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ABSTRACT We propose a new modeling framework to compute the most likely path for stochastic hidden
systems; where the computation is based on the control theory of discrete event systems. Themain innovation
in this proposed model is calculating which event will have a higher probability of occurring in the future
by applying k-step to the likelihood of events occurring at discrete times, which will give us the best way to
transition between situations. We encode the problem as a node built with synchronous data-flow equations;
then we apply the synthesis algorithm to the node in order to generate a controller that will find the most
likely state sequence; where the algorithm is limited to a sliding window of a fixed number of discrete steps.
We experimentally evaluate and validate our approach by comparing it with several algorithms, which are
the most common and suitable algorithms applied for the best path calculation.

INDEX TERMS Baum-Welch algorithm, discrete controller synthesis, hidden systems, optimal control,
Viterbi algorithm.

I. INTRODUCTION
The most used models among stochastic hidden systems
are Hidden Markov Models (HMM), which is a generalized
form of the Markov chain by latent the Markov process. The
state transition matrix is represented by parameter A of the
HMM, and the state observation densities are represented
by parameter B. These parameters are estimated using
Baum-Welch algorithm [17], [26].

The main challenge is finding the most likely path for
such stochastic models. The proper solution for this problem
is to select the option with the highest likelihood. Viterbi
algorithm, a dynamic programming strategy, is one of
the most effective methods used for this process. Viterbi
algorithm takes the highest probability value of the transitions
in the Markov graph to determine the most likely path.
Calculating the most probable path gives a much better
result especially when estimated parameters are used. As a
result, we first estimate the HMM’s state transition matrix
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and emission matrix using the training approach, and then
we utilize the most recent estimates of those parameters to
perform the Viterbi calculation.

The study on heart rhythm classification with recurrent
neural networks (RNNs) and attention mechanisms achieved
a state-of-the-art F1 score of 0.79 on an unseen test
set [30]. ViterbiNet, a symbol detector integrating deep
neural networks into the Viterbi algorithm, demonstrated
robustness to channel state information uncertainty,
showcasing its potential for seamless integration into
communication systems [32]. The study presenting a
high-performance Viterbi algorithm with bitslicing achieved
superior throughput onGPUplatforms, with implementations
outperforming prior works and achieving 21.41 and
8.24 Gbps for hard and soft-decision cases, respectively [22].
The proposal of a fastIMM-extended Viterbi algorithm for
real-time tracking of maneuvering targets using a ballistic
acoustic array, incorporating α-β and α-β-γ filters for
efficiency, demonstrated practicality and high efficiency
in MATLAB simulations compared to various IMM target
tracking methods [13]. The paper introducing SIEVE
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(Space Efficient Viterbi) addressed scalability limitations in
speech recognition on limited-memory devices, significantly
reducing memory usage without introducing a runtime
overhead, as demonstrated in experimental evaluations [10].

Furthermore, the control methods based on artificial
intelligence represent an emerging technology and have
shown certain effectiveness. The paper proposes a system
for efficient sensing data offloading using multiple
coordinated UAVs controlled by a base station, optimizing
trajectories and network formations for improved efficiency.
It demonstrates enhanced energy efficiency and delay
performance compared to baseline methods [16]. Another
study introduces a reinforcement learning-based control
algorithm for VTOL aircraft, treating tracking control
as a Markov decision process. The incorporation of
wind fields and a quantum-inspired experience replay
strategy ensures accuracy and robustness in various
experiments [21]. Addressing GPS-denied environments,
a paper presents a solution for precise positioning in multi-
UAV close-formation flight using Lidar-based localization,
k-means center point calculation, and a reinforcement
learning-based formation control algorithm, showing
efficient and robust performance [6]. Lastly, an innovative
incremental reinforcement-learning-based algorithm for
UAV tracking control in dynamic environments is introduced,
employing a Markov decision process, policy relief, and
significance weighting for high accuracy, effectiveness, and
robustness [20].
In a multidisciplinary landscape such as robotics, control

systems, communication networks, and software engineering
this study shows an important effort. This research advances
the probability of the path estimation within hidden stochastic
systems by melting the discrete controller synthesis (DCS)
approach with Hidden Markov Models (HMM) into the same
pot. Thus, it earns essential contributions to achieve complex
real-world challenges. In particular, the proposed method
arises as an activator for designing controllers experts in
navigating complicated terrains with an enriched grasp of
likely tracks within the area of robotics. Relevantly, the
integration of DCS methodologies suggests the prospect of
optimized path adjustment to increase overall efficiency.
This study exhibits its significance in the area of software
engineering by providing controllers that support program
correctness and safety by further expanding its relevance.
The central motivation for this research derives from the aim
to enhance accuracy by merging DCS principles with HMM
methodologies.

A different approach is discrete controller synthesis (DCS),
which can be used on the same model for the same job.
Viterbi is a regularly used technique for determining the
most likely path in a hidden stochastic system. However,
this algorithm has also drawbacks as usual methods where
the systems have especially long-term dependencies. Our
proposed method makes this drawback an advantage by
taking into account the DCS framework to provide a solution
to this problem. The power of DCS around this context,

it provides a strategy that states the controller how to choose
among several possible processes with formal correctness
by taking into account fundamental interaction between the
system and the environment [1]. This approach allows greater
control over the behavior of the system. This way puts
it into the advantage of being able to consider complex
specifications beyond simply finding the most probable path.
According to this aspect,DCS is used as a powerful controller
in well-known research areas such as robotics, control
systems, communication networks, and software engineering
for designing controllers to attain particular performance and
safety requirements [2]. That being so, this tool, DCS, can be
used as a powerful controller where it can effectively manage
complex systems.

In consideration of the power of the DCS the innovation
of our proposed method is shaped over the ability to gather
information from the future for addressing the same task.
The proposed method uses multiple steps to anticipate the
maximum likelihood of a future event even though the
common methods use single steps (i.e. k=0) for calculating
events occurring at discrete time intervals. This method
provides significantly more accurate results compared to the
methods commonly employed currently. However, it has a
higher computational complexity.

Discrete control synthesis (DCS) is a formal framework
that provides the desired system behavior in line with
the desired control objectives on an initially uncontrolled
system by restricting controllable input variables. DCS
technique is used to manage complex systems with formal
correctness in many fields such as robotics, control systems,
communication networks, and software engineering. For
example: [19] construct controllers via the DCS technique
for robotic systems to provide precise control and stable
motion; [11] build controllers for communication networks
that provide dependable and effective data flow; [18] create
controllers using the DCS technique, that guarantee the
safety and correctness of programs for software engineers.
DCS is an effective approach preferred to overcome
many problems in real-world tissues that require formal
correctness.

Even if it is known the traditional techniques are
demonstrated ability, like the Viterbi algorithm, however,
their impact factor decreases when they face a complex
or long time being touched by real-world conditions. The
weakness of the common techniques that are faced when the
problem is more complex produces a gap related to finding
a solution for the most probable path problem. This new
advanced study not only improves solutions in the area of
hidden probabilistic systems but also leads fundamentally
to scientific expression. By synthesizing DCS and HMM
areas, the study shows a formalized framework that generates
controllers like mastered type at adhering to strict behavioral
and specification criteria. Especially, the k-step optimization
that is shown here improves reliability and offers a flexible
solution that can be used for various complexity levels with
better accuracy than the Viterbi method.

VOLUME 12, 2024 14777



M. Özbaltan, M. Kurucan: Obtaining the Most Likely Path in Stochastic Hidden Input Automata

The rest of this paper is organized as follows. Section II
gives a basic definition ofHMM and the estimation algorithm
Baum-Welch. In Section III we show the principles of DCS
and present our model and the objectives for hidden systems
that are equipped with the DCS. In Section IV we show the
obtained results for both models, and in the last Section V we
conclude the whole paper with future works.

II. DEFINITION OF HMM
The HMM is a powerful sequence analysis method where it
is widely used for modeling discrete time series data. It is a
useful tool in fields of speech recognition [9], stock market
analysis [23], and bioinformatics [31].
The model emerged as a stochastic model that contains a

sequence of observations (or visible variables) in which the
distribution of the unobserved Markov process generates. An
HMM has two kinds of parameters. The first parameter is
the state transition matrix (i.e., A(St , St+1)). It specifies the
probability of transition from the current state to the next
state. This process satisfies the first order of the Markov
propertywhere the next hidden state at time t+1 depends only
on the current hidden state at time t [7]. The second parameter
of the model is the emission matrix (i.e., B(St , ot )). It keeps
the probability of emitting output symbols from a particular
hidden state. This process also meets the first order of the
Markov property where the corresponding output symbol of
the particular hidden state is independent of all other hidden
states and output symbols [15].

FIGURE 1 shows the dependencies of a HMM. The hidden
states which are represented as circles and the output symbols
are shown as squares. The figure shows the particular hidden
state emits an output symbol at each discrete time t . Some
studies present the initial distribution vector (i.e., π ) where
the probabilities of initial distribution are held in. However,
we have only one initial state and its initial probability is 1.
Depending on this knowledge, we do not consider the initial
vector in our work.

FIGURE 1. The graphical representation of an HMM structure.

The element of an HMM can be defined as a tuple θ =

(S, O, A, B) where

• S is the set of hidden states in the model
• O is the set of observation symbols in the model
• A is state transition probability distribution where

A(q, q ′) stores the probabilities of state q ′ following

state q:

A(q, q ′) = Pr(St+1 = q ′|St = q), q, q ′ ∈ S∑
q ′∈S

A(q, q ′) = 1 ∀q ∈ S (1)

• B is emission symbol probability distribution where
B(q, o) stores the probability of observation symbol o
being produced by the hidden state q , discrete time t :

B(q, o) = Pr(ot = o|St = q), o ∈ O, q ∈ S∑
o∈O

B(q, o) = 1 ∀q ∈ S (2)

Adjusting these parameters can be solved according to
the idea of influential tutorial [26]. The work introduced an
efficient framework which is a kind of iterative algorithm
that is called Baum-Welch to estimate the parameters of
an HMM. This algorithm is a special case of Expectation-
Maximization (EM) algorithm that consists of two steps
which are E-Step and M-Step. In E-Step, we count a variant
of used transitions and observation symbols in the model.
First, we calculate ξt (q, q ′) which denotes the probability of
being in state q at time t and state q ′ at time t + 1, given the
observation sequence O and the current model θ :

ξt (q, q ′) = Pr(St = q, St+1 = q ′|O, θ) (3)

According to Bayes’ theorem;

ξt (q, q ′) =
αt (q)A(q, q ′)B(q ′, ot+1)βt+1(q ′)

Pr(O|θ)
(4)

where q, q ′ ∈ S and 1 ≤ t ≤ T (i.e., T is the length of
observation sequence), αt (q) is forward value, and the last
βt (q) is backward calculation. Second, we calculate γt (q)

which determines the probability of being in hidden state q at
time step t given the output sequence O and the model θ :

γt (q) = Pr(St = q|O, θ) (5)

If we apply Bayes’ theorem then we rewrite the
calculation as:

γt (q) =
αt (q)βt (q)

Pr(O|θ)
(6)

In Equation 4 and Equation 6, there are two variables
which are denoted as αt (q) and βt+1(q ′) (or βt (q)). Those
are Forward and Backward calculations [5], respectively.

Forward-Calculation: It computes the likelihood of the
observation by summing over the probabilities of all possible
paths that led to the sequence of observations as shown in
FIGURE 2.

The formal expression is:

αt (q) = Pr(o1o2 . . . ot , St = q) (7)

And the recursion formula is:

αt (q) =

N∑
i=1

αt−1(Si )A(Si , q)B(q, ot ) (8)
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FIGURE 2. The forward trellis: computing the total probability of the
observation by summing all the previous forward values multiplied by
transition probabilities and emission probability.

where q ∈ S and 1 ≤ t ≤ T and N is number of hidden
state in the model. At the initial step, there is only one initial
state (no initial vector π). In directly we calculate the forward
value for each individual latent variable at the base step as

α1(q) = A(q0, q)B(q, o1) q ∈ S, o1 ∈ O (9)

where q0 denotes the initial state in the model.
Backward-Calculation: This calculation is the

time-reversed version of the Forward calculation. It can
be applied when we need to find the probability of observing
all future events ot+1:T while being in state q at time step t
as shown in FIGURE 3.
The conditional calculation is

βt (q) = Pr(ot+1ot+2 . . . oT | St = q) (10)

This calculation consists of the following steps:
• Base Step:

β1(q) = 1 ∀q ∈ S (11)

• Recursion Step:

βt (q) =

N∑
i=1

βt+1(Si )A(q, Si )B(Si , ot+1) (12)

where q ∈ S and 1 ≤ t ≤ T . In M-Step, the estimation of
the state transition matrix needs two arguments which are the
sum over all the number of the state transition from q to q ′,
and the total number of transitions comes out from state q .
The updated formula for transition matrix is

Â(q, q ′) =
∑T−1

t=1 ξt (q, q ′)∑T−1
t=1

∑N
k=1 ξt (q, Sk)

Sk ∈ S (13)

FIGURE 3. The induction step of the backward procedure that proceeds
by summing all the future βtC1▷Si◁ values with weighted state transition
probability and future observation probability.

The updated formula of the emission matrix also contains
two arguments: sum of all time steps t of γt (q) in which the
observation symbol ot = o and sum of all γt (q) for all time
steps t .

B̂(q, o) =

∑T
t=1 I(ot )γt (q)∑T

t=1 γt (q)
(14)

The notation I(ot ) represents that the corresponding
observation symbol is o at time t where

I(ot ) =

{
1 : ot = o
0 : otherwise.

(15)

III. OBTAINING THE MOST LIKELY PATH IN STOCHASTIC
HIDDEN INPUT AUTOMATA BY USING LIMITED OPTIMAL
DISCRETE CONTROL
This section provides a modeling framework for calculating
the most probable path in stochastic systems, similar to
Hidden Markov Models (HMMs). Our approach, through
symbolic discrete controller synthesis, offers a significantly
more effective solution, both in terms of accuracy and under
certain mutual constraints, compared to the widely used
Viterbi algorithm for optimal path calculation.

In the modeling framework we propose, we consider the
best path calculation in stochastic systems like HMMs as a
problem of controlling discrete event systems. This theory is
commonly used to synthesize a controller that accomplishes
desired objectives in an uncontrolled system. Calculating the
most probable path is viewed as an optimization goal, and our
symbolic limited discrete controller synthesis algorithm aims
to minimize the accumulated cost function over some time
steps. As a result, the synthesized controller, by taking into
account future states, facilitates state transitions in HMM to
find the most probable path.
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A. BACKGROUND OF THE DCS TECHNIQUE
The behavior of two discrete Mealy machines can be used
to describe the control of discrete event systems. Mealy
machines are mathematical models that are used to describe
systems that produce outcomes in response to inputs. They
are made up of a collection of states, inputs, outputs, and a
transition function. The transition function accepts the current
state and input and generates the next state and output.

When controlling discrete event systems, two Mealy
machines are usually involved: one representing the system
and one representing the supervisor. These Mealy machines
represent an uncontrolled system that generates output
based on input through state transitions. Similarly, a Mealy
machine acting as a controller produces outputs that control
system behaviors based on the inputs it receives from the
system. Thus, the encapsulation variable enables the parallel
synchronous operation of the controller’s Mealy machines
with desired behaviors.

The controller, created using relevant synthesis control
algorithms, takes into account the system behaviors and
satisfies the desired objectives. The desired objectives (eg.,
safety, optimization, reachability) are always guaranteed by
means of synthesis control algorithms. The rules defined
between inputs and outputs are subsequently utilized to
construct a controller Mealy machine, also known as a DCS.

The resulting controller’s reliability is guaranteed when the
system behaviors are well-defined. However, the controller
may not always guarantee the system’s reliability if the
system’s actions are not well-defined. Therefore, it is
essential to precisely and thoroughly represent the system’s
behaviors.

As a result, the utilization ofMealymachines and synthesis
algorithms enables precise and reliable management of
discrete event systems, ensuring that they perform as
expected and meet the specified requirements.

The aim of this study is to control hidden systems, and the
DCS tool, BZR, is used to do this utilizing the DCS principle.
BZR offers a modeling environment, whose language is
Heptagon. Heptagon is a parallel synchronous language,
where the system and controller are represented as parallel
compositions of data-flow equations, and the inputs and
outputs are synchronized at discrete time steps. Heptagon
is designed to express the parallel behavior of a system,
making it suitable for modeling complex systems [1], [3],
[14]. We apply appropriative synthesis algorithms for the
constructed heptagon models by means of the BZR tool
in order to generate controllers that ensure the system’s
behavior. We give details of the modeling framework with
control means, below.

B. OVERVIEW OF THE MODELLING ALGORITHM FOR
HIDDEN SYSTEMS
In this paper, we propose a systematic approach to obtain
the most probable path for hidden systems, such as Hidden
Markov Models (HMM). Our proposed approach focuses
on obtaining the most likely path in such hidden systems.

FIGURE 4. An example of 3 state explicit automaton modeled by using
the HMM structure, where: Mealy machines symbolically encoded by the
state in HMM and the state Q takes a value in {Qi, Qj , Qk} by means of
the controllable variable c; and t denotes the time domain for state
transitions.

To achieve this, we first symbolically encode a givenHMM as
a synchronous language, where the representation of HMM is
replaced with a redecorated automaton as in FIGURE 4. The
BZR environment, which can accept the parallel synchronous
language, Heptagon, is used for this encoding. Then, using
this encoding, we provide a framework for modeling hidden
systems that includes control mechanisms for their analysis
and synthesis. The details of this modeling framework are
described below.

Our approach involves the following steps: (i) first, the
behavior of a given HMM is transformed to a synchronous
data-flow model M, which is made of the synchronous
parallel composition of ‘‘state’’ and ‘‘time’’, where the model
is associated with control objectives; (ii) latter, safety and
optimization objectives are identified, where: the safety
objective supports the state transition in our model, and
the optimization objective maximize the probability summed
over a sliding window of a k-step of reactions of the
system; (iii) last, the resulting controller for a given system
with desired property, is computing by means of related
algorithms, where the controller is a predicate involving
‘‘state’’ and ‘‘time’’. Then, we use this predicate on the script,
which we design, by means of a traversing methodology to
obtain the most probable path.

C. MODEL AND OBJECTIVES
List. 1 presents a generic structure of our synchronous data-
flow model, denoted as M, which is encoded using the
language Heptagon. The Mencompasses both the given
hidden system and the desired objectives. We describe a
given HMM as a heptagon node. Each node consists of
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LISTING 1. The generic structure of the HMM model.

sets of input and output variables, where the content of
the model specifies that the input variables are determined
by the output variables. The node declaration is provided
in line 2, where the sets of input and output variables are
enclosed in parentheses. In our case, we do not require any
input/output transformations to model hidden systems. The
body of the nodes is defined between the keywords ‘‘let’’
and ‘‘tel’’. These data-flows establish the valuation of the
output and local flows by utilizing the instant valuation of
states and inputs variables. States comprisememorized values
represented with the ‘‘last’’ keyword. As indicated in line 3,
our variables are defined using the ‘‘var’’ keyword. At each
execution step, new values are assigned to the input flows,
and the equations are collectively evaluated, resulting in
the update of the output flow values accordingly. Line 1
introduces the enumeration type definition, resembling the
syntax found in programming languages, utilizing the ‘‘type’’
keyword. The ‘‘contract’’ mechanism in line 3 enables us to
specify our desired objectives and facilitates the synthesis of
the controller.

We symbolically encode an automaton whose generic
structure is given in FIGURE 4, where the automaton given
in Section II is discretely described and decorated with
controllable variables. We first identify a symbolic notation
Q (at Line 4 in List. 1, where the initial value is starting state
Qss) in the domain of enumerated type QT = {Q1 . . . Q|Q |}
(at Line 1) for states in a HMM, where |Q | denotes the
number of states existing in the HMM. Q is encoded as a
symbolic data-flow representation on the Heptagon node
using the following equation:

Q =

{
Qi , i f ci

Q, otherwise
(16)

State transition are represented over the value of Q by
means of the controllable variable ci

1 at Line 6 in List. 1,
where the transition from Qi to Q j is occurred only by the
true value of c j at the synchronous firing2 (at Line 7).
In addition, cact1 (at Line 8 in List. 1), which is an invariant

(i.e., always ‘‘true’’), supports to hold that only one input
controllable variable ci is active for a state transition at each

1Each state value Qi accompanied with a controllable input variable
ci â{true, f alse}, where iâ |Q |.

2The symbol t refers to the time mentioned in Section II, and t
synchronously triggers the transitions.

time instant, defined as:

cact1 = ¬
⊕

Qi\
∧

Q j , (17)

where i, j ∈ |Q |, i ̸= j , and
⊕

denotes the operator EXOR.
The concept of the time domain involves modeling the

processing of input data over time, where t can be considered
either as a triggering event or as discrete time intervals.
Within each interval, input data undergoes mathematical
computations, including conditional statements, to determine
the corresponding output data as time progresses, defined as:

t = t + 1 (18)

We define the symbol p (represent that probability—at
Line 9 in List. 1) as a cost function, where: the PQât is
a predicate, involves current ‘‘state’’ and ‘‘time’’, in the
domain of {true, f alse}; and the corresponding value of p
is modeled as a natural number, which is the value of some
ratio of given matrices A and B, defined as:

p =

{
A(q, q ′) ∗ B(q ′, o), i f PQât

0, otherwise
(19)

Last, we specify our safety objective cact1 as an invariant
by means of the restriction of admissible values of
controllable variables (ci , i ∈ |Q |).

D. CONTROL MEANS
The algorithm for the proposed approach is outlined as
follows: T is the length of the state sequence created in
discrete time. ktarget is the number of future target steps.
sS denotes the state sequence that captures the best possible
paths and is initialized with an initial state value at the
beginning. The function F is a recursive function iterating
over k and determining the state that provides the highest
probability for each t . The functionF takes three parameters:
the iteration value k, the previous time step value, and the
previous state value. The variable P holds the state that
yields the highest probability at time t . The function max is
responsible for selecting the state with the highest probability
among those found within each same scope.

The DCS tool BZR [12] supports the contract mechanism
by using the synchronous data-flow language Heptagon.
Some of the other DCS tools, eg., Sigali and ReaX [3],
similarly extend their environment with various additions to
use in the compilation process. Contracts can be used to
specify an invariant and controllable flows (which can take
values as true and false) for the models.The compiler
applies a synthesis algorithm for controller synthesis. The
resulting supervisor is designed to impose constraints on
the controllable flows, ensuring that the model complies
with the given invariant condition. The enforcement of
these constraints is accomplished by incorporating a contract
within a heptagon node. The resulting supervisors are
implemented as predicates for each controllable flow: the
controller attempts to set c to true, unless doing so has the
potential to violate the required invariant in future reactions.
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Algorithm 1 Pseudocode of Proposed Algorithm
1: Initialization:
2: T = constant
3: ktarget = constant
4: sS[T + 1]
5: sS[0] = ini t State
6:

7: Maximum Probability:
8: for each step t = 1, 2, 3, . . . , T do
9: sS[t]=F(0, t − 1, sS[t − 1])

10: end for
11: procedure F(k, t, s)
12: if (k = ktarget || t > T ) then
13: return 1
14: end if
15: P = 0
16: for each state i do
17: P = max(A(s, i) · B(i, o)· F(k + 1, t + 1, i) )

18: end for
19: return P
20: end procedure
21:

22: Path Backtracking:
23: for each step t = 0, 1, 2, 3, . . . , T do
24: s ← sS[t]
25: end for

In our research, we have introduced a safety objective φ

which ensures that only a state Qi can be selected by its
associated controllable variable ci . This objective acts as a
governing rule for these variables, ensuring that only one of
them is active at a time, as specified in the safety objective.
In addition, we have an optimization objective O which
serves as another governing rule to maximize the probability
value p using the k-step symbolic optimal control algorithm
presented in [24].

Once the compilation process of BZR is complete,
a controller is automatically synthesized using appropriate
synthesis algorithms. This controller is designed to obtain
the most likely string as in speech recognition based on
the objectives and constraints specified in the safety and
optimization objectives. We have conducted experimental
evaluations to validate our approach, and the results are
presented in the next section.

IV. EVALUATION
In our previous work [25], the DCS estimation was made
for k=1. Nonetheless, in this work, we present an alternative
answer for the issue of finding the most probable path
in hidden frameworks by on one hand utilizing diverse
k qualities and on the other hand, updating the model
boundaries to notice its exhibition against Viterbi.
As it is known, in the Viterbi calculation, the likelihood of

transition from a hidden state to other hidden states at each
time slot is determined by multiplying the likelihood of the

yield symbol emitted by the latent state in that time allotment,
and its maximumvalue is kept. Despite the fact thatDCS has a
comparative estimation, ascertaining the future advances (this
relies upon the k value) that the calculation presents to us
simultaneously permits us to acquire a more proficient and
more precise outcome.

As seen in FIGURE 5, two activities are acted in the
Viterbi estimation. In the first place, the Viterbi esteems are
determined up to the symbol of the last observation sequence,
and afterward, the most probable path is found with the
subsequent interaction called backtrace. Nonetheless, DCS
does this with a single activity (where k=3 is given) and
provides us with a similar outcome all the more successfully.

Initially, we encode HMM and its objectives as parallel
synchronous dataflow equations in the ReaX. Subsequently,
leveraging the synthesis algorithms offered by the DCS
tool, ReaX compiler to obtain a controller. This controller
will be used for the best path calculation in a simulation
environment. Throughout these processes, the simulation
environment is also implemented in Python using HMM.
This integration ensures that the controller derived from
the ReaX environment is seamlessly incorporated into
the Python environment for the best path computation.
Additionally, other methods are encoded and tested in the
Python environment for comprehensive evaluation.

We made 100 random distinctive datasets of our own.
These datasets contain various variations. For instance,
we utilized distinctive sequence lengths and alternate
quantities of state-symbol pairs as found in FIGURE 6. Here,
the first esteem shows the hidden states utilized, while the
other value shows the number of symbols used.

Then, at that point, we distinguished the factors for which
each model (we likewise tried distinctive k qualities here)
gave the most noteworthy exactness in the percentile (i.e.,
sequence length, number of states, and symbols) and made
a new dataset in which those factors were steady.

Then, we analysed the closeness of the decent models to
the original model that made this dataset. At the point when
we thought about the exactness densities, we observed that
the fixed model, which is really settled with the expansion of
the k value, gave results near the original model as sown in
Figure 7.
At long last, we analysed the error rate of each model

utilizing the accuracy density we acquired in TABLE 1.
As indicated by the qualities we got, we saw that there was
a decline in the error rate with the increment of the k value.
Nonetheless, when the value of k expands, the quantity of
computations increments correlatively. In the current HMM,
the computational complexity of the Viterbi algorithm is
known to be quadratic. Our proposed algorithm, enhanced
with the DCS technique, maintains the same Big-O notation
when k = 1. However, as the values of k increase, the time
required for computation and prediction will exponentially
grow. The Big-O notation for our model is O(T N k+1).
To test this, we created different models with varying values
of k and observed the computation times and the memory
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FIGURE 5. (a) refers the current state sequence that generates the output
a, b, a. (b) represent the Viterbi calculation that finds the most probable
state sequence depending given output sequence a, b, a. (c) a DCS
calculation considers the node which has high probability value is the
state that also constitutes the output symbol.

usage, as shown in TABLE 2. It ought to be noticed that
we haphazardly produced the raw datasets we utilized in
the evaluation part. In any case, the precision upsides of the
models were as we expected.

The assessment involved the computation of the
Kullback-Leibler (KL) divergence in the following manner:

K L(P||Q) = P(x) log
( P(x)

Q(x)

)
(20)

TABLE 1. Error rate.

TABLE 2. Synthesis time and memory occupation.

Let Q(x) represent the probability matrices that are obtained
during training for each variable x , and P(x) represent
the selected beginning probability matrices. The difference
between these two likelihood distributions is measured by
the KL score. A closer alignment between the distributions is
shown by a lower KL score, and a precise correspondence is
indicated by a score of zero. Therefore, the higher the model’s
precision, the closer the KL score is to zero.

When compared to previous studies, our proposed method
demonstrated superior performance in the task of finding the
most probable path in a stochastic system, as depicted in
TABLE 3. Specifically, we extended the work in [25] by
applying a k-step optimization using a synchronous data-flow
model over a sliding time window. This allowed us to find the
optimal path that maximizes the probability of the system’s
behavior while taking into account longer-term dependencies
that are often present in real-world systems. In the subsequent
step, we generated a new dataset with a model having 2 states
and 5 observation symbols, based on the best KL score
obtained. Each model in this dataset consisted of sequences
of length 5000 and dimensions of 1000. We specifically
compared this dataset using our proposed method against
the Viterbi algorithm. The objective here was to observe
whether the proposed method, as the value of k increased,
would exhibit a more favorable KL score ratio compared to
Viterbi, indicating better suitability. Additionally, we aimed
to discern if there would be a convergence point beyond a
certain k value where both methods yield the same score.
As illustrated in TABLE 4, the anticipated convergence
scenario was observed. Thus, despite the increase in k
leading to an increase in computational complexity, it was
observed that a certain optimal value of k could be
reached.

Our methodology offers a number of advantages over
existing approaches that have been utilized to tackle
comparable issues, such as dynamic programming [4],
reinforcement learning [33], and model predictive
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FIGURE 6. The accuracy diagram for different numerous of state-symbol pair.

FIGURE 7. The density of accuracy both Viterbi and DCS according to the used dataset (2)-5 and 1000 sequences of 5000 each.

TABLE 3. KL divergence scores of SOTA methods.

control [28]. First off, our approach is founded on a formal
framework for creating controllers that may accomplish a
particular behavior while adhering to a set of requirements,
as stated in [27]. This guarantees the system will behave in
a safe and appropriate manner, which is essential in many

real-life applications. In addition to determining the most
likely path, our method can handle complex specifications,
giving users more control over how the system behaves [34].
Moreover, our approach takes advantage of the problem’s
structure to condense the search space and boost convergence
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TABLE 4. The comparison of KL scores for 2-5 model.

rates, making it computationally effective and suitable for
real-time applications [8].

The results showed that our approach is promising for the
best path calculation for stochastic hidden systems. Without
mentioning the destination state in the optimisation goals, our
method takes the cost function into account. It consistently
guarantees the specified system behaviours. For practical
issues in reactive systems including probabilistic hidden
systems, robotic systems, battery management systems, and
traffic management systems, our approach shows promise.

V. CONCLUSION
Through the use of DCS we have provided a systematic
methodology for determining the most likely path in a
hidden stochastic system. The Viterbi algorithm is frequently
used to determine the most likely course, however, it has
some performance and reliability issues. Our method has
been found to be more effective in terms of mathematical
precision and reliability. The systematic framework we
suggest allows us to use our approach to compute the most
likely path in numerous hidden systems while also taking
mutual constraints into account.

In our research, we treated the feedback control problem
of hidden stochastic systems as a feedback stochastic system,
and we modeled them using the BZR tool in the context
of synchronous languages. When we applied our DCS
algorithms to this model, we constructed the controller that
would be used to decide the most likely course. The aims of
our system were considered as a cost function by employing
probability values.We then utilized our k-step optimal control
strategy to maximize this cost function. We compared the
performance of our method to the Viterbi algorithm using
the updated parameters. Our findings demonstrated that
by employing high-probability data, our model was more
successful in locating optimal paths that were close to the true
values.

Our approach is advantageous in many ways compared
to many approaches found in the literature. The main
advantage is that the approach we propose always guarantees
system behavior with formal correctness. It can be easily
modeled to address mutual constraints that cannot be
managed in other approaches found in the literature, for
multiple hidden stochastic systems. It allows for the use

of cost-based optimization techniques without the necessity
for a target state. With this versatility, such systems may
more preciselymodel difficulties and produce better solutions
to real-world challenges. Overall, our methodology has
a number of advantages over previous methodologies,
including guaranteed system behaviors, mutual constraint
accommodation, better modeling, and precise responses for
real-world challenges.

While our proposed method yields significantly better
results in terms of accuracy, our approach is subject to
certain constraints. The most significant limitation is the
exponential increase in computational complexity with the
increase in the k-step value. For instance, when our k value
is equal to 1, our proposed model will have the same
computational complexity as Viterbi. Our gain here lies in
achieving better results than Viterbi. However, despite the
increase in complexity with the rise of the k value, it also
contributes to an enhancement in accuracy. Additionally,
proportionally, the memory usage requirement increases with
the augmentation of the k-step value in the DCS compiler.

As future work, our proposed approach can be adapted
to various domains. For instance, in natural language
processing, systems that construct using the most suitable
tree structures often require high accuracy in predicting
sentences. Our suggested approach can serve as an alternative
method for researchers working in such domains, providing a
novel perspective for achieving high accuracy in predictions.
Furthermore, our approach can be easily applied to other
stochastic systems besides HMM. For example, in stochastic
counter models where accuracy values tend to be low,
utilizing our approach for the best path calculation can prove
highly beneficial, providing better accuracy.

In conclusion, our research proves the DCS method’s
efficiency in addressing the challenge of identifying the most
likely course in a hidden stochastic system. Our method is
particularly efficient in multiple hidden systems with mutual
restrictions because it enables the synthesis of controllers that
satisfy specified performance and safety requirements. The
applicability of our method to additional optimization and
scalability challenges, as well as its potential to solve other
real-world issues, can also be researched.
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