x ′

k+1, yk+1) /∈ ϕ1 ∩ ϕ2.

In this case, from the Definitions of EO and
SelectO, we haveRand(∩(SelectOϕ1 (σ

′, x ′

k+1,

6O), SelectOϕ2 (σ
′, x ′

k+1, 6O))) = y′k+1.
So the output of the enforcer is Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) · (x ′

k+1, y
′

k+1).

14408 VOLUME 12, 2024

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

Regarding constraint (Snd), in this case, what has
been already released as output by the enforcer
earlier before reading event (xk+1, yk+1) (i.e.,
Eϕ1 ||Eϕ2 (σ)) followed by the new input-output
event released as output (x ′

k+1, y
′

k+1) satisfies the
property ϕ1∩ϕ2, and thus constraint (Snd) holds.

Regarding constraint (Mono), it holds since
σ ≼ σ · (xk+1, yk+1) and also Eϕ1 ||Eϕ2 (σ) ≼
Eϕ1 ||Eϕ2 (σ · (xk+1, yk+1)).
Regarding constraint (Inst) from the induction
hypothesis, we have for σ of some length k ,
|σ | = |Eϕ1 ||Eϕ2 (σ)|. We also have Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1)) = Eϕ1 ||Eϕ2 (σ) · (x ′

k+1, y
′

k+1).
Thus, |σ · (xk+1, yk+1)| = |Eϕ1 ||Eϕ2 (σ ·

(xk+1, yk+1))| = k + 1, and constraint (Inst)
holds.
Constraint (Tr) holds trivially in this case
since the output of the enforcer before reading
(xk+1, yk+1) i.e., Eϕ1 ||Eϕ2 (σ) followed by the
new input-output event read (xk+1, yk+1) does
not satisfy the property ϕ1 ∩ ϕ2.
Regarding constraint (Cau), from the definitions
of SelectIϕI and SelectOϕ , we have x ′

k+1 ∈

SelectIϕ1I (σ
′
I , 6I), and also

x ′

k+1 ∈ SelectIϕ2I (σ
′
I , 6I). Also we have,

y′k+1 ∈ SelectOϕ1 (σ
′, x ′

k+1, 6O), and y′k+1 ∈

SelectOϕ2 (σ
′, x ′

k+1, 6O).
Theorem 2 thus holds for σ · (xk+1, yk+1) in this
case.

Hence Theorem 2 holds for σ · (xk+1, yk+1). □

REFERENCES
[1] E. A. Lee, ‘‘Cyber physical systems: Design challenges,’’ in Proc.

Int. Symp. Object/Component/Service-Oriented Real-Time Distrib. Com-
put. (ISORC), May 2008, pp. 1–7. [Online]. Available: http://chess
.eecs.berkeley.edu/pubs/427.html

[2] To Kill a Centrifuge: A Technical Analysis of What Stuxnets Creators Tried
to Achieve, Langner Group, Hamburg, Germany, 2013.

[3] R. M. Lee, M. J. Assante, and T. Conway, ‘‘German steel mill cyber
attack,’’ Ind. Control Syst., vol. 30, no. 62, pp. 1–15, 2014.

[4] CNN. (2021). Colonial Pipeline Ceo Admits to Authorizing 4.4
Million Ransomware Payment. [Online]. Available: https://edition
.cnn.com/2021/05/19/politics/colonial-pipeline-ransom/index.html

[5] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, ‘‘DDoS in the IoT:
Mirai and other botnets,’’ Computer, vol. 50, no. 7, pp. 80–84, 2017.

[6] E. Bertino and N. Islam, ‘‘Botnets and Internet of Things security,’’
Computer, vol. 50, no. 2, pp. 76–79, Feb. 2017.

[7] F. Trujano, B. Chan, G. Beams, and R. Rivera, ‘‘Security analysis of
DJI phantom 3 standard,’’ Massachusetts Inst. Technol., Cambridge, MA,
USA, Tech. Rep. 1, 2016.

[8] S. Belikovetsky, M. Yampolskiy, J. Toh, J. Gatlin, and Y. Elovici,
‘‘dr0wned—Cyber-physical attack with additive manufacturing,’’ in Proc.
WOOT, 2017, pp. 1–15.

[9] (2001–2002). Runtime Verification. Accessed: Jul. 21, 2023. [Online].
Available: https://runtime-verification.github.io/

[10] A. Pnueli and A. Zaks, ‘‘PSL model checking and run-time verification
via testers,’’ in Proc. 14th Int. Symp. Formal Methods Formal Methods
(FM), Hamilton, ON, Canada. Berlin, Germany: Springer, Aug. 2006,
pp. 573–586.

[11] A. Bauer, M. Leucker, and C. Schallhart, ‘‘Comparing LTL semantics
for runtime verification,’’ J. Log. Comput., vol. 20, no. 3, pp. 651–674,
Jun. 2010.

[12] A. Bauer, M. Leucker, and C. Schallhart, ‘‘Runtime verification for LTL
and TLTL,’’ ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, pp. 1–64,
Sep. 2011.

[13] Y. Falcone, J.-C. Fernandez, and L. Mounier, ‘‘Runtime verification of
safety-progress properties,’’ in Proc. Int. Workshop Runtime Verification.
Berlin, Germany: Springer, 2009, pp. 40–59.

[14] A. Valmari, ‘‘The state explosion problem,’’ in Advanced Course on Petri
Nets. Berlin, Germany: Springer, 1996, pp. 429–528.

[15] F. B. Schneider, ‘‘Enforceable security policies,’’ ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, pp. 30–50, Feb. 2000.

[16] J. Ligatti, L. Bauer, and D. Walker, ‘‘Run-time enforcement of nonsafety
policies,’’ ACM Trans. Inf. Syst. Secur., vol. 12, no. 3, pp. 1–41, Jan. 2009.

[17] Y. Falcone, ‘‘You should better enforce than verify,’’ in Proc. 1st Int.
Conf. Runtime verification (RV), in Lecture Notes in Computer Science,
H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace,
G. Rosu, O. Sokolsky, and N. Tillmann, Eds., vol. 6418. Berlin, Germany:
Springer-Verlag, 2010, pp. 89–105.

[18] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, ‘‘Run-
time enforcement monitors: Composition, synthesis, and enforcement
abilities,’’ Formal Methods Syst. Design, vol. 38, no. 3, pp. 223–262,
Jun. 2011.

[19] S. Pinisetty, P. S. Roop, S. Smyth, S. Tripakis, and R. V. Hanxleden,
‘‘Runtime enforcement of reactive systems using synchronous enforcers,’’
inProc. 24th ACMSIGSOFT Int. SPIN Symp.Model Checking Softw. Santa
Barbara, CA, USA: ACM, Jul. 2017, pp. 80–89.

[20] A. Panda, A. Baird, S. Pinisetty, and P. Roop, ‘‘Incremental secu-
rity enforcement for cyber-physical systems,’’ IEEE Access, vol. 11,
pp. 18475–18498, 2023.

[21] E. Dolzhenko, J. Ligatti, and S. Reddy, ‘‘Modeling runtime enforcement
with mandatory results automata,’’ Int. J. Inf. Secur., vol. 14, no. 1,
pp. 47–60, Feb. 2015.

[22] H. Pearce, S. Pinisetty, P. S. Roop, M. M. Y. Kuo, and A. Ukil, ‘‘Smart
I/O modules for mitigating cyber-physical attacks on industrial control
systems,’’ IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4659–4669,
Jul. 2020.

[23] A. Mayer, A. Wool, and E. Ziskind, ‘‘Fang: A firewall analysis
engine,’’ in Proc. IEEE Symp. Secur. Privacy. (S&P), May 2000,
pp. 177–187.

[24] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, ‘‘Firmato: A novel firewall
management toolkit,’’ in Proc. IEEE Symp. Secur. Privacy, May 1999,
pp. 17–31.

[25] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon, K. How,
and H. Strong, ‘‘Expandable grids for visualizing and authoring computer
security policies,’’ in Proc. SIGCHI Conf. Human Factors Comput. Syst.,
Apr. 2008, pp. 1473–1482.

[26] L. Bauer, J. Ligatti, and D. Walker, ‘‘Composing expressive runtime
security policies,’’ ACM Trans. Softw. Eng. Methodol., vol. 18, no. 3,
pp. 1–43, May 2009.

[27] S. Pinisetty and S. Tripakis, ‘‘Compositional runtime enforcement,’’ in
Proc. NASA Formal Methods Symp. (NFM), Minneapolis, MN, USA.
Berlin, Germany: Springer, 2016, pp. 82–99.

[28] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang, ‘‘Shield synthesis:
Runtime enforcement for reactive systems,’’ in Tools and Algorithms for
the Construction and Analysis of Systems (Lecture Notes in Computer
Scienc), vol. 9035. Berlin, Germany: Springer, 2015.

[29] Q. Hou and J. Dong, ‘‘Robust adaptive event-triggered fault-tolerant
consensus control of multiagent systems with a positive minimum
interevent time,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 7,
pp. 4003–4014, 2023.

[30] Q. Hou and J. Dong, ‘‘Cooperative fault-tolerant output regulation of linear
heterogeneousmultiagent systems via an adaptive dynamic event-triggered
mechanism,’’ IEEE Trans. Cybern., vol. 53, no. 8, pp. 5299–5310, 2022.

[31] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone, ‘‘The synchronous languages 12 years later,’’ Proc. IEEE,
vol. 91, no. 1, pp. 64–83, Jan. 2003.

[32] N. Halbwachs, F. Lagnier, and P. Raymond, ‘‘Synchronous observers
and the verification of reactive systems,’’ in Algebraic Methodology and
Software Technology (AMAST). London, U.K.: Springer, 1994, pp. 83–96.

[33] H. Pearce, M. M. Y. Kuo, P. S. Roop, and S. Pinisetty, ‘‘Securing
implantable medical devices with runtime enforcement hardware,’’ in
Proc. 17th ACM-IEEE Int. Conf. Formal Methods Models Syst. Design.
New York, NY, USA: Association for Computing Machinery, Oct. 2019,
pp. 1–9, doi: 10.1145/3359986.3361200.

VOLUME 12, 2024 14409

http://dx.doi.org/10.1145/3359986.3361200

A. Baird et al.: Scalable Security Enforcement for Cyber Physical Systems

[34] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, ‘‘HardFails: Insights
into software-exploitable hardware bugs,’’ in Proc. 28th USENIX
Secur. Symp. (USENIX Security). Santa Clara, CA, USA: USENIX
Association, Aug. 2019, pp. 213–230. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/dessouky

[35] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li,
‘‘An overview of hardware security and trust: Threats, countermeasures,
and design tools,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 40, no. 6, pp. 1010–1038, Jun. 2021.

[36] M. Rostami, F. Koushanfar, and R. Karri, ‘‘A primer on hardware
security: Models, methods, and metrics,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, Aug. 2014.

[37] F. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda,
P. J. Bartolo, and D. W. Hutmacher, ‘‘Additive manufacturing
of tissues and organs,’’ Prog. Polym. Sci., vol. 37, no. 8,
pp. 1079–1104, Aug. 2012. [Online]. Available: https://www.sciencedirect
.com/science/article/pii/S0079670011001328

[38] U. Kalsoom, P. N. Nesterenko, and B. Paull, ‘‘Recent developments
in 3D printable composite materials,’’ RSC Adv., vol. 6, no. 65,
pp. 60355–60371, 2016.

[39] M. Kalender, S. E. Kiliç, S. Ersoy, Y. Bozkurt, and S. Salman, ‘‘Additive
manufacturing and 3D printer technology in aerospace industry,’’ in Proc.
9th Int. Conf. Recent Adv. Space Technol. (RAST), Jun. 2019, pp. 689–694,
doi: 10.1109/RAST.2019.8767881.

[40] D. Wu, A. Ren, W. Zhang, F. Fan, P. Liu, X. Fu, and J. Terpenny,
‘‘Cybersecurity for digital manufacturing,’’ J. Manuf. Syst., vol. 48,
pp. 3–12, Jul. 2018.

[41] M. Yampolskiy, W. E. King, J. Gatlin, S. Belikovetsky, A. Brown,
A. Skjellum, and Y. Elovici, ‘‘Security of additive manufacturing: Attack
taxonomy and survey,’’ Additive Manuf., vol. 21, pp. 431–457, May 2018.

[42] N. Gupta, A. Tiwari, S. T. S. Bukkapatnam, and R. Karri, ‘‘Additive
manufacturing cyber-physical system: Supply chain cybersecurity and
risks,’’ IEEE Access, vol. 8, pp. 47322–47333, 2020.

[43] G. Häußge. OctoPrint. Accessed: Jul. 21, 2023. [Online]. Available:
https://octoprint.org/

[44] M. McCormack, S. Chandrasekaran, G. Liu, T. Yu, S. DeVincent Wolf,
and V. Sekar, ‘‘Security analysis of networked 3D printers,’’ in Proc. IEEE
Secur. Privacy Workshops (SPW), May 2020, pp. 118–125.

[45] M. B. Barcena and C. Wueest, ‘‘Insecurity in the Internet of Things,’’ in
Proc. Secur. Response, Symantec 2015, pp. 1–20.

[46] M. O’Neill, ‘‘Insecurity by design: Today’s IoT device security problem,’’
Engineering, vol. 2, no. 1, pp. 48–49, Mar. 2016.

[47] H. Pearce, K. Yanamandra, N. Gupta, and R. Karri, ‘‘FLAW3D: A trojan-
based cyber attack on the physical outcomes of additive manufactur-
ing,’’ IEEE/ASME Trans. Mechatronics, vol. 27, no. 6, pp. 5361–5370,
Dec. 2022.

[48] TRINAMIC Motion Control GmbH Co. KG. (2023). MC2130 Datasheet.
[Online]. Available: https://www.trinamic.com

ALEX BAIRD received the B.E. degree (Hons.)
in computer systems engineering from The Uni-
versity of Auckland, Auckland, New Zealand,
in 2019, where he is currently pursuing the Ph.D.
degree in computer systems engineering. His
research interests include the design, safety, and
security of cyber-physical systems using formal
methods, particularly runtime verification, and
enforcement.

ABHINANDAN PANDA received the M.Tech.
degree in information and communication tech-
nologies from the Indian Institute of Technol-
ogy Kharagpur, India, in 2014. Currently, he is
pursuing the Ph.D. in computer systems engi-
neering with the Indian Institute of Technology
Bhubaneswar, India. His research interests include
the theory of computation, formal methods, run-
time verification, and enforcement and its applica-
tion in the security of cyber-physical systems and
health monitoring.

HAMMOND PEARCE received the B.E. degree
(Hons.) in computer systems engineering and the
Ph.D. degree in computer systems engineering
from The University of Auckland, New Zealand,
in 2016 and 2020, respectively. He is currently
a Lecturer with the School of Computer Science
and Engineering, University of New South Wales.
Previously, he was with the Department of Elec-
trical and Computer Engineering, NYU, and NYU
Center for Cybersecurity as a Research Assistant

Professor. His research interests include cybersecurity and hardware and
embedded systems design, and the intersection of AI and industrial
informatics in this area.

SRINIVAS PINISETTY received the master’s
degree in computer science from the Eindhoven
University of Technology (TU/e), Eindhoven,
The Netherlands, in 2009, and the Ph.D. degree
in computer science from INRIA, University of
Rennes 1, Rennes, France, in January 2015.
He continued as a P.D.Eng. Trainee with the TU/e
for two years. For his master’s thesis project,
he worked with ASML, Veldhoven, The Nether-
lands, in 2009, and he worked as a Software

Design Engineer Trainee with Océ Technologies, Venlo, The Netherlands,
in 2011. He is currently an Assistant Professor with the School of Electrical
Sciences, Indian Institute of Technology (IIT) Bhubaneswar, Bhubaneswar,
India. Prior to joining IIT Bhubaneswar, he was a Postdoctoral Researcher
with the University of Aalto, Espoo, Finland, and later with the University
of Gothenburg–Chalmers, Gothenburg, Sweden. His research interests
include formal methods, and software engineering in general, and runtime
verification and enforcement in particular.

PARTHA ROOP (Member, IEEE) received the
B.E. degree in computer science and engineering
from the College of Engineering, Anna University,
Chennai, India, in 1989, the M.Tech. degree in
computer science and engineering from the Indian
Institute of Technology Kharagpur, Kharagpur,
India, in 1993, and the Ph.D. degree in computer
science (software engineering) from theUniversity
of New South Wales, Sydney, NSW, Australia,
in 2001. He is currently a Professor with the

Department of Electrical, Computer and Software Engineering, The Uni-
versity of Auckland, Auckland, New Zealand. His research interests include
the design and validation of cyber-physical systems using formal methods,
including in digital health and artificial intelligence (AI) applications in
cyber-physical systems.

14410 VOLUME 12, 2024

http://dx.doi.org/10.1109/RAST.2019.8767881

