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ABSTRACT We present an automatic signal modulation classification model using combinatorial deep
learning technique. Our proposed deep learning model increase accuracy for low Signal-to-Noise Ratio
(SNR) and maintain a high classification accuracy for high SNR signals. Using a hybrid deep learning model
combining both ConvLSTM with Transformer-block neural networks, the proposed modulation classifier
architecture can learn the signal for both low and high SNR and get better accuracy for signals with high
noise. The proposed deep learning modulation classification technique achieves improved classification
accuracy of 66% for low SNR signals and 93.5% at high SNR showing that our model is robust under
noisy signal modulation. Thus, getting better accuracy in lower SNR signals without sacrifice accuracy for
higher SNR signals. An adaptive weighted focal loss function is proposed as an optimized loss function for
efficient classification which can be used to control the outliers within a class imbalance and avoid underflow
issues. Our deep learning radio modulation classification model works using raw signal without the need of
denoising the noisy signal.

INDEX TERMS Automatic modulation classification, dynamic spectrum allocation, deep learning tech-
niques, transformer-block ConvLSTM, feature-based extraction, AI-based wireless communications.

I. INTRODUCTION
Automatic signal modulation recognition in AI-based wire-
less communication can be done using combinatorial deep
learning techniques to improve resource shortage and spec-
trum utilization efficiency for dynamic spectrum alloca-
tion [1]. A clean signal will have a high Signal-to-Noise Ratio
(SNR). We should be able to classify signals in both low and
high SNR. Our proposed deep learning model increase accu-
racy for low SNR and maintain a high classification accuracy
for high SNR signals. Using a hybrid deep learning model
by combining both ConvLSTM with Transformer-block
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neural networks shown in Fig. 1. The proposed deep learning
modulation classification technique achieves improved clas-
sification accuracy of 66% for low SNR signals and 93.5%
at high SNR. Thus, getting better accuracy in lower SNR
signals without sacrifice accuracy for higher SNR signals.
Simulation results show that our proposed deep learning
model is robust under noisy signal modulation without the
need of denoising the noisy signal.

By utilizing combinatorial technique in our proposed
model that incorporates both ConvLSTM and transformer-
block model. Our proposed model has advantage in using
transformer-block network since it uses parallelization pro-
cessing thus make use of parallel computation [2]. Also, the
input size can be any size or vector length and simultaneously
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FIGURE 1. Automatic modulation classification model using
combinatorial deep learning technique for both low and high SNR signal
classification.

proceed by the transformer-block network instead of sequen-
tially hence solving the vanishing gradient problem. By using
transformer-block network in our proposed model, the con-
text of data can be well captured because it uses the positional
encoding and self-attention mechanism which are included in
the network modules [2].

II. NEURAL-NETWORK MODULATION CLASSIFICATION
Automatic modulation classification (AMC) offers spectrum
management and interference detection for software defined
radio and cognitive radio networks [1].

As a practical solution to improve the effectiveness of auto-
matic modulation classification, deep learning techniques
have been widely used in wireless communication sys-
tems. Automatic modulation classification can be divided
into likelihood-based and feature-based methods [1]. The
likelihood-based method requires more computational com-
plexity. Whereas feature-based method requires less compu-
tational complexity [3], [4], [5], [6].

The signal is not ideal and is usually combined with noise.
A noisy signal will have a low SNR [3], [4], [5], [6]. It means
that if the noise is higher, the model will likely to fail to do
the modulation classification. We should be able to classify
signals both in low SNR and high SNR.

The authorsWest andO’Shea [7] combinedCNNandRNN
neural networks to form a CLDNN model which improved
the modulation recognition accuracy to 85% in high SNR
only. The authors Chen et al. [8] combined CNN, RNN,
and GAN neural networks to extract the signal spatial char-
acteristics and classification is done with a fully connected
layer achieving an accuracy of more than 90% in high SNR
only. Jiang et al. [9] combined CLDNN with LSTM neural
network achieving 90.8% accuracy at high SNR. Tang et al.
[10] combined CNN with GAN achieving an accuracy of
100% at high SNR. Xu et al. [11] combined CNNwith LSTM
neural networks achieving an accuracy of 90% at high SNR.
Jiang et al. [12] combined CNN with Bi-LSTM achieving an
accuracy of 93.1%. Liang et al. [13] combined ResNeXt with
Attention block achieving an accuracy of 90% in high SNR.
Chang et al. [14] combined CNN with Bi-GRU achieving an
accuracy of 84% in high SNR only.

Zhang et al. [15] combined GRU with CNN achieving an
accuracy of 99.4%.. Zou et al. [16] combined CLDNN with
Attention achieving an accuracy of 90% in high SNR. The

authors Bai et al. [17] combined ResNet with CNN achieving
an accuracy of 91% in high SNR. Chen et al. [8] used a deep
learning-based attention framework using CNN, RNN, and
GAN neural networks. The CNN and RNN are used to extract
the signal spatial characteristics. Zou et al. [16] used Atten-
tion along with CLDNN neural networks model achieving
an accuracy of 90% in high SNR. Bai et al. [17] combined
complex value network with ResNet model achieving an
accuracy of 91% at high SNR. Chang et al. [14] combined
CNN with Bi GRU networks achieving an accuracy of 84%
at high SNR. Duan et al. [18] used combination of CNN with
BiLSTM andAttentionmodels achieving an accuracy of 93%
at high SNR. Xu et al. [11] combined CNN and LSTM with
FC models achieving an accuracy of 90% at high SNR.

Dampage et al. [19] used both LSTM and Bi LSTMmodels
achieving an accuracy of 90% at high SNR. Liu et al. [20]
combined DCN and BiLSTM models achieving an accuracy
of 90% at high SNR. Yang et al. [21] used an IRS model
combined with LSTM neural networks achieving an accuracy
of 90% at high SNR. Kumaran et al. [22] combined GRU and
BiLSTM neural networks achieving an accuracy of 92% at
high SNR. Ze and Vikalo [23] used single neural network
model LSTM achieving an accuracy of 90% at high SNR.
Xie et al used DNN neural network model to extract sixth
order cumulant feature of the signal achieving an accuracy
of 92% at high SNR. Zhang et al. [24] used BP network
model achieving an accuracy of 98% at high SNR. Our
proposed deep learning model increase accuracy for low
SNR and maintain a high classification accuracy for high
SNR signals compared to previous published work. Using
a hybrid deep learning model by combining both ConvL-
STMwith Transformer-block neural networks. Our proposed
deep learning modulation classification technique achieves
improved classification accuracy of 66% for low SNR sig-
nals and 93.5% at high SNR. Other published work such as
Oikonomou [25] do not use deep learning models and hence
do not have the capability of modulation recognition format
prediction also they do not have the capability of loading
automatic modulation recognition deep learning model on
hardware accelerator chips to take processing load of the
main hardware processor compared to our proposed deep
learning model [25]. Our proposed automatic modulation
recognition format prediction combined deep learning model
can be loaded on a hardware accelerator chip thus take the
processing load of the main hardware microprocessor.

Recent studies show that deep learning models such as
neural networks can extract features effectively from vari-
ous representation of wireless signals such as in-phase and
quadrature (IQ) signal or spectrogram in order to achieve high
modulation classification accuracy [3], [4], [5], [6].

The received signals is preprocessed from I/Q signals
cartesian coordinates to polar coordinates to the correspond-
ing amplitude and phase in order to extract more features.
By learning more features from the polar domain makes the
network more resilient to fading channels [3], [4], [5], [6]
then are converted to Fig. 2 which describes the constellation
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FIGURE 2. Various modulation constellation data signals are represented
by two vectors one for quadrature and other for In-phase.

diagrams of common modulation modes after coordinate
transformation.

Fig. 2 shows various modulation constellation data signals
considered in this work that are represented by two vectors
one for Quadrature and In-phase representation. Similar mod-
ulation constellation data signals are considered in previous
publish work Bell [3] where they combined both ResNet
and CNN achieving 86% accuracy in high SNR only unlike
our proposed work where we achieve high accuracy in both
high and low SNR. Also Huang [4] used similar modulation
constellation data signals in their published work using com-
pressive CNN achieving accuracy of 95% accuracy in high
SNR only. Guo [5] also used similar modulation constellation
data signals in their published work using Residual CNN
achieving accuracy of 92% accuracy in high SNR only unlike
our proposed work where we achieve high accuracy in both
high and low SNR.

Zhang et al. [6] proposed a multiscale CNN for
constellation-based modulation classification. The network
structure was composed of multiple processing modules
achieving a classification accuracy can reach 97.7% in high
SNR only [6] [26]. Shi et al. [27] [26] proposed an automatic
modulation recognition (AMR) method which includes a
multi-scale convolution deep network for recognizing mod-
ulation types achieving an overall recognition accuracy of
98.7%.again only in high SNR unlike our proposed work
where we achieve high accuracy in both high and low
SNR [27] [26].

III. FEATURE EXTRACTION-BASED CLASSIFICATION
The proposed deep-learning-based model for automatic
modulation classification (AMC) was trained using IQ

component signals and image-based constellation dia-
grams [3], [4], [5], [6].

The feature-based method usually requires less computa-
tional complexity by extracting data representation features
for classification [3], [4], [5], [6]. Key features can be cat-
egorized as time-domain features including instantaneous
amplitude, phase and frequency and frequency-domain fea-
tures such as wavelet transform of the signals, higher order
moments (HOMs) and higher order cumulants (HOCs) that
are described in (1) through (50) as follows [3], [4], [5], [6].

The BPSK transmitter emits a signal with voltage of ‘‘−a’’
volts when transmitting bits X=0 and the random variable X
is mapped to voltage of ‘‘+a’’ volts when transmitting bits
X=1. The communication channel adds the Gaussian noise to
this transmitted signal. Therefore, the conditional distribution
and variance of σ 2

n with Gaussian distribution p (r) is the
Gaussian distribution with mean ‘‘−a’’ volts variance of σ 2

n
given by and is represented as follows [28]

p (r) =
1√
2πσ 2

n

exp

(
−
1
2

(
r + a
σn

)2
)

. (1)

The ratio when transmitter sends X=0 to X=1 is given by the
following λ and is represented as follows [28]

λ =

1√
2πσ 2

n
exp

(
−

1
2

(
r−a
σn

)2)
1√
2πσ 2

n
exp

(
−

1
2

(
r+a
σn

)2) . (2)

which simplifies to the following equation if λ > 1 the
receiver estimates that X=1 is sent else X=0 [28]

λ = exp
(
2ra
σ 2
n

)
. (3)

which is evaluated to

log
(
λ
)

=
2ra
σ 2
n

. (4)

The heterodyne Zero-IF receiver shown in Fig. 3 have a
decision rule that can be written in aminimum distance which
compares the squared Euclidean distances d21 and d20 and is
represented as follows [28]

d21 − d20 = (r − a)2 − (r + a)2. (5)

Various features extracted from IQ signal components, such
as amplitude and phase, higher order statistics and higher
order cumulants are utilized to provide sequence classifica-
tion [3], [4], [5], [6].
A feature extraction-based classification method usually

includes two stages data feature extraction and classifier
decision making. The key features can be categorized as time
domain features including amplitude, frequency, and trans-
form domain features such as higher-order moments (HOMs)
and higher-order cumulants (HOCs).

Coefficients series expansion are expected values of
complex-valued polynomials H(z). They are computed using
the input symbols cross-moments. These input symbols
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FIGURE 3. Deep learning-based radio modulation recognition for
heterodyne Zero-IF receiver with quadrature down conversion.

cross-moments used to determine the probability density
function the symbols came from. The Gram-Charlier expan-
sion series can be defined as follows [29]

fz(z) =

∑∞

p=0

∑∞

q=0

E
[
Hp,q(z)

]∗√
p!q!

Hp,q(z)√
p!q!

1
π
e−zz∗ (6)

Some complex Hermite polynomials are given by the follow-
ing coefficients [29]

H0,0 (z) = 1 (7)

H1,0 (z) = z (8)

H1,1 (z) = |z|2 − 1. (9)

H2,1 (z) = z2z∗ − 2z. (10)

H2,2 (z) = |z|4 − 4 |z|2 + 2. (11)

The density functions can be determined by the infinite
sequence of these coefficients and can be defined as fol-
lows [29].

hp,q (fz) =
E
[
Hp,q(z)

]∗√
p!q!

. (12)

The Euclidean distance between two density function or
sequence coefficient is determined as follows [29]

d (f1, f2) =

√∑∞

p=0

∑∞

q=0
|hp,q(f1) − hp,q(f2)|2. (13)

This Euclidean metric on the set of Gram-Charlier coeffi-
cients enables use of metric space-based classifiers.

We can define the second-order moments of a stationary
random process y(n) with the following coefficients. C40,
C41, or C42 can be determined in terms of the fourth-and
second order moments of y(n) as follows [30], [31]

C21 =
1
N

∑N

n=1
|y (n)|2 . (14)

C20 =
1
N

∑N

n=1
y2 (n). (15)

The higher order cumulants (HOCs) of fourth order are used
for automatic modulation classification. The cumulants of the
received symbol y are determined as follows [30], [31]

C40 =
1
N

∑N

n=1
y4 (n) − 3C2

20. (16)

C41 =
1
N

∑N

n=1
y3 (n) y∗ (n) − 3C20C21. (17)

C42 =
1
N

∑N

n=1
|y (n)|4 − C2

20 − 2C2
21. (18)

We can estimate the normalized cumulants as such. By using
the above (14) to (18), three HOC feature parameters (i.e., F1,
F2, and F3) are extracted for classification and represented as
follows [30], [31]

F1 =
|C40|

C42
(19)

F2 =
|C41|

C42
(20)

F3 =
|C63|

2

|C42|
3 (21)

C40 is utilized to decide whether the constellation diagram is
for the real valued rectangular QAMor circular PSK or BPSK
or PAM. The amount of cumulative is used to determine
the type of modulation. We choose the decision limits as
illustrated as follows [30], [31]

C40 < 0.34 implies PSK. (22)

0.34 < C40 < 1.02 implies QAM. (23)

1.02 < C40 < 1.68 implies PAM. (24)

1.68 < C40 < 1.68 implies BPSK. (25)

Thus, the lowest value of distance between empirical cumu-
lants and theoretical values (L → ∞) indicates the utilized
modulation type.

The signal received by the receiver can be described as
follows.

Under the assumption that the signal received by the
receiver has undergone carrier synchronization, symbol tim-
ing, and matched filtering, and the channel noise is Gaussian
white noise, the symbol synchronous sampling complex sig-
nal sequence obtained at the output is [32]

x (t) = s (t) + n (t)

=
√
A

g∑
k

µk
√
Enλ (t − nT) exp[j (2π fc + Oc] + n(t)

(26)

x (t) is the signal received at the receiving end, and s (t) is the
signal at the transmitting end, n (t) is the zero-mean complex
Gaussian white noise, En is signal energy.
where k=1,2 . . . g, and g is the length of the transmitted

code element sequence. A is the unknown factor amplitude,
λ (t) is transmitted waveform code element; µk is code
sequence element,Oc is carrier phase, Ts is width of the code
element, En is signal energy and fc is carrier frequency [32].

For zero-mean stationary random process X (t) , the p-
order mixing moment and k-order HOC are defined as
follows.

The characteristic parameters HOCs for various signals
that can be designed in accordance is shown in Table 1.
Utilizing the following equations three feature parameters
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TABLE 1. High-order cumulant HOC modulation signals.

FIGURE 4. Classification loss function optimization.

(i.e., F1, F2, and F3) are extracted [31]

F1 =
|C40|

C42
(27)

F2 =
|C41|

C42
(28)

F3 =
|C63|

2

|C42|
3 (29)

The three signal features extracted from HOC having strong
low SNR robustness where En is signal energy [32].

The SNR estimated value can be defined as follows [32]

SNR =

√
2M2

2 −M4

M2 −

√
2M2

2 −M4

. (30)

The second-order moment M2 and fourth order moment M4
method are given by [32]

M2 =
1
N

∑N−1

n=0
|x (n)|2 . (31)

M4 =
1
N

∑N−1

n=0
|x (n)|4 . (32)

N is the signal length, and the received signal is x(n).
Then we perform normalization to the data by minimiz-

ing the penalty function is how Neural networks learn. And
accordingly, they iteratively updates a series of weights and
biases. Weights in loss function can be used to control the
outliers for positive predictions to deal with a class imbalance
as shown in Fig. 4.

The weighted cross-entropy loss function can be deter-
minedwith the following equation.Where yi is actual value of
y and y′i is predicted value of y, w is the weight associated with
each sample, M is the total number of samples in the dataset,

FIGURE 5. Loss function optimization analysis.

N is the normalization factor for sample [2], [33], [34]

L
(
y′i, yi

)
= −

∑M
i=1 ωi

∑M
i=1

yi
Ni

log y′i∑M
i=1 ωi

. (33)

A categorical cross-entropy loss function use softmax instead
of using sigmoid as the last layer activation. The categorical
cross-entropy loss function can be determined as follows
where M is the total number of samples in the dataset [31],
[33] [34]

L
(
y′i, yi

)
= −

∑M

i=1
yi log y′i. (34)

In focal loss function has the same softmax of cross-entropy
except it is an index of which category is true instead of the
target being a probability distribution. The index of which
category is the true value we just pass in as follows where
M is the total number of samples in the dataset and ϒ is the
hyperparameter [31], [33] [34].

L
(
y′i, yi

)
= −

∑M

i=1
(1 − y′i)

ϒyi log y′i. (35)

To avoid underflow issues the Kullback Leibler loss function
expects the argument input in the log-space and is computed
as follows where M is the total number of samples in the
dataset [31], [33] [34]

L
(
y′i, yi

)
=

∑M

i=1
yi(log yi − log y′i). (36)

An adaptive weighted focal loss is proposed as an optimized
loss function for efficient classification which can be used
to control the outliers with class imbalance and avoid under-
flow issues as shown in Fig. 5 and it can be determined as
follows where Ypred is the predicted probability representing
the model’s estimated probability that a sample belongs to the
positive class [31], [33] [34]

L
(
y′i, yi

)
= −

∑M
i=1 ωi

∑M
i=1

(1−y′i)
λ

Ni
(log yi − log y′i)∑M

i=1 ωi
. (37)
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FIGURE 6. ConvLSTM memory cell structure.

IV. PROPOSED MODULATION CLASSIFICATION DEEP
LEARNING MODEL
In this section, a hybrid combinatorial deep learning model
combining both ConvLSTM with Transformer-block neural
networks is proposed. Our proposed modulation classifier
architecture can learn the signal for both low and high SNR
and get better accuracy for signals with high noise. For
learning persistent features from a time series data, Recurrent
Neural Networks (RNN) are utilized. However, these models
using RNNs suffer from much slower training time. LSTM
efficient in learning long-term dependencies is a special type
of RNN. ConvLSTM Convolutional Long Short-term is a
special type of RNNwhich integrates both CNNwith LSTM.
ConvLSTM is a modification and extended version of LSTM
as shown in Fig. 6.
The data transmission and processing in LSTM are real-

ized by three key gate units: input gate, output gate, and
forget gate, which are used for implementing information
processing.

In LSTM, the input gate it , the output gate ot , and forgotten
gates ft are defined as [19], [20], [35], and [36], respectively
The equations of LSTM cell are as follows. The input

gate and memory status update information are [19],
[20], [23] [35],

it = σ (WxiXt + WhiHt−1 + WciCt−1 + bi). (38)

ft = σ (WxfXt + WhfHt−1 + WcfCt−1 + bf). (39)

ot = σ (WxoXt + WhoHt−1 + WcoCt + bo). (40)

where σ is a sigmoid function andXt is the input to the current
gate structure, and Ht−1 is the output of the previous gate
memory cell structure. Ct−1 represent the state of the last
memory cell in LSTM. Wxi and bi are the weight and bias
of the input gate, Wxf and bf are the weight and bias of the
forget gate, and Wxo and bo are the weight and bias of the
output gate [19], [20], [23].

The input feature sequence Xt and the output sequence of
the previous time Ht−1 are input to the memory cell. The
forgetting factor ft is obtained via the forgetting gate. tanh
is an activation function that generates candidate values C̃t .
In addition, C̃t participates in the calculation to obtain the
memory state Ct [19], [20], [23]

C̃t = tanh(WxcXt + WhcHt−1 + bc). (41)

ct = ft .Ct−1 + it .C̃t . (42)

ht = σt .tanh(ct ). (43)

The output gate control factor ot determineswhether to output
information and is expressed as follows [35]

ot = σ (WxoXt + WhoHt−1 + WcoCt + bo). (44)

Compared with Ct, Ht−1 contains more information about
the current moment. Therefore, Ht−1 represents short-term
memory, while Ct represents long-term memory and the
state-update is given by the following equations [19],
[20], [23]

The Convolutional Long Short-term ConvLSTM shown in
Fig. 6 calculation equations can be expressed as [37]

it = σ (Wxi∗Xt + Whi∗Ht−1 + WcioCt−1 + bi). (45)

ft = σ (Wxf∗Xt + Whf∗Ht−1 + WcfoCt−1 + bf). (46)

ot = σ (Wxo∗Xt + Who∗Ht−1 + WcooCt + bo). (47)

C̃t = tanh(Wxc∗Xt + Whc∗Ht−1 + bc). (48)

ct = ftoCt−1 + itoC̃t . (49)

Ht = σtotanh(C t ). (50)

where Xt denotes the input of the current cell, Ct−1 and
Ht−1 are state and output of the last cell, respectively. The ∗

operator means the convolution operation and the o denotes
the Hadamard product. W denotes the convolution filter. Wxi
and bi are the weight and bias of the input gate, Wxf and bf are
the weight and bias of the forget gate, and Wxo and bo are the
weight and bias of the output gate [37]. ConvLSTMConvolu-
tional Long Short-term contains convolution operation inside
it and is used extract spatial-spectral features [37]. It captures
long-term and short-term dependencies by stacking multiple
ConvLSTM layers [37]. We should be able to classify signals
both in low SNR and high SNR. We proposed a combined
deep learning architecture shown in the Fig. 7 that works to
handle the noisy signal modulation low SNR signal mod-
ulation and maintain high accuracy for High SNR signals.
Adding more ConvLSTM layers with MaxPooling layers can
extract more features which is fed into classification layer to
predict the probability distribution of each modulation class
and is given by the following [37], [38], [39].

P (y = i|x,W , b) =
e(ωjx+bj)∑N
j=1

˙e(ωjx+bj)
. (51)

W is weight and b is the bias of the classification layer with
a loss function determined as [37], [40]

L
(
yi, y′i

)
= −

∑M

i=1
(yi. log y

′
i). (52)
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FIGURE 7. Combinatorial deep learning neural networks model for both
low SNR and high SNR modulation classification.

TABLE 2. ConvLSTM network model layers.

Our proposed architecture uses two streams as shown in
Fig. 7, first stream with ConvLSTM and second stream with
transform-block network to extract features for high and low
SNR signals. Our proposed model has advantage in using
transformer-block network since it uses parallelization pro-
cessing thus make use of parallel computation [2]. Also, the
input size can be any size or vector length and simultane-
ously proceed by the transformer-block network instead of
sequentially hence solving the vanishing gradient problem.
By using transformer-block network in our proposed model,
the context of data can be well captured because it uses the
positional encoding and self-attention mechanism which are
included in the network modules [2].

The layer type and output shape for ConvLSTM network
structure specific to each layer that is implemented is shown
in Table 2. As illustrated in Table 2 a Conv1D convolutional
layer consisting of 64 filters is applied to the 128×2 IQ inputs
with kernel size of 8.

For higher resolution we need a large filter. It maps the
input IQ components onto feature channels. Then, based on
the characteristics of IQ signal. Softmax is used as the activa-
tion function for multi-class classification and the optimizer

TABLE 3. ConvLSTM2D network model layers.

used is Adam with loss function categorical cross entropy
along with learning rate of 0.01.

After that a MaxPooling1D and then a ConvLSTM and
dropout layer follows with the same parameters. After that
second ConvLSTM and a dropout layer followed by a Glob-
alAveragePooling1D with the same parameters and a Dense
and Dropout layer. At the end is a fully connected layer with
an output size 11 with a Softmax activation function.

To increase the overall accuracy performance of our pro-
posed model a ConvLSTM2D model is implemented. The
layer type and output shape for ConvLSTM2D network struc-
ture specific to each layer that is implemented is shown in
Table 3. The proposed architecture consists of an input layer
of 128 × 2 IQ input, followed by a Conv2D layer with
64 filters and 8 kernels then a MaxPooling2D layer and then
a ConvLSTM2D and a Dropout layer follows with the same
parameters. After that second ConvLSTM2D and a Dropout
layer followed by a GlobalAveragePooling2D with the same
parameters and a Dense and Dropout layer. At the end is a
fully connected layer with an output size 11. Softmax is used
as the activation function for multi-class classification and the
optimizer used is Adam with loss function categorical cross
entropy along with learning rate of 0.01.

A Transformer-block is utilized as the second stream for
larger training data set parallelization [41] [42]. Transformers
use attention blocks resulting in faster training time and infer-
ence testing time. Our proposedmodel has advantage in using
transformer-block network since it uses parallelization pro-
cessing thus make use of parallel computation [2]. The final
network design for our proposed classifier model combine
Transformer-block with ConvLSTM2D as shown in Fig. 8
and Fig. 9 to achieve higher classification accuracy for both
Low and High SNR signals. The proposed multi-stream net-
work can extract various characteristics of signals as shown
in Fig. 9.

To determine the transformer self-attention, we use the
following [2], [43]

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V . (53)

where Q is the query sequence and K is the keys in the
sequence and V is the sequence value. And the attention
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FIGURE 8. Proposed automatic modulation classification model using combinatorial deep learning technique for both low and high SNR signal
classification.

FIGURE 9. Proposed combinatorial deep learning classification model for
both low SNR and high SNR modulation recognition.

weights are given by [2], [8], [43]

a = softmax
(
QKT
√
dk

)
. (54)

It uses different transformations activation functions to
transform the input and eliminates the need for recurrent
connections [2], [8], [13], [43].

Our proposed model has advantage in using transformer-
block network since it uses parallelization processing thus
make use of parallel computation. In turn faster training time
and inference testing time in using parallelization. Moreover,
the input size can be any vector length and simultaneously
proceed by the transformer-block encoder-decoder attention
instead of sequentially hence solving the vanishing gradient
problem. Also, context of data is well captured positional
encoding and self-attention mechanism.

To increase the overall accuracy performance and to cap-
ture more context of the input data, a transformer-block
network is implemented as a second stream in our proposed
architecture as shown in Fig. 9. The layer type and output

TABLE 4. Transformer-block network model layers.

shape for the transformer-block network structure specific
to each layer that is implemented is shown in Table 4. The
proposed architecture consists of an input layer of 128×2 IQ
input, followed by a Conv1D layer with 64 filters and 8 ker-
nels then aMaxPooling1D layer and then a ConvLSTM and a
Dropout layer follows with the same parameters. After that a
Transformer-block and a GlobalAveragePooling1D followed
by Dropout layer with the same parameters and a Dense and
Dropout layer. At the end is a fully connected layer with an
output size 11. Softmax is used as the activation function for
multi-class classification. The Transformer uses a stochastic
gradient descent (SGD) optimizer and starts with a learning
rate of 0.03, which can be lowered during the training.

V. RML2016.10a and RML2016.10b RADIO SIGNAL
DATASET
DeepSig radio signal datasets RadioML2016.10a [44] [45]
and RadioML2016.10b [21] are used for evaluating the mod-
ulation recognition of our proposed models.
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TABLE 5. RadioML2016.10a DeepSig dataset parameters.

TABLE 6. RadioML2016.10B DeepSig dataset parameters.

The RML2016.10a dataset parameters [44] are shown in
Table 5. It contains 220,000 samples, each represented using
two vectors each of them has 128 elements Shape: (220,000,
2, 128) [46]. The IQ signal input component. A batch size of
128 is used on each training epoch [45].

The RML2016.10b dataset parameters [21] are shown in
Table 6. It contains 1.2M samples, each represented using
two vectors each of them has 128 elements Shape: (1200000,
2, 128) [46]. The IQ signal input component. A batch size of
128 is used on each training epoch.

The Nvidia Tesla A100 Tensor Core GPU is used to speed
up the calculation.Models are implemented done using Keras
framework with Nvidia A100 Tensor Core GPU.

The 128-sample baseband IQ time-domain signal data is
used to identify the modulation type out of 11 modulations.
based on power spectrum and time. The input data is fed in
where the real and imaginary parts of samples are separated
as shown in Fig. 10 and Fig. 11 [47].
Received r(t) signal is sampled into its discrete signal r[n],

that is of the in-phase (I) components r I [n] and quadrature
(Q) components rQ[n] are given as [36], [46], [48]

r [n] = r I [n] + jrQ[n]. (55)

In reality the signal is always not ideal and combined with
unwanted signal that is considered as noise which can affect

FIGURE 10. IQ signal data samples constellation diagram where signals
are represented by two vectors one for quadrature and other for In-phase
representation.

FIGURE 11. IQ signal data samples power spectrum representation.

our ability to determine the signal. Their relationship with the
transmitter side I[n] and Q[n] is given by [36], [49], [50]

r I [n] = I [n] cos (2π fn+ ϕ)

− Q [n] sin (2π fn+ ϕ) + nadd [n]. (56)

rQ [n] = −I [n] sin (2π fn+ ϕ)

− Q [n] cos (2π fn+ ϕ) + nadd [n]. (57)

To construct the relation between I and Q components, the
transformation function can be expressed as [36]

r [n] = radius [n] =

√
I [n]2 − Q[n]2. (58)

θ [n] = theta [n] = arctan(
I [n]
Q [n]

). (59)

We detect signals from their time representation showing
value of each signal at a given time where each sample is
represented by two vectors one for Quadrature and other for
In-phase representation and the variance of data shown in
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FIGURE 12. Classifier accuracy performance versus SNR for high SNR
modulation recognition increase model layer with batch size.

FIGURE 13. Varying learning rate and epoch with hyperparameter tunning.

Fig. 10 and Fig. 11. We should be able to classify signals both
in low SNR and high SNR.

VI. CLASSIFICATION PERFORMANCE SIMULATION
RESULTS
The simulation results show that our proposed deep learning
model is robust under noisy signal modulation without the
need of denoising the noisy signal. The simulation results
show our technique outperforms existing feature-based
extraction architectures in terms of modulation recognition
performance getting better accuracy in lower SNR signals
without sacrifice accuracy in higher SNR signals.

Our proposed deep learning modulation classification
technique achieves improved classification accuracy of 66%
for low SNR signals and 93.5% at high SNR. As shown in
Fig. 12, Fig. 13 and Fig. 14 overall classification accuracy
against SNR.

The overall classification performance of our proposed
deep learningmodel for high SNR signals is shown in Fig. 13.
Two ConvLSTM2D layers gives better accuracy than one
ConvLSTM2D layer with batch size of 256 achieving accu-
racy of 93.5% for High SNR signals.

The overall classification performance of our proposed
deep learningmodel for high SNR signals is shown in Fig. 13.
Tuning the learning rate hyperparameter to 0.0001 with

FIGURE 14. Combined transformer-block with ConvLSTM neural network
SNR classifier performance.

FIGURE 15. Confusion matrix of our proposed deep learning model for
digital modulations at 0dB SNR with 50 epochs.

200 epochs gives higher classification accuracy achieving
accuracy of 93.5% for High SNR signals.

As shown in Fig. 14 our proposed deep learning modula-
tion classification technique achieves improved classification
accuracy of 66% for low SNR signals and 93.5% at high SNR.
Using our hybrid deep learning model by combining both
ConvLSTM2D with Transformer-block neural networks, the
proposed modulation classifier architecture can learn the sig-
nal for both low and high SNR and get better accuracy for
signals with high noise. Showing that our model is robust
under noisy signal modulation.

We analyze the classification accuracy of our pro-
posed model for different modulation with DeepSig
RadioML2016.10a dataset. The confusion matrix presents
what modulation classes the model is confusing with other
modulation classes. A dark blue along the diagonal represents
a perfect classification.

The confusion matrix performance of the proposed deep
learning model for digital modulation signals at 0dB SNR
with 50 epochs is shown in Fig. 15. We analyze the classifica-
tion accuracy of our proposed model for different modulation
with DeepSig RadioML2016.10a dataset.
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FIGURE 16. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 0dB SNR with 300 epochs.

FIGURE 17. Confusion matrix of our proposed deep learning model for
digital modulations at 2dB SNR with 50 epochs.

The confusion matrix performance of the proposed deep
learning model for digital and analog modulation signals at
0dB SNRwith 300 epochs is shown in Fig. 16.We analyze the
classification accuracy of our proposed model for different
modulation with DeepSig RadioML2016.10a dataset.

The confusion matrix performance of the proposed deep
learning model for digital modulation signals at 2dB SNR
with 50 epochs is shown in Fig. 17.
The confusion matrix performance of the proposed deep

learning model for digital and analog modulation signals at
2dB SNR with 300 epochs is shown in Fig. 18.

The confusion matrix performance of the proposed deep
learning model for digital modulation signals at −16dB SNR
with 50 epochs is shown in Fig. 19.

FIGURE 18. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 2dB SNR with 300 epochs.

FIGURE 19. Confusion matrix of our proposed deep learning model for
digital modulations at -16dB SNR with 50 epochs.

The confusion matrix performance of the proposed deep
learning model for digital and analog modulation signals at
−14dB SNR with 300 epochs is shown in Fig. 20.

The confusion matrix performance of the proposed deep
learning model for digital modulation signals at 4dB SNR
with 50 epochs is shown in Fig. 21.
The confusion matrix performance of the proposed deep

learning model for digital and analog modulation signals at
4dB SNR with 300 epochs is shown in Fig. 22.
The confusion matrix performance of the proposed deep

learning model for digital modulation signals at 6dB SNR
with 50 epochs is shown in Fig. 23.
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FIGURE 20. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at -14dB SNR with 300 epochs.

FIGURE 21. Confusion matrix of our proposed deep learning model for
digital modulations at 4dB SNR with 50 epochs.

The confusion matrix performance of the proposed deep
learning model for digital and analog modulation signals at
6dB SNR with 300 epochs is shown in Fig. 24.
The confusion matrix performance of the proposed deep

learning model for digital modulation signals at 8dB SNR
with 50 epochs is shown in Fig. 25.

The confusion matrix performance of the proposed deep
learning model for digital and analog modulation signals at
8dB SNR with 300 epochs is shown in Fig. 26.

The confusion matrix performance of the proposed deep
learning model for digital modulation signals at 10dB SNR
with 50 epochs is shown in Fig. 27.

FIGURE 22. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 4dB SNR with 300 epochs.

FIGURE 23. Confusion matrix of our proposed deep learning model for
digital modulations at 6dB SNR with 50 epochs.

The confusion matrix performance of the proposed deep
learning model for digital and analog modulation signals at
10dB SNR with 300 epochs is shown in Fig. 28.
The confusion matrix performance of the proposed deep

learning mode for digital modulation signals at 12dB SNR
with 50 epochs is shown in Fig. 29.
The confusion matrix performance of the proposed deep

learning mode for digital and analog modulation signals at
12dB SNR with 300 epochs is shown in Fig. 30.
The confusion matrix performance of the proposed deep

learning mode for digital modulation signals at 14dB SNR
with 50 epochs is shown in Fig. 31.
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FIGURE 24. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 6dB SNR with 300 epochs.

FIGURE 25. Confusion matrix of our proposed deep learning model for
digital modulations at 8dB SNR with 50 epochs.

The confusion matrix performance of the proposed deep
learning model for digital and analog modulation signals at
14dB SNR with 300 epochs is shown in Fig. 32.
The confusion matrix performance of the proposed deep

learning mode for digital modulation signals at 16dB SNR
with 50 epochs is shown in Fig. 33.

The confusion matrix performance of the proposed deep
learning mode for digital and analog modulation signals at
16dB SNR with 300 epochs is shown in Fig. 34.

The confusion matrix performance of the proposed deep
learning mode for signals at 18dB SNR with 50 epochs is
shown in Fig. 35.

FIGURE 26. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 8dB SNR with 300 epochs.

FIGURE 27. Confusion matrix of our proposed deep learning model for
digital modulations at 10dB SNR with 50 epochs.

The confusion matrix performance of the proposed deep
learning mode for digital and analog modulation signals at
18dB SNR with 300 epochs is shown in Fig. 36.
The results of the confusion matrix in Fig, 15 to Fig. 36

show that our proposed model performs well across most
signal types as shown in the confusion matrix in Fig. 15
to Fig. 36. We analyze the classification accuracy of our
proposed model for different modulation with DeepSig
RadioML2016.10a dataset.

It is noted that QAM16 is often misrecognized as QAM64
and vice versa because the constellation points of QAM16
can be found in the constellation points of QAM64 so they
can have constellation in common which causes short time
observation to suffer. Moreover, features for a signal with
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FIGURE 28. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 10dB SNR with 300 epochs.

FIGURE 29. Confusion matrix of our proposed deep learning model for
digital modulations at 12dB SNR with 50 epochs.

QAM64 modulation may not be captured by just 128 sam-
ples and so the deep network confuses it with QAM16 and
therefore might benefit from a bigger dataset.

The accuracy performance of the proposed deep learning
model per various modulation type versus SNR is shown in
Fig. 37. A noisy signal will have a low SNR that means that
if the noise is higher, the model will likely to less accuracy to
do the modulation classification.

The overall classification performance of the proposed
combined deep learning model is shown in Table 7.

The accuracy performance of the proposed deep learning
model per various modulation type versus SNR from−20 dB
to −2 dB is shown in Table 8.

FIGURE 30. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 12dB SNR with 300 epochs.

FIGURE 31. Confusion matrix of our proposed deep learning model for
digital modulations at 14dB SNR with 50 epochs.

TABLE 7. Overall classification performance.

The accuracy performance of the proposed deep learning
model per various modulation type versus SNR from 0 dB to
20 dB is shown in Table 9.
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FIGURE 32. Confusion matrix of our proposed deep learning model for
both digital and analog modulations at 14dB SNR with 300 epochs.

FIGURE 33. Confusion matrix of our proposed deep learning model for
digital modulations at 16dB SNR with 50 epochs.

The overall training and prediction time performance of the
proposed combined deep learning model compared to other
models is shown in Table 10.

Other published work [25] that do not use deep learning
models do not have the capability of applying automatic mod-
ulation recognition prediction. Other published work [44]
that use deep learning models only achieve high accuracy
in high SNR signals only unlike our proposed work where
we achieve high accuracy in both high and low SNR signals.
One of the main advantages of our proposed work is that
our combined deep learning model provide the capability
of loading automatic modulation recognition on hardware
accelerator chips to take processing load of themain hardware
processor. Also, another advantage of our proposed work is

FIGURE 34. Confusion matrix of our proposed deep learning model for
digital and analog modulations at 16dB SNR with 300 epochs.

FIGURE 35. Confusion matrix of our proposed deep learning model for
digital modulations at 18dB SNR with 50 epochs.

that by utilizing Transformer-block processing utilized for
larger training data set parallelization in our combined model
resulting in faster training time and inference testing as shown
in Table 10. However, does not achieve the fastest prediction
and training time compared combined models which is one
of the shortcomings of our combined deep learning model.

As can be seen in Fig. 38, X. Hao [18] used CLDNN+

GRUmodel achieving accuracy of 90% at 0 dB SNR and less
than 20% at−16 dB SNR. S. Huang [4] used Comprehensive
CNNmodel achieving accuracy of 80% at 0 dB SNR and less
than 20% at −16 dB SNR. X. Xie [35] used DenseNet and
BLSTM model achieving accuracy of 84% at 0 dB SNR and
less than 25% at −16 dB SNR. H. Yang [21] used IRLNet
model achieving accuracy of 97% at 5 dB SNR and less
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FIGURE 36. Confusion matrix of our proposed deep learning model for
digital and analog modulations at 16dB SNR with 300 epochs.

FIGURE 37. Accuracy performance of the proposed deep learning model
per various modulation type versus SNR.

TABLE 8. Accuracy performance per various modulation type versus SNR.

than 50% at −16 dB SNR. F. Liu [32] used GRU model
achieving accuracy of 86% at 0 dB SNR and less than 55%

TABLE 9. Accuracy performance per various modulation type versus SNR.

TABLE 10. Overall training & prediction time performance.

FIGURE 38. Accuracy performance of the proposed deep learning model
per various Models type versus SNR.

at −16 dB SNR. Our proposed model used ConvLSTM and
Transformer-block model achieving accuracy of 93.5% at
0 dB SNR and 62% at −16 dB SNR.
As shown in Table 11, our proposed model used ConvL-

STM and Transformer-block model achieving accuracy of
93.5% at 0 dB SNR and 62% at −16 dB SNR. Whereas F.
Liu [32] used GRUmodel achieving accuracy of 86% at 0 dB
SNR and less than 55% at −16 dB SNR. H. Yang [21] used
IRLNet model achieving accuracy of 97% at 5 dB SNR and
less than 50% at −16 dB SNR. X. Xie [35] used DenseNet
and BLSTM model achieving accuracy of 84% at 0 dB SNR
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TABLE 11. Overall classification modulation recognition accuracy
performance comparison.

and less than 25% at −16 dB SNR. And S. Huang [4] used
Comprehensive CNN model achieving accuracy of 80% at
0 dB SNR and less than 20% at −16 dB SNR. And X.
Hao [18] used CLDNN+GRU model achieving accuracy of
90% at 0 dB SNR and less than 20% at −16 dB SNR. All
other published models in Table 11 achieve less than 10% at
−16 dB SNR compared to our proposed model.

We compare our proposed models in terms of the num-
ber of trainable parameters, the number of floating point
operations (FLOPs) and the memory cost as shown in
Table 12. Smaller number of trainable parameters requires
fewer FLOPs and the smaller memory space.

It can be seen in Table 12 that our proposed model
needs to train 1702625 parameters with total number of

TABLE 12. Model layer number of parameter.

60662829 floating point operations (FLOPs) at a 19.7MB
memory cost. Whereas LTSM model in [1] needs to train
199563 parameters with total number of 7696283 floating
point operations (FLOPs) at a 2.31MB memory cost. Also,
CNN [1] needs to train 5456219 parameters with total number
of 80548043 floating point operations (FLOPs) at a 61.4MB
memory cost as shown in Table 12.

VII. CONCLUSION
An automatic signal modulation classification model using
combinatorial deep learning technique was presented. Our
proposed deep learning model increase accuracy for low
signal to noise ratio SNR and maintain a high classi-
fication accuracy for high SNR signals. Using a hybrid
deep learning model combining both ConvLSTM2D with
Transformer-block neural networks, the proposed modula-
tion classifier architecture can learn the signal for both low
and high SNR and get better accuracy for signals with high
noise. The proposed deep learning modulation classification
technique achieves improved classification accuracy of 66%
for low SNR signals and 93.5% at high SNR showing that
our model is robust under noisy signal modulation. Our deep
learning radio modulation classification model works using
raw signal without the need of denoising the noisy signal.
The simulation results show that the proposed technique
outperforms existing feature-based extraction architectures in
terms of modulation recognition performance getting better
accuracy in lower SNR signals without sacrifice accuracy in
higher SNR signals.
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