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ABSTRACT The Portable Document Format (PDF) is one of the most widely used file types, thus fraudsters
insert harmful code into victims’ PDF documents to compromise their equipment. Conventional solutions
and identification techniques are often insufficient and may only partially prevent PDF malware because of
their versatile character and excessive dependence on a certain typical feature set. The primary goal of this
work is to detect PDFmalware efficiently in order to alleviate the current difficulties. To accomplish the goal,
we first develop a comprehensive dataset of 15958 PDF samples taking into account the non-malevolent,
malicious, and evasive behaviors of the PDF samples. Using three well-known PDF analysis tools (PDFiD,
PDFINFO, and PDF-PARSER), we extract significant characteristics from the PDF samples of our newly
created dataset. In addition, we generate a number of derivations of features that have been experimentally
proven to be helpful in classifying PDF malware. We develop a method to build an efficient and explicable
feature set through the proper empirical analysis of the extracted and derived features. We explore different
baseline machine learning classifiers and demonstrate an accuracy improvement of approx. 2% for the
Random Forest classifier utilizing the selected feature set. Furthermore, we demonstrate the model’s
explainability by creating a decision tree that generates rules for human interpretation. Eventually, we make
a comparison with previous studies and point out some important findings.

INDEX TERMS Cybersecurity, PDF malware, data analytics, machine learning, decision rule, explainable
AI, human interpretation.

I. INTRODUCTION
In today’s digital world, the majority of our tasks are
associated with the use of the global web, making it
increasingly essential to protect our data, information, and
applications, in the face of a variety of cyber criminals who
continually attempt to construct brand-new illicit programs
and strikes to harm the facilities [1]. Despite ever-increasing
security improvements over time, PDF remains a favorite
breach vector for adversaries to distributemalware and launch
their attack activities [2]. There are several possible damaging

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahdi Zareei .

acts perpetrated by PDF malware, including the creation
of backdoors, password theft, spyware deployment, internet
browser compromise, data spilling, social engineering, and
scams. Therefore, one of the biggest hurdles in the modern
world is the identification of PDF malware because attackers
generate many kinds of such malware and additionally its
traits are changing swiftly on a daily basis. There are
primarily two methods for identifying malware: behavior-
based detection and signature-based detection. The features
of the underlying object are used to establish a unique
signature in the signature-based approach. The method
effectively detects the existence of a digital signature by
inspecting the object. On the other hand, using machine

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 13833

https://orcid.org/0000-0002-9632-0521
https://orcid.org/0000-0002-7345-0999
https://orcid.org/0000-0002-1345-2829
https://orcid.org/0000-0003-1740-5517
https://orcid.org/0000-0001-6623-1758


G. M. S. Hossain et al.: PDF Malware Detection: Toward Machine Learning Modeling With Explainability Analysis

intelligence and other techniques, the behavior-based strategy
can recognize unidentified and sophisticated malware to
some extent, although it is a complex process.

The fundamental structure of a PDF that contains header,
body, xref (cross reference) table, and trailer is illustrated
in Fig. 1 [3]. The PDF’s header indicates which version of
the parser format will be used. Text blocks, typefaces, file-
specific metadata, and images are all included in the PDF’s
body, which also specifies its content [4]. There are four
categories into which the contents of PDF can be placed:
numbers, strings, streams, and booleans [5]. Each item in the
PDF file has an entry in the cross-reference table that details
its byte offset or placement in the file as well as enables
speedy random access to particular objects, facilitating
effective document exploration and content retrieval. A PDF
reader or parser may traverse and access the different items
within the file by using the trailer, which gives them all the
necessary information such as PDF size, root object, metadata
info, encryption info, and unique identifier of the PDF file.
PDF malware can usually be created by injecting malicious
content or programs into the elements of the fundamental
structure of a PDF.

FIGURE 1. A sample structure of PDF.

PDF malware can be analyzed using a static, dynamic,
or hybrid approach [6]. The static technique inspects malware
refraining from executing the program that it embeds, but
the dynamic method inspects malware by executing its
code [7], [8]. Static analysis becomes susceptible when
extensive evasion and fraudulent methods are used to disguise
harmful execution behavior. In the present cybersecurity
circumstances, depending solely on static inspection is often
inadequate since a perpetrator who is dedicated to their attack
would disguise and encode their code, making it normally
invisible to static inspection [4]. Dynamic techniques, on the
contrary, are more resilient to code deception, causing them
to be a better defense against advanced viruses [9]. Dynamic
analysis is often slow and challenging, but static analysis
tends to be fast. Integrating the two approaches results
in hybrid analysis, which is more effective in combating
advanced malware than either method alone but additionally

consumes a longer period and necessitates an additional
complex analysis method [10].

Current malware identification methods frequently choose
feature sets according to findings from a manual inspection
of harmful PDF files and are guided by the expertise
of the specialist. The chosen features, nevertheless, are
occasionally exclusive for fraudulent files, luring adversaries
to possibly gain authority over how and what a malicious
file looks like, and evading the current detectors (while
preserving their malicious properties). For instance, the
Mimicry [11] and Reverse Mimicry [12] incidents have been
exacerbated by the observation that the program builders
infrequently disclose comprehensive information about the
measures adopted to maintain their integrity and resistance
to risks. In addition, the data that is accessible to developers,
such as clean and harmful samples, datasets, vulnerabilities,
payloads, and attack vectors employed within, also constrains
their work. Such situations result in the produced solutions
becoming outdated considerably earlier thanwhat the diligent
developers had planned.

Machine learning applications have advanced to the point
where they can now protect systems from threats or aid
forensic professionals in their investigations by spotting
likely malicious PDF files [13]. However, adversarial tech-
niques have grown capable of compromising threat document
analyzers. Numerous machine-learning-based detection tools
are at risk because their identification of well-crafted evasive
scenarios may be erroneous [14], [15]. Various evaluations
or detection methods have been created to detect specific
incidents, but the immediate threat posed by evasive attacks
has not yet been mitigated.

Developing feature engineering improvements integrating
the adversarial behaviors of malicious PDFs for creating
harmful PDF classifiers is challenging, yet necessary, and
has an opportunity to have a significant impact in the field.
We look at ways to improve the identification approach for
PDF malware by 1) introducing an inclusive dataset that
contains evasive characteristics of suspicious PDFs along
with clean and harmful PDF samples, 2) extracting the
features of the PDF samples and 3) merging the most
significant features to develop an effective feature set that can
be fed into a classifier to produce a higher level of accuracy.
We provide a comprehensive analysis of the most significant
features identified for PDF malware detection and interpret
the classifier’s performance. In summary, our contributions
can be outlined as follows:

• We have developed a comprehensive dataset that
consists of a total of 15958 PDF samples including
7500 clean PDFs, 7666malicious PDFs, and 792 evasive
PDFs by considering the non-malicious, malicious, and
evasive natures of the PDF samples. For this, we use
three popular PDF analysis tools viz. PDFiD [16],
PDFINFO [17], and PDF-PARSER [18].

• We develop a method to build an explicable feature set
by taking into account the feature’s characteristics and
importance score.
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• We have designed an architecture for malicious PDF
detection and explored different machine learning clas-
sifiers to analyze and compare their efficacy in different
cases.

• We have demonstrated the model’s explainability by
creating a decision tree that generates rules for human
interpretation.

• We have conducted a wide range of experimental
analyses and compared our results to previous studies.
We also highlight some key observations of our study.

The rest of the paper is organized as follows: Section II
provides an in-depth and organized overview of current
research in the same field of study. Section III describes
the recommended approach for PDF malware detection.
Section IV presents and evaluates our findings, as well as
the experimental outcomes. Section V provides an in-depth
discussion while pointing out a few observations. Finally,
closing remarks are offered in Section VI.

II. RELATED WORKS
In recent years, PDFs have been widely used to disseminate
malicious documents and malware. To mitigate the subse-
quent and crucial growth of malicious PDF developments,
numerous effective studies on detecting and categorizing
technologies for malware and other dangerous files were
established [19]. The tools that have been designed through-
out the past years range greatly from being general and
straightforward to specific and complex. Certain techniques
try to find differences by scanning the whole file [20].
An additional kind of technique searches an intended file for
resemblance to typical trends found in harmful PDFfiles [21],
[22], [23], [24], [25]. Another set of tools concentrated on
extracting, analyzing, and identifying attack methods, for
instance, detecting JavaScript-based attacks [26], [27], [28],
[29], [30], [31], [32]. Most of these approaches are heavily
reliant on machine learning methods, including one- and
two-class Support Vector Machines, Random Forests, and
decision trees.

The study in [33] focused on developing an approach
to recognize a group of features derived through currently
available tools as well as generated a new group of
features aimed at improving PDF maldoc identification and
prolonging the useful life of current analysis and detection
techniques. The importance of the produced features was
assessed using a wrapper function that leveraged three key
supervised learning methods as well as a feed-forward
deep neural network. Subsequently, a novel classifier that
significantly improved classification efficacy with shorter
training times was constructed deploying features of the
highest significance. With the use of huge datasets from
VirusTotal [34] the findings were verified.
From top to bottom, authors in [35] looked into PDF

design and JavaScript content contained in PDFs. They
developed a wide range of features for design and metadata,
including the number of bytes per second, the encoding

method, catchphrases, object names, and intelligible strings
in JavaScript. Additionally, since subtle changes have a
significant impact on AI calculations, it is challenging to
develop hostile models when the attributes vary. To reduce
the risk of malicious attacks while maintaining structures and
data properties, they developed a classification model using
discovery-type models. They created an adversarial attack
in order to accept the suggested paradigm. An outline of
the PDF was provided in [36], and contemporary attacks on
PDF malware were carried out using reliable attack models
obtained from nature. They gave an example of how to use
programming skills to perform a quantitative analysis of a
PDF file to look for signs of contained malware. They looked
at some of the emerging AI-powered tools for detecting
PDF malware which may assist computational scientific
analyses and can flag questionable documents before a more
thorough, more conclusive statistical analysis is published.
They looked at the PDF restrictions alongside various
unresolved problems, especially how their flaws might be
used to potentiallymisdirectmeasured investigations. Finally,
they offered advice on how to make those structures more
effective in withstanding attacks and sketched a possible
assessment.

Obfuscation strategies used by PDF maldoc authors were
noted by the study in [37]; these techniques hinder automated
evaluation and identification methods and make manual
analysis more difficult. This involves exploiting PDF filters,
comments, and white space to spread harmful code across
numerous objects. Other strategies include gathering around
strewn harmful code fragments throughout the page using
a ‘‘Names’’ dictionary. Furthermore, hazardous substances
can be concealed in odd places like document metadata or
the fields (comments) of annotations. Moreover, memory
spraying and the use of shellcodes to download malicious
files or documents were included in the study of [37] for
the classification of PDF-based attacks as JavaScript code
exploits.

Because a PDF document acts identically on several
devices, the authors in [38] developed a detection method
based on behavioral inconsistencies on those platforms
using a software engineering idea. On the other hand,
a malicious document will behave differently depending
on the platform. The study in [39] emphasized malware
inserted into PDF files as a representative example of
contemporary cyberattacks. They began by classifying the
various production processes for PDF malware scientifically.
They used a proven adversarial AI framework to counter
PDF malware detectors that rely on learning. This strategy,
for instance, made it possible to discover existing faults in
learning-oriented PDF malware trackers as well as novel
threats that may threaten such architectures, as well as the
likelihood of protective actions.

In [40], the authors outlined an innovative approach
to detect data problems of an ensemble classifier. The
ensemble classifier’s prediction was shown to be false when
enough individual classifier votes clashed during detection.
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The recommended method, ensemble classifier consensus
evaluation, facilitated the findings of various sorts of system
evasions without the necessity for additional external ground
truth. The authors tested the suggested approach using
PDFrate, a PDF malware detector, and revealed that a
significant number of assumptions could be derived utilizing
improved ensemble classifier concordance using the entire
network’s data.

The authors of [25] demonstrated how the least optimistic
case behavior of a malware detector in terms of specified
intensity features could be examined. Additionally, they dis-
covered that creating classifiers with legally verified efficient
features may raise the expense of avoiding unrestrained
attackers by simply skipping over simple assault avoidance
techniques. They put forth an alternative distance measure
that relies on the tree structure of PDF and identified two
groups of strong features, such as erasures and subtree
inclusions.

In [32], the researchers presented Lux0R, further referred
to as ‘‘Lux 0n discriminant References,’’ a novel and adapt-
able approach for detecting malicious code in JavaScript.
The recommended strategy hinged on describing code in
JavaScript using API references, which contained elements
that a JavaScript Application Programming Interface (API)
can intuitively comprehend such as objects, constants,
functions, attributes, methods, and keywords. To isolate
suggestive risky code of a certain subgroup from API
references, the proposed approach made use of machine
learning which was subsequently used to spot JavaScript
malware. The important application domain that the author
focused on in this work was the detection of potentially
harmful JavaScript code in PDF files. The weaknesses within
existent extractors of features for PDFs were uncovered
by the authors of [41] by evaluating them alongside
analyzing how the framework of the fraudulent documents
was set up. The researchers subsequently developed FEPDF
(feature extractor-PDF), a sophisticated feature extractor, that
was capable of discovering characteristics that traditional
extraction methods could lose and recorded accurate data
concerning the PDF components. To investigate the most
recent antivirus frameworks along with pattern extractors, the
authors created numerous fresh harmful PDFs as samples.
The results indicate that a number of existing antivirus
applications were unable to identify the fresh dangerous
PDFs, however, FEPDF was able to retrieve the essential
components for improved dangerous PDF classification.

In [42], an integrated detection technique was suggested to
track the JavaScript code’s runtime behavior along with the
recognition of features related to obfuscation, which included
concealing certain keywords’ presence with ASCII hexadec-
imal when several compression filters were used and the
existence of any void objects. The research in [43] was based
on the odd disparities between harmful and clean document
construction. The authors adopted the tools that extracted
the feature set utilizing the document hierarchy or structure

path. A tree was constructed from the document hierarchy
and on the basis of the presence of specific paths the harmful
and clean files were identified, according to the authors.
However, to combat the existing threats caused by PDF
malware as well as to mitigate the challenges posed by the
evasive behavior of PDFs, we certainly require an effective
classifier that works with an explainable feature set covering
the wide range of behaviors of PDFs. In this research,
we developed a dataset that covers the characteristics of
clean and harmful PDFs along with a limited introduction
to the evasive behaviors of PDFs. Moreover, we identified
an explainable feature set by extracting useful features from
the PDFs by adopting three well-known PDF analysis tools.
Furthermore, we identified an effective machine learning
classifier that leverages the newly developed feature set
to detect PDF malware with improved accuracy. Finally,
we provided a thorough explanation of the performance of
the classifier by describing a decision tree built from one of
the estimators of the classifier and extracting a few crucial
decision rules for detecting PDF malware effectively. In the
subsequent section, the details of the methodology used in
this research will be discussed thoroughly.

III. METHODOLOGY
PDF files are among the most extensively used file types
in the world. However, hackers can utilize PDF files, which
are usually non-threatening, to introduce security dangers via
malicious code, just as they can with PNG files, dot-com
files, and Bitcoin [4]. As a result, PDF malware appears,
demanding techniques for recognizingmalicious from benign
files. This section discusses the proposed detection system for
analyzing and categorizing PDF files as benign or malicious.
Fig.2 represents the inclusive graphical architecture of the
proposed approach utilized to conduct this research. In
our proposed approach, initially, we accumulate 29901 raw
PDF samples from [44] which are originally picked from
Contagio Data Dump [45] and VirusTotal [34]. Then, PDF
samples are divided into Benign, Malicious, and Evasive
categories according to their preassigned label as mentioned
in [44] and [46]. Then, we choose 15958 PDF samples
of Benign, Malicious, and Evasive categories from the
29901 raw samples and develop a comprehensive dataset
for our experimental study. We utilize three up-to-date PDF
analysis tools viz. PDFiD [16], PDFINFO [17], and PDF-
PARSER [18] to extract effective standard feature set F1,
F2, and F3 respectively from the raw PDF samples of our
experimental dataset. In addition to the standard feature set,
seven more features are derived by carefully observing the
characteristics of PDF samples from the feature set F1. The
standard feature sets F1, F2, and F3 are then implemented in
the model selection phase, which includes a set of baseline
machine learning classifiers. The model selection phase
determines the best model amongst the baseline classifiers
employed in this study based on their effectiveness for each
feature set.
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FIGURE 2. Proposed architecture for malicious PDF detection.

The extracted derived features are then merged with the
standard feature set F1, F2, and F3 respectively, to develop
the derived feature set F ′

1, F
′

2, and F
′

3 correspondingly. Later,
we aim to generate feature subsets from F ′

1, F
′

2, and F
′

3 based
on their importance and employ them in the best-performing
model to determine themost effective feature subsets. Finally,
we execute a union operation on the three best subsets
acquired from F ′

1, F
′

2, and F
′

3 to construct the final feature set
used for malicious PDF detection. The performance of our
proposed approach is measured using various performance
metrics such as precision, recall, f1-measure, and accuracy.
Furthermore, we highlight the impact of the final feature set
and how much it contributes to the classification activities.
In addition, leveraging the strength of the best-performing
model, we offer an explanation to make it more humanly
understandable by extracting some important decision rules
responsible for the classification activities. The details of
our proposed methodology for malicious PDF detection are
described below in the following subsections.

A. DATASET DEVELOPMENT
Existing datasets may not represent the entire range of
harmful PDFs. Creating a new dataset enables us to include
a broader range of samples, capturing adversaries’ crafting
approaches and strategies. The world of cybersecurity is
continuously changing, and attackers are constantly devising
new evasion strategies. A fresh dataset enables us to
capture novel circumstances that may not have been present
in previous datasets. By focusing on the aforementioned
directions, we aim to create an all-inclusive dataset that
includes not only hazardous and clean PDF samples but also a
few elusive PDF samples that displayed the opposite features
of their preassigned class which may assist in developing an
effective malicious PDF classifier.

1) PDF SAMPLE COLLECTION
To carry out our experiments, we gather a large corpus of
raw PDF files from [44] which consists of 29901 PDFs.
The original sources of the PDF files are from two well-
known sites i.e. Contagio Data Dump [45] and VirusTotal
[34]. Among the collected PDF files, we get 9109 Benign
PDFs from Contagio Data Dump and 20000 malicious PDFs
from VirusTotal. From [44], we also gather 792 evasive PDF
files among which 400 are labeled as benign evasive and
392 are labeled as malicious evasive. Table 1 shows the
distribution of the collected PDF files with their sources and
their preassigned label.

TABLE 1. Collected PDF files for the experimental study.

2) PDF SAMPLE SELECTION
The primary aim of our study is to develop an effective
malicious PDF detector by leveraging the explainable and
efficient feature set, thoughtfully extracted from the PDF
files. As a result, we mainly concentrate on sample selection
for building our dataset based on a few constraints. Firstly,
the PDF files that preserve the pure malicious activities, for
instance, JavaScript are mainly employed by the attackers in
creating malicious PDF documents as an attack method [33],
we select these types of PDFs exhibiting suchmalicious activ-
ities. Secondly, we consider the PDF files that pose opposite
behavior than the malicious ones, for example, legitimate
PDF files usually do not contain JavaScript-related features
that can possibly damage the user’s systems, though it is very
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much possible that a clean PDF file can be generated using
the nonmalicious JavaScript feature. However, developing
a machine learning classifier solely based on both of these
categories can lead to an overfitted model for malicious
PDF identification. Moreover, JavaScript is not only the
key characteristic that malicious PDF exhibits rather there
are other triggering features. For instance, OpenAction, and
Aditional Action (AA) are some of the few features that may
indicate potential malicious activity of a PDF [33]. Besides,
adding too many diversities for both of these categories
can potentially skew the feature weights and importance
which may cause an ineffective classification accuracy
for our proposed model. Considering the aforementioned
reasoning, thirdly, we thoughtfully select a few PDF files
that exhibit malicious behaviors but are labeled as benign
(benign evasive) and the PDF files that pose the benign
behavior but are labeled as malicious (malicious evasive).
In this pilot experiment, we concentrate on developing an
operational dataset that has a total of 15958 PDF files
including 7500 benign (clean), 7666 malicious, 400 benign
evasive, and 392 malicious evasive PDF files, by setting a
limited scope to ensure that we get reliable findings as quickly
as possible. Table 2 represents the dispersion of the selected
PDF files for our experimental study.

TABLE 2. Selected PDF files for our operational dataset.

B. STANDARD FEATURE SET EXTRACTION
We adopt three tools viz. PDFiD, PDFINFO, and PDF-
PARSER, which extract features from PDF files. Although
the three tools serve the same objective, the results they
produce are different and can be leveraged to create three
different feature sets. The feature set extracted by the tools
can be categorized into the following groups:

• Content-Related Features: Content-related features
obtained from the PDF file yield clues regarding the
file’s textual and visual content. For instance, features
like /Image, /Font, /ProcSet etc. are a few examples of
the content-related features, we observe in our dataset.

• Structure Related Features: The structural feature refers
to the construction elements utilized to create a PDF
document. This type of feature provides an internal
relationship and exhibits the hierarchy among vari-
ous elements of PDFs. We have considered various
structural features, for instance, obj, endobj, %EOF,
startxref, trailer etc. in our operational dataset.

• Metadata Features: Metadata features of a PDF file
provide valuable information about the file itself,

including its title, author, creation date, and more. In our
operational dataset, we have examinedmetadata features
such as Filesize_kb, /ID, /CreationDate, /ModDate,
pages, etc.

• Triggering Features: Triggering features refer to partic-
ular traits or components in a PDF file that can possibly
cause various behaviors or actions, including harmful
ones. Attackers might deploy these features to distribute
malware, execute scripts, or perform other malicious
acts. In our dataset, we carefully analyze triggering
features such as /JavaScript, /JS, /OpenAction, /AA
(Aditional Action, /Launch, and so on.

1) PDFiD FEATURES
PDFiD is a Python-based tool [16] for scanning PDF
documents in order to discover specific features and traits that
may signal possible maliciousness. PDFiD does not run any
code inside the PDF; instead, it concentrates on examining
the parts and arrangement of the PDF to shed light on its
characteristics. We have gone through all of our dataset’s
PDF files and used the PDFiD tool to extract 22 features,
as shown in Fig. 3. These extracted features are considered
for the standard feature set, F1. In the following, we describe
the features in brief:

• PDF Header: The PDF header is required for appli-
cations and software to appropriately identify and
comprehend PDF documents. The ‘‘%PDF’’ identifi-
cation is followed by a version number in the PDF
header. For instance, ‘‘%PDF-1.3’’ denotes that the PDF
file complies with PDF standard version 1.3. This code
notifies applications and PDF viewers that the document
is in PDF format.

• obj: PDF documents are made up of objects such as
fonts, text, images, forms, etc. The term obj refers to
the opening of an object definition. This feature provides
the total number of obj keywords that can be identified
within the PDF structure.

• endobj: The term endobj specifies the closing of the
object definition. In the case of PDFiD, this feature
points out how many times the endobj keyword appears
inside the PDF structure.

• stream: A stream object is employed in PDF documents
to hold binary data, such as fonts, images, or other binary
material, within the document. This feature provides the
number of stream keywords that exist within the PDF
file.

• endstream: This keyword denotes the completion of the
stream’s binary data portion. In the context of PDFiD,
this feature indicates howmany endstream keywords can
be found within a PDF document.

• xref: The xref (cross reference) table assists in maintain-
ing links between the structured objects that are stored
in PDF files. PDFiD provides the number of xref tables
that exist inside a PDF document.
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FIGURE 3. A snapshot of the output of PDFiD scanning a PDF file.

• trailer: The trailer is the final component of the PDF
file and contains crucial details about the byte offset
to the beginning of the cross-reference (XRef) table.
In the case of PDFiD, this feature indicates how many
trailers can be found within the structure of a PDF
file.

• startxref: The startxref keyword designates the location
where the Xref table of the PDF is started. This feature
yields how many times we can find startxref keyword
inside a PDF.

• /Page: This feature indicates the total number of pages
of a PDF.

• /Encrypt: The feature outputs the number of /Encrypt
keywords present within the PDF structure.

• ObjStm: The total number of object streams is counted
with /ObjStm. The ObjStm possesses the ability to hold
other objects, making it useful for hiding things.

• /JS: The number of objects that contain the /JS keyword
which reveals the objects having JavaScript code.

• /JavaScript: This feature demonstrates the number of
objects containing JavaScript code, a common and
prevalent obfuscation technique.

• /AA: This feature denotes the number of /AA
(Additional Action) keywords observed inside a PDF
document.

• /OpenAction: When a page or document is viewed,
an automated action is indicated by the /OpenAc-
tion command. This feature demonstrates how many
/OpenAction keywords a PDF document has inside its
structure.

• /AcroForm: The feature denotes the number of /Acro-
Form keywords that exist within a PDF file. The Acrobat
forms used in PDFfiles can be exploited by the attackers.

• /JBIG2Decode: This feature reveals the number of
/JBIG2Decode keywords that exist within the structure
of a PDF file. The feature explains whether the PDF
uses the JBIG2 compression or not, although it does
not provide any direct indication of maliciousness but
requires further analysis.

• /RichMedia: The feature demonstrates the number of
/RichMedia keywords that can be found within the PDF
structure that provides an indication of flash files.

• /Launch: This outputs the number of /Launch keywords
that exist within the PDF.

• /EmbeddedFIle: This indicates the number of /Embed-
dedFIle keywords that can be found inside the structure
of a PDF.

• /XFA: Certain PDF files contain XFAs, which are XML
Form architectures that offer scripting capabilities that
can be abused by attackers. This feature outputs the
number of /XFA keywords that can be observed inside a
PDF file.

• /Colors: This feature indicates the number of different
colors utilized in the PDF structure.

2) PDFINFO FEATURES
PDFINFO is a command-line program that is a part of the
Poppler utility suite commonly used for extracting metadata
from PDF files. We extract 14 features from our operational
dataset utilizing the PDFINFO tool as depicted in Fig. 4.
These 14 features are considered as the standard feature set
F2. In the following, we describe the features of the feature
set F2:

• CustomMetadata: This feature indicates the presence of
user-defined custom metadata inside a PDF document.
The feature provides the value as ‘yes’ or ‘no’.
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FIGURE 4. A snapshot of the output of PDFINFO scanning a PDF file.

• Metadata Stream: This feature outputs the presence of
metadata stream within a PDF file in the form of ‘yes’
or ‘no’.

• Tagged: This feature demonstrates whether the PDF file
is tagged for accessibility or not.

• UserProperties: UserProperties are extra characteristics
or data that users can add to a PDF file for a variety
of functions, including document administration or
private annotation. This feature reveals whether the PDF
contains any UserProperties or not.

• Suspects: The feature informs whether any potential
flaws or errors have been spotted in the PDF document.

• Form: This feature outputs the Form types utilized in the
PDF documents.We have observed the XFA, AcroForm,
or none as output from this feature.

• JavaScript: This feature informs whether the PDF file
contains any JavaScript or not.

• Pages: We can observe the total number of pages that a
PDF contains with the help of this feature.

• Encrypted: The feature demonstrates whether the PDF
is encrypted or not.

• Page size: This feature exhibits the page dimensions of
the PDF document. We have encountered PDFs with a
variety of page dimensions, including A4, Letter, A3,
and other uncommon page forms. If the shape of the
page is peculiar, we have labeled it as miscellaneous, i.e.
Page size_miscsize.

• Page rot: The feature provides the rotation information
about the pages of the PDF document.

• File size: This feature outputs the size of the PDF file
in bytes. However, for the simplicity of the experiment,
we have converted the file size to kilobytes. Hence,
we have denoted this feature as Filesize_kb throughout
the study.

• Optimized: This feature informs whether the PDF
document is optimized (such as size compression) or
not.

• PDF version: The version of the PDF document can be
observed using this feature.

3) PDF-PARSER FEATURES
PDF-PARSER is a command-line program and library
written in Python that parses and analyzes the internal
structure of PDF documents. It is not a PDF creation or
editing tool, but rather one for inspecting the internal layout
and content of existing PDF files. Though PDF-PARSER
does not provide features in a direct manner, we have
extracted 27 features from the parsed structure of the PDF
as shown in Fig. 5. These features are mainly the keywords
frequently observed in the parsed structure of the PDF and are
considered as the standard feature set F3. Initially, we have
iterated through all the PDFs of our operational dataset to
extract the parsed structures. Then, we search for specific
keywords i.e. features from these parsed structures, to create
the feature set F3. In the following, we introduce these
features in brief:

• /JS: Number of /JS keywords that can be found in the
parsed structure of a PDF.

• /JavaScript: Number of /JavaScript keywords that can be
found in the parsed structure of a PDF.

• /Size: Number of /Size keywords that can be observed
in the parsed structure of a PDF. The /Size keyword
indicates the total number of objects present in the PDF
document.

• startxref: Number of startxref keywords that can be
found in the parsed structure of a PDF.

• %EOF: Number of %EOF keywords that can be
observed in the parsed structure of a PDF. The keyword
is a marker that demonstrates the end of the PDF file.

• /Producer: Number of /Producer keywords that can be
spotted in the parsed structure of a PDF. The keyword
specifies the tool or software by which the PDF was
created.

• /ProcSet: Number of /ProcSet keywords that can be
noticed in the parsed structure of a PDF. The set of
procedures (or processes) that should be employedwhile
rendering a page or graphic content within a PDF
document is specified by /ProcSet. Though this keyword
does not directly indicate the maliciousness of a PDF,
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FIGURE 5. A snapshot of the output of PDF-PARSER scanning a PDF file.

the keyword has been frequently encountered inside the
parsed structures of clean PDF files.

• /ID: Number of /ID keywords that can be discovered
in the parsed structure of a PDF. This keyword reveals
the document ID that is crucial for the integrity and
security of the document which can indicate whether the
document was tampered with malicious activity or not.

• /S: Number of /S keywords that can be spotted in the
parsed structure of a PDF. The keyword indicates the
subtype of various objects or tasks, such as text or link
annotations.

• /CreationDate: Number of /CreationDate keywords that
can be discovered in the parsed structure of a PDF.

• obj: Number of objects that can be spotted inside the
parsed structure of a PDF.

• xref: Number of xref that can be observed within the
parsed structure of a PDF.

• ≪: Number of ’≪’ keywords that can be noticed in the
parsed structure of a PDF. In a PDFfile, the ’≪’ signifies
the start of a dictionary object.

• ≫: Number of ’≫’ keywords that can be noticed in the
parsed structure of a PDF. In a PDFfile, the ’≫’ signifies
the closing of a dictionary object.

• /Font: Number of /Font entries that can be discovered
inside the parsed structure of a PDF.

• /XObject: Number of /XObject keywords that can be
observed within the parsed structure of a PDF. The
/XObject keyword is utilized to indicate and encapsulate
external graphical material such as images, forms, and
other sophisticated objects.

• /ModDate: Number of /ModDate entries that can be
discovered inside the parsed structure of a PDF. The
modification date and time of the PDF file are specified
using the /ModDate keyword.

• /Info: Number of /Info keywords that can be spotted
inside the parsed structure of a PDF. The term /Info
describes the document’s information dictionary.

• /XML: Number of /XML entries that can be discovered
inside the parsed structure of a PDF.

• Comment: Number of comments that are noticed inside
the parsed structure of a PDF.

• /Widget: Number of /Widget keywords that are found
within the parsed structure of a PDF. The /Widget anno-
tations are interactive components that are employed in
PDF files, particularly PDF forms, which enable users
to interact with input data.

• Referencing: Number of Referencing keywords that are
noticed inside the parsed structure of a PDF.

• /FontDescriptor: Number of /FontDescriptor keywords
that are discovered within the parsed structure of a PDF.

• /Image: Number of /Image keywords that can be found
within the parsed structure of a PDF.

• /Rect: Number of /Rect keywords that are observed
within the parsed structure of a PDF.

• /Length: Number of /Length keywords noticed within a
PDF’s parsed structure. The /Length keyword specifies
the length or size of the content stream related to a PDF
object in bytes.

• /Action: Number of /Action keywords noticed within a
PDF’s parsed structure.
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C. DERIVED FEATURES
We have derived seven more features by carefully observing
the characteristics of the PDFs from the standard feature set
F1. The derived features are introduced at the following:

• Headerlength: The feature considers the length of the
filename i.e. length of the title of the PDFs.

• Headercorrupt: This is a binary feature that considers
the version of the PDFs. If the version of any PDF does
not start with %PDF-1.X where X=[0,1,. . . .,7], then the
feature value is set to 1 and 0 otherwise.

• Small content: This binary feature is derived through
the careful observation of the number of objects in a
PDF. If a PDF has objects less than or equal to 14 then
the feature is set to 1 and 0 otherwise. We have observed
the mean value grouped by class (malicious and benign)
for the number of objects present in the PDFs. The
mean value for malicious PDFs is 14.1 whereas for the
benign ones, the mean is 85.6. Furthermore, we have
spotted 6277 malicious PDFs which is 77.90% of
the entire malicious PDF sample that fall under or
equal to this threshold value of 14. On the other
hand, we have discovered 1709 benign PDFs which
is 21.6% of the entire benign PDF sample, also fall
under the same constraint. Moreover, we have observed
22.10% malicious PDFs that do not meet the threshold
requirement. However, through thoughtful inspection,
we set the threshold value as 14 for this binary feature.

• Content corrupt: This binary feature is set to 1 if the
number of objects and endobjects of the PDFs are not
the same and 0 otherwise.

• Stream corrupt: If the number of streams and end-
streams are not the same then this feature is set to 1 and
0 otherwise.

• Malicecontent: This binary feature is set to 1 if two
features from /JS, /JavaScript, /AA (Aditional Action),
/Launch, /OpenAction are found at least for a single
instance within a PDF and 0 otherwise. These features
pose a risk since they can be exploited to insert and
execute malicious code within a PDF document.

• Hidden File: The PDFiD tool while scanning a PDF
file indicates if there is any hidden file embedded by
the adversaries within the document. This binary feature
is set to 1 if there is any hidden file found within the
document and 0 otherwise.

To find out the effectiveness of the derived features for mali-
cious PDF detection, we have merged these derived features
with the standard feature set F1, F2, and F3 respectively to
generate derived feature sets F ′

1, F
′

2, and F
′

3 correspondingly.

D. MACHINE LEARNING MODEL SELECTION
In this pilot study, we intend to develop an effective
data-driven approach based on machine learning to detect
malicious PDFs. To select an effective machine learning
model, at the first step, we initialize the standard feature
set F that contains F1, F2, and F3 feature sets. Then,

we select M number of baseline machine learning classifiers
including Random Forest, C5.0, SVM, J48, AdaBoost, Deep
Neural Network (DNN), Gradient Boosting, and KNN for our
experimental study. We iterate through each feature set in F ,
for each classifier in M , to evaluate each classifier on each
feature set based on 10-fold cross-validation and generate
the classification report. We compare the classification report
yielded for each feature set and choose the best-performing
model for PDF malware detection based on the report.

E. FINAL FEATURE SET
After we generate the derived feature sets F ′

1, F
′

2, and F
′

3 by
merging the derived features with the standard feature sets
F1, F2, and F3 respectively, we concentrate on developing
the final feature set. The intuition behind building the final
feature set is to create an effective single feature set by
observing all the derived feature sets. Thus, we measure the
feature importance, rank the features for each derived feature
set, and generate subsets based on the rank of the features.
By leveraging the best-performingmodel, we implement each
feature subset utilizing the model to find out the effectiveness
of the subset. We iterate through derived feature sets F ′

1, F
′

2,
and F ′

3 respectively to create subsets by taking top features
from each one of them. After we complete the iteration
for subset generation and their evaluation utilizing the best-
performing model, we compare the performance of the model
among the subsets of each derived feature set to find the
best feature subset. We take the best feature subset from
each derived feature set F ′

1, F
′

2, and F ′

3 respectively, and
perform the union operation among them to develop the final
feature set. This newly developed final feature set is then
utilized to conduct the final classification activities to detect
PDF malware. Algorithm 1 explains the overall approach
of the final feature set generation. In the following section,
we discuss the experimental results obtained in this research
for PDF malware detection.

IV. EXPERIMENTAL RESULTS
In this pilot experiment, we aim to 1) build an efficient
and improved feature set for identifying PDF malware,
2) empirically explore various baseline machine learning
classifiers to select an effective machine learning classifier
that can leverage the freshly created feature set to identify
PDF malware with an improved detection accuracy, 3)
explain how much the features of the final feature set
contribute to the classifier to detect maliciousness in PDF and
4) extract a few crucial decision rules leveraging the power
of the classifier that is easily understood and interpretable by
humans to aid in the detection of potential maliciousness in
PDF. To accomplish the objectives, we carry out experiments
based on the following cases:

• Case I: In this instance, we mainly concentrate on
finding the answer to the following questions: 1) How
do the standard feature set F1, F2, and F3 assist in
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Algorithm 1 Steps For Final Feature Set Generation
Input: Derived Feature Sets, F ′

= {F1′,F2′,F3′
}

Output: Final Subset containing the union of best subsets
1: for f in F ′ do
2: Find the importance of features in f
3: Sort the features in f based on importance
4: Generate subset S = {S1, S2, S3, . . .} by taking top

features from f
5: Initialize best_subset as an empty set
6: for s in S do
7: Apply s on the Best MLModel Selected for PDF

Malware Detection
8: Generate Classification Report
9: if subset performance is better than best_subset

performance then
10: Set best_subset to s
11: end if
12: end for
13: Perform a union operation to append best_subset to

Final_Subset
14: end for

identifying PDF malware? and 2) What is the suitable
machine learning model for PDF malware detection?

• Case II: In this scenario, our key focus is to uncover the
findings of the following queries: 1) What is the impact
of the derived feature sets in identifying PDF malware?
and 2) How do the derived feature sets F ′

1, F
′

2, and F
′

3
contribute to the detection of PDF malware?

• Case III: In this case, we investigate the answers to the
following questions: 1) What features are selected for
the final feature set? and 2) Does the final feature set
boost the performance of the classifier?

• CASE IV: In this particular circumstance, we look into
finding the answers to the following queries: 1) How
does the combined feature set (i.e.F1 +F2 +F3 + derived
features which also can be represented by F ′

1UF
′

2UF
′

3
) help in the detection of malicious PDF? 2) Will the
best feature subset generated from the combined feature
set by taking into account the feature importance and
approach described in CASE III differ from the final
feature set acquired in CASE III? 3) Will the best
feature subset produced in this scenario have a positive
or negative impact on classification performance? and
lastly 4) What is the classification performance when no
derived features are used, such as only with F1 + F2 +
F3?

• Case V: In this instance, we focus on explaining i.e.
How does the freshly developed final feature set aid
the classifier in detecting PDF malware? Furthermore,
we present an analysis of the distribution of the
characteristics of the final feature set in the operational
dataset to identify a few prospective directions that may
effectively aid in identifying PDF malware.

In addition, we utilize the strength of the classifier to
discover a few key decision rules that humans can understand
easily and apply to identify potentially dangerous PDF
content.

A. EVALUATION METRICS
We employ the abbreviations for the evaluation metrics listed
below to analyze the classification report:

• Acc: The term accuracy is abbreviated as Acc, and it can
be assessed using the following formula:

Accuracy =
TP+ TN

TP+ FN + TN + FP

where TP means True Positive, FP means False Positive,
TN means True Negative, and FN stands for False
Negative.

• Pr: The term precision is abbreviated as Pr can be
measured by

Precision =
TP

TP+ FP

• Rec: The abbreviation Rec is used in place of the term
Recall, which can be quantified by

Recall =
TP

TP+ FN

• F1: The term F1-Score is denoted as F1, which can be
calculated by using the

F1 = 2 ∗
Pr ∗ Rec
Pr + Rec

B. CASE I
In this case, we look at the impact of standard feature sets F1,
F2, and F3, as well as baseline machine learning classifiers,
to determine the top-performing model for detecting PDF
malware. Table 3 demonstrates the performance of the
various baseline machine learning classifiers along with a
deep neural network (DNN) for PDF malware detection
utilizing the standard feature set F1, F2, and F3 based on
10-fold cross-validation. Conspicuously, we can observe that
the Random Forest classifier yields the best accuracy for all
the standard feature sets compared to the baseline classifiers
while identifying PDF malware. We utilized Scikit-Learn,
a well-known open-source machine-learning library for
Python to implement the baseline classifiers. We constructed
the Random Forest classifier with 100 estimators and with
random_state = 42 to handle the randomness. On the other
hand, we built the C5.0, SVM, J48, AdaBoost, and KNN
classifiers with their default hyperparameters as per the
Scikit-Learn library.

Furthermore, we developed the DNN model which is
an MLPClassifier, with a hidden layer of 100 units and
random_state = 42. We executed the DNN model for
100 epochs. And finally, the Gradient Boosting classifier
(GBC) was introduced with the 100 estimators and ran-
dom_state = 42. While implementing the standard feature
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set F1, we clearly witness that the Random Forest classifier
stands out as the top-performing model for identifying PDF
malware by acquiring an accuracy of 96.82% compared to
the other models used in this work. Upon examining the
other classifiers’ performance, we find that the C5.0 clas-
sifier achieved the second-best accuracy for malicious
PDF identification, with 96.59%. However, we find SVM
classifier yielded comparatively less effective performance
for identifying the malicious PDFs. On the other hand, the
J48, AdaBoost, GBC, KNN, and DNN models provided an
accuracy of 96.57%, 95.92%, 96.49%, 95.77%, and 96.20%
respectively for PDF malware detection. Similarly, we notice
that the Random Forest model outperforms the baseline
classifiers by showing an accuracy of 96.53% and 97.19%
for detecting PDF malware utilizing the standard feature sets
F2 and F3 respectively. Fig. 6, 7, and 8 explicitly exhibit the
ROC curve comparison of the classifiers implemented in this
study on the standard feature sets F1, F2, and F3 respectively.
We can identify that the Random Forest classifier provided
the best area under the curve (AUC) score compared to
the others for PDF malware detection in each of these
standard feature sets. Among the three standard feature sets,
we encounter that the feature set F3 turns out to be the best
for obtaining better performance of the model. To verify
the intuition of the Random Forest model’s performance,
we investigated the feature significance of the standard
feature sets using the model directly.

FIGURE 6. ROC curve comparison of random forest model with various
classifiers adopted in this study on the standard feature set F1.

FIGURE 7. ROC curve comparison of random forest model with various
classifiers adopted in this study on the standard feature set F2.

FIGURE 8. ROC curve comparison of random forest model with various
classifiers adopted in this study on the standard feature set F3.

Table 4 lists the feature importance of the standard feature
set F1, F2, and F3 respectively while implementing the
Random Forest model for PDF malware detection. From
Table 4, we identify the key features of the Random Forest
model which aid in achieving a better performance of the
model compared to the other baseline classifiers. The features
/JS, startxref, and JavaScript are the most important features
of F1 whereas the features Filesize_kb, Metadata Stream,
and Optimized are the most important features from F2.
Besides, we identify that the /JS, /JavaScript, and /Producer
are the top three important features from the feature set
F3. Leveraging the effectiveness of the Random Forest
classifier in high-dimensional feature space as well as the
decision-making capability based on the ensemble learning
method and certainly observing the aforementioned empirical
analysis utilizing the standard feature sets, we consider the
Random Forest model as the best-performing model to detect
PDFmalware. Thus, for further case studies, we take only the
Random Forest model to execute our desired experiments.

C. CASE II
In this case, we discover the impact of the derived feature
sets on the classifier’s performance as well as how much the
derived features incorporate for identifying PDF malware.
Table 5 highlights the performance of the Random Forest
classifier utilizing both the standard and derived feature sets
based on 10-fold cross-validation. The findings explicitly
demonstrate that the derived feature set noticeably improved
the effectiveness of the classifier compared to the standard
feature sets. We observe a nearly 2% increase in accuracy for
the classifier when utilizing the derived feature set F ′

1 instead
of the standard feature set F1. Similarly, the other derived
feature sets F ′

2, and F ′

3 maintain the same consistency for
the accuracy improvement of the classifier as like as the F ′

1.
However, for the derived feature set F ′

3, we obtain the best
classification report by attaining an accuracy of 98.90% of
the classifier for the detection of PDF malware.

To further assess the significance of the derived features,
we estimate the feature importance of the derived feature
sets F ′

1, F
′

2, and F ′

3 leveraging the power of the classifier.
Table 6 shows the feature importance of the derived
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TABLE 3. An investigation of the Accuracy, Precision, Recall, and F1 - Score of various machine learning methods for standard feature sets utilizing tools
(PDFiD, PDFINFO, and PDF-PARSER) based on 10-fold cross-validation.

feature sets and explicitly exhibits the significance of the
derived features and how much they contribute during the
classification. The results reveal that the derived feature
Headerlength contributes most for all the derived feature sets
i.e. the feature Headerlength contributes 28.19%, 34.15%,
and 30.85% when F ′

1, F
′

2, and F
′

3 are utilized respectively
for the classification activities, Likewise, another important
derived feature Malicecontent turns out to be in top three
in terms of its significance among all the features within
the derived feature sets F ′

1 and F ′

2 by exhibiting 12.6%,
and 17.10% contributions respectively for the classification
purpose. However, we observe the Malicecontent feature as
the second most important feature yielding 9.7% significance
when the classifier utilizes theF ′

3 for the identification of PDF
malware. Apart from the Headerlength and Malicecontent
derived feature, we encounter seldom contributions from
other derived features, though we find the small content
feature assisting a little to the classifier among the rest of the
derived features.

D. CASE III
In this instance, we identify the features from the derived
feature sets F ′

1, F ′

2, and F ′

3 that are selected for the

final feature set through careful observations. Besides,
we investigate the effect of introducing the final feature set
on the classifier’s performance. Furthermore, we estimate the
significance of the final feature set in the identification of
PDF malware.

To identify the best feature subsets from the derived feature
sets we follow the steps mentioned in the Algorithm 1.
We use the findings highlighted in Table 6 where the feature
importance of each derived feature set is estimated and then
sorted according to their importance.We consider the features
with at least 1% of the feature importance score to generate
subsets from the derived feature sets F ′

1, F
′

2, and F
′

3. Thus,
we find the top 15 features from F ′

1. top 10 features from F ′

2,
and top 18 features from F ′

3 that satisfy the aforementioned
condition, and these features are selected for the generation
of feature subsets initially. We generate the subsets starting
from the first feature and gradually increase the features
sequentially up to the last feature considered for feature
subset generation from each derived feature set.

Therefore, we build 15 subsets from F ′

1, 10 subsets
from F ′

2, and 18 subsets from F ′

3 respectively. Further,
we follow the steps as mentioned in Algorithm 1 to estimate
the effectiveness of each feature subset to select the best
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TABLE 4. Feature importance of standard feature sets F1, F2, and F3.

TABLE 5. Improvement of random forest classifier’s performance using
derived feature sets compared to the standard feature sets for detecting
PDF malware based on 10-fold cross-validation.

feature subset from each derived feature set for final feature
set generation. We highlight the mean accuracy obtained
utilizing the aforementioned approach for each feature subset
of F ′

1. F
′

2, and F
′

3 in Fig.9, Fig. 10, and Fig. 11 respectively.
According to the depiction in Fig. 9, the classifier has a
maximum mean accuracy of 98.69% when implementing the
subset consisting of 11 top features from F ′

1, and there is a
small variation in the mean accuracy for other subsets of F ′

1.
Likewise in Fig. 10, the classifier yields a maximum mean

accuracy of 97.91% when applying the subset consisting of
8 top features from F ′

2, and there is a considerable variation
in the mean accuracy for other subsets of F ′

2. However,
we notice in Fig. 11 that the classifier achieves the highest
mean accuracy when utilizing all of the top 18 features
considered for subset generation from F ′

3. Thus, the subset
comprising the top 11 features of F ′

1 is identified as the best
feature subset from F ′

1, the top 8 features of F
′

2 is identified as
the best feature subset fromF ′

2, and the top 18 features ofF
′

3 is
identified as the best feature subset fromF ′

3. To accommodate
the commonness as well as the uncommonness among the
newly identified best feature subsets, we perform a union
operation to generate the final feature set. Table 7 represents
the list of the identified features that are finally considered
for the final feature set. We discover three derived features
such as Headerlength,Malicecontent, and small content into
the final feature set. Since the JavaScript feature is found
in all three derived feature sets F ′

1, F
′

2, and F ′

3, we only
consider this feature once (from F ′

1) in the list. The features
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/JS, startxref, xref are noticed both in F ′

1, and F
′

3, so we take
them only once (from F ′

1) in the list of the final feature set.
We observe the features obj, endobj, stream, /OpenAction,
and /XFA only from F ′

1 in the final feature set. Besides the
features Filesize_kb,MetadataStream,Optimized, and Pages
are encountered only from F ′

2, and the rest of the features
listed in Table 7 are observed only from F ′

3. We investigate
the impact of the final feature set on the Random Forest
classifier based on 10-fold cross-validation to detect PDF
malware. Table 8 shows the findings of the classifier for
several types of feature sets used in this research. We notice
an impressive increase in the accuracy of the classifier due
to the utilization of the final feature set compared to the
standard and derived feature sets. The maximum accuracy
improvement for the classifier when employing the final
feature set is 2.71% compared to the standard feature set
F2. On the contrary, we find that the minimum accuracy
improvement of the classifier when executing the final feature
set is 0.34% compared to the derived feature set F ′

3. However,
the classifier provides a noticeable performance boost in the
case of PDF malware detection, due to the introduction of the
freshly developed final feature set.

FIGURE 9. Mean accuracy of random forest classifier vs top feature
subset of the derived feature set F ′

1.

FIGURE 10. Mean accuracy of random forest classifier vs top feature
subset of the derived feature set F ′

2.

Fig. 12 illustrates the accuracy curve of the Random
Forest classifier implemented using the final feature set
based on 10-fold cross-validation. We observe that the model
attains 99.56% accuracy during the sixth fold whereas the
model yields the minimum accuracy of 99.05% during the
ninth fold of the 10-fold cross-validation. The log loss
curve of the Random Forest model during the various

FIGURE 11. Mean accuracy of random forest classifier vs top feature
subset of the derived feature set F ′

3.

folds of the 10-fold cross-validation is depicted in Fig. 13.
We observe the maximum loss during the third fold whereas
the minimum loss during the first fold from the entire 10-fold
cross-validation. Fig.14 represents the Reciever Operating
Characteristics (ROC) curve of the Random Forest model for
the various folds of the 10-fold cross-validation on the final
feature set. We notice an area under the curve of 1.00 for
the Random Forest model throughout the entire 10-fold
cross-validation.

FIGURE 12. Accuracy curve of random forest model on final feature set
based on 10-fold cross-validation.

FIGURE 13. Loss curve of random forest model on final feature set based
on 10-fold cross-validation.
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TABLE 6. Feature importance of derived feature sets F ′

1, F ′

2, and F ′

3.

E. CASE IV
In this circumstance, we present the findings of implementing
the combined feature set (i.e. F1 + F2 + F3 + derived
features) for detecting PDF malware. We identify the best
feature subset from the combined feature set by considering
the approach as stated inCASE III and discover the difference
with the final feature set. Moreover, we find the impact of
the best subset obtained in this case on the classification
performance. Also, we discuss the potency of the classifier

when no derived features are used for malicious PDF
detection.

Table 9 explicitly depicts the performance of the Ran-
dom Forest classifier when utilizing the combined feature
set with derived features as well as the merged feature
set with no derived features and presents a comparison
of the classifier’s efficacy with the final feature set.
We observe that the classifier acquired 99.19% accuracy
when utilizing the combined feature set with derived features
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TABLE 7. List of identified features of the final feature set.

TABLE 8. Impact of final feature set on the random forest classifier’s
performance based on 10-fold cross-validation for PDF malware
detection.

FIGURE 14. ROC curve of random forest model on final feature set based
on 10-fold cross-validation.

(i.e. F1 + F2 + F3+ derived features) for identifying
malicious PDFs. On the other hand, the classifier yielded
an accuracy of 97.28% for the merged featured set

TABLE 9. Impact of combined feature set as well as the feature set with
no derived features (i.e. F1+ F2+ F3) on the random forest classifier’s
performance based on 10-fold cross-validation for PDF malware
detection.

(i.e. F1 + F2 + F3) with no derived features. Thus, we can
notice the impact of the derived features in enhancing the
performance of the classifier for at least 1.91% for detecting
PDF malware. However, we discovered comparatively better
efficacy of the classifier for the utilization of the final feature
set to identify malicious PDFs. The reason behind this is that
the combined feature set consists of comparatively a larger
number of features than the final feature set. Because of the
higher number of features, in the high-dimensional spaces,
the classifier sometimes may find patterns in noise rather than
genuine relationships and provides somewhat less effective
performance. Furthermore, the elimination of unnecessary
features can improve the model’s ability to generalize and
classify malicious PDFs effectively. Thus, the final feature
set with less but by taking into account the important features
based on feature importance produced better accuracy than
the combined feature set.

Table 10 represents the feature importance of the top
features of the combined feature set obtained utilizing the
strength of the classifier. To generate the subset, from the
table, initially, we consider the features having at least 1%
feature importance score (as mentioned in CASE III). Thus
to construct the best subset of the combined feature set,
we evaluate only the top 10 features from Table 10. Then,
we develop 10 subsets from these features by following
the approach as described in CASE III. The mean accuracy
obtained from these subsets adopting the classifier is
illustrated in Fig. 15. We notice that the subset containing
all the top 10 features produced the best mean accuracy
of 98.53%. Therefore, we identify the subset having the
features ( Malicecontent, /JavaScript, Filesize_kb, /Producer,
Headerlength, /S, /ProcSet, /ID, startxref, /Info ) as the best
subset of the combined feature set. Conspicuously, we can
strongly differentiate between the final feature set and the
best subset obtained from the combined feature set. However,
we note that the best subset achieved in this case does
not improve the classifier’s accuracy when compared to the
classifier’s performance for the final feature set.

Furthermore, to validate the effectiveness of the final
feature set we utilize the Correlation-based Feature Selection
(CFS) technique to generate the best feature subset from
the combined feature set. We implement the CfsSubsetEval
feature selection method (with Best First Search approach)
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using a popular machine learning software Weka 3 [47].
We find the following features in the best subset as output
from the method: Headerlength, contentcorrupt, /Encrypt,
Malicecontent, /Colors, Metadata Stream, Optimized, Page
size:_A4, Page size:_miscsize, /Size, and /Action. Similarly,
we also implement the ReliefFAttributeEval feature selection
method (with Ranker approach) to produce the best subset
from the combined feature set using Weka 3. We consider
the features having at least a 1% merit score and then
adopt the approach as mentioned in CASE III to develop
and evaluate the feature subset. Finally, we identify the best
subset from this approach having the following features:
Headerlength, Optimized, Malicecontent, Metadata Stream,
Tagged, /EmbeddedFile, Custom Metadata, Form:_none,
/FontDescriptor, /XFA, /Font, small content, /Producer,
/AcroForm, /ModDate, %EOF, Form:_XFA, /XML, /Action,
/CreationDate, and xref. To further evaluate the potency of
the final feature set, we employ these feature sets using the
classifier’s strength and compare the results. We find that for
the subset of CfsSubsetEval, the classifier yields an accuracy
of 97.59%whereas for the subset of ReliefFAttributeEval, the
classifier provides 98.75% accuracy. Notably, we identify that
the classifier produces the highest accuracy when using the
final feature set to detect malicious PDFs.

Overall, we find that from CASE I, the classifier delivers
the highest accuracy of 97.19% on the standard feature set
F3, from CASE II, the classifier yields the highest accuracy
of 98.90% on the derived feature set F ′

3, from CASE III the
classifier produces the best accuracy of 99.24% utilizing the
final feature set, and from CASE IV the classifier outputs the
highest accuracy of 99.19% on the combined feature set with
derived features. Thus, conspicuously we can identify that the
final feature set assists the classifier to deliver the highest
efficacy for detecting PDF malware among all the feature
sets.

FIGURE 15. Mean accuracy of random forest classifier vs top feature
subset of the combined feature set.

F. CASE V
In this case, we provide an explanation of how the freshly
created final feature set contributes to the classifier for
identifyingmaliciousness in PDF. To analyze the significance
of the final feature set, we estimate the importance of the
top features from this feature set utilizing the Random Forest

TABLE 10. Feature importance of top features of combined feature set.

classifier which is illustrated in Fig. 16. This illustration
uncovers the important features and how much they con-
tribute to the classification activities. The illustration reveals
that the derived features Headerlength, and Malicecontent
contribute largely to the identification of PDF malware.
On the other hand, /JS and /Javascript features are also proven
to be very crucial for malicious PDF detection.

We observe all the features from the newly developed final
feature set to explore the traits of both categories of PDFs
toward these features in our operational dataset. The average
value of the derived feature Headerlength is 16.50 with a
standard deviation of 12.45 for the benign PDFs whereas for
the malicious ones, the average value is 42.48 with a standard
deviation of 7.28 as depicted in Fig.17. The illustration also
reveals that the title length of 75.83% of the benign PDFs is
under or equal to the mean value of benign ones while on the
other hand 89.16%, malicious PDFs satisfy the condition of
their title length less or equal to their mean value. However,
this explains the fact that in our operational dataset, the
average title length of the benign PDFs is much smaller
than the malicious ones. This finding provides a potential
indication of identifying PDF malware by just looking at
the length of the title of the PDF, though this feature alone
does not necessarily point to the maliciousness within a PDF.
Because, in a real-world scenario, a clean PDF often may
have a large title length.

The distribution of another derived feature Malicecontent
that is constructed through inspecting the triggering features
across the malicious and benign PDFs is illustrated in Fig. 18.
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FIGURE 16. A bar plot to display the importance of the top features of the final feature set.

FIGURE 17. Characteristics of Headerlength feature for both benign and
malicious PDFs in the operational dataset.

During our pilot study, we noticed 7246malicious PDFs iden-
tified by this feature whereas 651 benign PDFs also fell under
the same condition. This demonstrates that malicious PDFs
mostly contain triggering features compared to the clean
ones which also point out a potential direction of identifying
PDF malware in real-world cases. The characteristics of the

/JavaScript feature, a popular choice by cyber attackers to
build a PDF maldoc plotted in Fig. 19 through the proper
inspection of our operational dataset. The finding explains
that the clean PDFs close to 92%, hardly have JavaScript
features while nearly one-third of malicious PDFs from our
dataset contain this feature. The presence of this feature
within a PDF exhibits the strong possibility of malicious
activity. Similar to the /JavaScript feature, we discover very
little presence of /JS feature among the clean files but in the
case of malicious ones, we observe frequent presence of this
keyword.

In Fig. 20, we portray the traits of the FIlesize_kb feature
that explicitly reveals that the average size of the clean PDFs
is much larger than the harmful ones. We discover a high
standard deviation for the file size of the benign PDFs, as well
as the fact that only 68.77% of clean PDFs have a file size less
than or equal to their mean size. We also detect a substantial
standard deviation for the malicious PDFs, with nearly 10%
of the malicious PDFs file size falling outside of their mean
bounds. The mean value of the /Size keyword is 2.27 for
benign PDFs and 1.00 for malicious PDFs, emphasizing
that attackers try to embed their intended payload inside
PDFs rather than focusing on the content of the PDFs. The
metadata features /Producer, /ID, /CreationDate, and /Info
are commonly observed in clean PDFs but are rarely observed
in the hazardous ones in our operational dataset. Likewise,
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the featureMetadataStream is spotted more often in the clean
ones compared to the malicious ones.

This finding leads to the possibility that hazardous PDFs
include fewer metadata features than clean PDFs. Fig.21
depicts the distribution of the obj characteristic across both
PDF categories. The average number of objects for the clean
PDFs is 85.61, with a significantly high standard deviation of
169.81, whereas the hazardous PDFs have a comparatively
small mean of 14.11, with a standard deviation of 21.89. This
underscores the fact that harmful files typically contain fewer
objects since the attacker’s objective is to create malicious
material with as few objects as feasible in order to execute
their attack as quickly as possible. We notice a similar pattern
with the endobj feature, as every object declaration should be
followed by an endobj, ideally. However, we inspect a small
variation in the mean size for the endobj feature compared
to the obj feature for malicious PDFs, with a mean value
of 16.50. For the stream feature, we observe that malicious
files occupy a limited number of streams compared to the
clean files. Attackers exploit startxref and xref as well to
avoid detection. For a PDF document, a reader program will
render and show it as follows: The EOF (End Of File) mark
at the bottom of the document serves as the starting point
for reading. It is going to be the startxref preceded by the
offset of the cross-reference table immediately on above. The
offset of the root dictionary, which serves as the starting point
of the hierarchical structure (PDF file), by which all objects
can be retrieved, is contained in the cross-reference table.
If either the xref or the startxref are missing, stringent readers
and parsers will reject the file as malformed. A versatile
reader, on the other hand, will be capable to navigate the
root dictionary and render the file, much like contemporary
readers. The features %EOF can also be manipulated by the
attackers to perform malicious activities.

The features /XFA and /OpenAction are observed to be
more prominent in malicious PDFs than in clean files in
our experimental dataset. Because the clean PDFs contain
more objects and are larger in size than the hazardous ones,
we discover that the features /Font, Referencing, XML, /Rect,
/S (subtype of objects or tasks), /ProcSet (set of procedures)
are more prevalent in the clean files than in the malformed
ones. Furthermore, the average number of pages in clean
files is 5.79, whereas it is 1.44 in malicious files. This
demonstrates that harmful files in our operational dataset
are rather short, generally consisting of one or two pages
with limited information (often a blank page). This discovery
points to a possible path for spotting questionable PDF files.
We inspect a little significance of the feature Optimized
and the derived feature small content throughout our entire
operational dataset for detecting malicious PDFs.

G. RULE DISCOVERY AND HUMAN INTERPRETATION
We explore the interpretation of the Random Forest classifier
i.e. how the classifier predicts maliciousness in PDF with
the help of the final feature set by constructing a decision
tree from one of the estimators of the classifier as well as

FIGURE 18. Distribution of Malicecontent feature for both benign and
malicious PDFs in the operational dataset.

FIGURE 19. Characteristics of /JavaScript feature for both benign and
malicious PDFs in the operational dataset.

FIGURE 20. Characteristics of Filesize_kb feature for both benign and
malicious PDFs in the operational dataset.

extracting a few important decision rules from the imple-
mentation of the classifier to detect PDF malware. Moreover,
we provide interpretations of the decision rules so that
they can be easily comprehended. To decode the classifier’s
performance, in Fig. 22, we illustrate one of the decision
trees from the 100 estimators of our Random Forest classifier.
The generated decision tree provides an explanation of the
performance of the classifier by representing the conditions
of the various features from the final feature set in its nodes
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FIGURE 21. Distribution of Obj feature for both benign and malicious
PDFs in the operational dataset.

for detecting malicious or benign PDFs. As we observe the
tree, we notice that each node of the tree specifies a feature
with a certain threshold condition which is used to split
the samples and also mentions the percentage of samples
reached to the node. Moreover, each node also provides the
proportionate class distribution of the samples that reached
the node and indicates the final class label that has the
majority vote. The feature in the root node indicates the most
important feature of the tree. If the condition in the root node
is true then the control transfers to the left child of the root
node or to the right child otherwise. This process continues
for each node until we reach the leaf node which indicates a
decision rule specifying a certain class label.

In Fig. 22, we find that the Malicecontent feature is in
the root node of the tree specifying a threshold condition
of Malicecontent <= 0.5 which is used to split the
PDF samples. The condition implies that the initial decision
point in the tree is based on the Malicecontent feature and
evaluates whether or not its value is less than or equal to
0.5. We observe that the root node deals with all the samples
considered for the tree. The values in square brackets show
the proportionate distribution of classes at this node. The
first value indicates 49% of benign occurrences, whereas
the second value specifies 51% presence of malicious class
among the samples that reached the root node. We find
the majority vote for the malicious class at this node. The
colors show each node’s majority class (box, with rusty
representing the majority benign and blue representing the
majority malicious). The colors become darker as the node
gets closer to becoming completely benign or malicious.
Similarly, the colors become lighter if the node contains
closer distribution of the samples among themselves.

As we can identify one of the decision rules in Fig. 22
that indicates If (Malicecontent <= 0.5 and /ID >

0.5 and Headerlength <= 39.5) then Class : Benign. This
reveals that if any PDF sample from our operational dataset

does not have Malicecontent feature but contains metadata
feature /ID and its title length is less than or equal to 39.5,
then the sample belongs to the benign class. Fig. 23 illustrates
a decision plot of the Random Forest classifier for one of the
instances that satisfies the above decision rule and belongs to
the benign class. We adopted the SHAP library to construct
the decision plot which renders the decision-making process
easier to understand by highlighting how each feature affects
the output of the classifier. The plot highlights the features
that push the model toward classifying benign or malicious
classes for a particular instance. The blue region (left side of
the vertical line) of the plot represents the features that push
the classifier’s prediction toward the benign class whereas
the red region (right side of the vertical line) highlights
the features that push the classifier’s prediction toward the
malicious class. From Fig.23, notably, we can observe that
the Malicecontent, Headerlength, /ID etc. features push the
classifier towards the benign class prediction.

Similarly, we discover another decision rule that specifies
If (Malicecontent > 0.5 and stream <= 24.5 and /XFA >

0.5 and Headerlength <= 52) then Class : Malicious. This
means that if a PDF sample from our dataset contains the
Malicecontent feature with a number of streams less than or
equal to 24.5, as well as the XFA form and its title length less
than or equal to 52, it belongs to the malicious class. Fig. 24
visualizes the decision plot for one of the instances of the
above decision rule where we can notice that Headerlength,
/XFA, Malicecontent, stream etc. features push the classifier
towards the malicious class prediction.

We discovered a total of 230 decision rules from the
illustrated decision tree of the Random Forest classifier that
explains the predictions for detecting PDF malware. Since
our Random Forest classifier has 100 estimators, to further
investigate the decision rules, we generate all the decision
trees of the classifier and derive all the potential decision
rules from the trees. Fig, 25 depicts the number of decision
rules discovered from each of the decision trees originating
from the Random Forest classifier. We identify a total of
23183 decision rules from the 100 estimators of the classifier.
The findings also demonstrate that the maximum number of
decision rules (i.e. 333) is obtained from the tree_index =

53 whereas the minimum number of decision rules (i.e. 162)
is discovered from the tree_index = 07. We observe a mean
of 231.83 with a standard deviation of 34.11 for the number
of decision rules extracted from the decision trees of the
classifier. This implies the average number of decision rules
used by the decision trees is 231, which aids in the Random
Forest classifier’s predictions.

Table 11 and Table 12 present a few important decision
rules for detecting clean andmalicious PDF files respectively,
including the conditions of the rule, the total number of
samples that come within the rules, as well as the right
predictions and the rule’s confidence, which indicates how
frequently the rules are found to be true. Both of these
tables provide a comprehensive explanation that can easily
be interpreted by humans and aid them in identifying clean
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FIGURE 22. A decision tree from one of the estimators of the Random Forest classifier used to detect PDF malware utilizing the final feature set.

FIGURE 23. A sample decision plot of an instance of Benign Class using
SHAP values.

and harmful PDFs. As we look into Table 11, we find that the
first decision rule signifies that if the PDF sample does not
contain any /Javascript and its title length is less or equal to
39.5 then the PDF sample falls into the benign category. This
rule accurately identifies 7154 PDFs from our operational
dataset, suggesting that the rule has 100% confidence. Similar
to the first decision rule, all the other rules of the table can be
explained and interpreted by humans to clearly detect benign
PDFs. Moreover, we find several strong rules (such as Rule
ID 2 to 8) that yield 99% to 100% confidence as well as
cover a wide range of samples for identifying benign PDFs.

FIGURE 24. A sample decision plot of an instance of Malicious Class
using SHAP values.

On the contrary, we find comparatively less effective rules at
the bottom of Table 11 (such as Rule ID 9 to 15) where the
rules yield a confidence level of around 90% to 98% covering
a small number of samples to clearly identify them as clean
files.

Looking at Table 12, we see that in the case of harmful
PDF detection, a far larger number of requirements must
be verified than in the case of benign PDF detection.
Despite the large constraints, we find a few strong rules
(such as Rule ID 1 to 5) that offer nearly 100% confidence
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in recognizing thousands of samples from our operational
dataset as malicious. On the contrary, we identify somewhat
less effective decision rules that only apply to a very tiny
number of samples from our dataset as we carefully examine
the rules from 6 to 10 in the table. Similar to the explanation
indicated in Table 11, the decision rules of Table 12 can
be extensively described and interpreted. For instance, the
first rule of Table12 states that a PDF sample is considered
malicious if it lacks the /XML feature, is not optimized, has a
file size greater than 1.41 kilobytes and less than or equal to
46.52 kilobytes, a title length greater than 39 and less than or
equal to 63, contains a cross-reference table less than or equal
to 1.5 times, and does not have the /CreationDate feature. The
rule correctly identifies 5079 malicious PDF samples from
the dataset.

FIGURE 25. Number of decision rules derived from decision trees of the
random forest classifier.

Similarly, the rest of the decision rules of Table 12 can
be explained and explained and interpreted for recognizing
malicious PDFs. Nevertheless, these crucial decision rules
mentioned in Table 11 and Table 12 can significantly con-
tribute to a clear understanding of humans for categorizing
benign and malicious PDFs.

Finally, to assess this study of PDF malware detection,
we perform a comparison with various existing works of the
same study discipline. Table 13 summarizes this comparative
study, in which our work is evaluated from a variety of
perspectives, including the PDF sample source, the number
of samples considered for the study, PDF labels, PDF analysis
tools, the total number of PDF features considered for the
study, the number of derived features developed for the
analysis, the machine learning model used in the study,
the accuracy observed during the study, and whether the
study provides decision rules and human interpretation.
The authors of [1] described a method that used machine
learning classifiers to evaluate a given PDF both statistically
and interactively to identify the hazardous nature of the
document. They ran their trials on 1200 PDF samples
with PhoneyPDF (a PDF analysis tool) and discovered that
the Random Forest classifier was the best fit to detect
malicious PDFs, with an accuracy of 98.6%. Similarly, the
authors in [33] implemented the Random Forest classifier to
identify malicious PDFs. They only used 1000 PDF samples
in their pilot investigation and employed the PDFiD and

PeePDF PDF analysis tools to extract the potential features
that were critical for the classification task. However, their
suggested strategy provided a maximum accuracy of 97.4%
in completing the task. Besides, the authors in [4] proposed
an approach called O-DT (Optimizable Decision Tree) for
PDF malware detection. The authors utilized a benchmark
dataset to perform their intended experiments and got an
accuracy of 98.84% for the suggested approach. The study
in [46] presented a dataset consisting of 10,025 PDF samples
based on evasive characteristics of PDF files. Moreover, the
authors suggested an ensemble classifier based on stacking
learning which provided 98.69% accuracy to detect PDF
malware. However, we notice that our work outperforms the
existing works presented in Table 13, covering a large number
of PDF samples with the use of three advanced tools for
feature extraction, deriving important features, and utilizing
the power of the Random Forest classifier to achieve a
much better accuracy of 99.24% for detecting PDF malware.
Furthermore, to the best of our knowledge, none of the
research presented in Table 13 gives a thorough human
interpretation of the classifier’s performance by illustrating a
decision tree and identifying decision rules for PDF malware
detection.

V. DISCUSSION
We created a dataset considering the malicious, clean, and
evasive PDFs to detect PDF malware. However, we take
only 792 evasive PDFs which is approximately 5% of
the entire dataset. The intuition of introducing the evasive
PDFs is to reduce the bias of the classifier. Moreover, the
evasive characteristics of the PDFs make the classifier more
robust in the detection of PDF malware. We maintained an
approximately balanced distribution between the benign and
malicious PDFs to overcome the problem of skewness of
the classifier to a particular class. To analyze the PDFs and
extract the useful features, we used three well-known and
highly accurate tools PDFiD, PDFINFO, and PDF-PARSER.
The idea of using these tools is to develop an effective
feature set for PDF malware detection by exploring multiple
efficient tools that ensure the acceptability of the extracted
standard features of the PDFs. Additionally, we derived a
few important features and merged them with the standard
features to generate a merged feature set. We built the final
feature set by generating subsets from the merged feature set
and assessed them utilizing the strength of the classifier.

We performed an in-depth experimental analysis of the
final feature set to explain the traits of the feature set.
We found the title length of the PDF files is crucial,
as malicious files tend to have an unusual length of the title
compared to clean files. Furthermore, metadata and structural
features such as /Producer, /ProcSet, /ID, /CreationDate
etc. are frequently observed inside the clean PDFs and
seldomly found within the harmful ones. Attackers usually
keep fraudulent files as small as possible by restricting the
contents, pages, fonts, and size with the intuition of carrying
out their attacks as swiftly as possible. We discovered that
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TABLE 11. Top decision rules extracted from random forest classifier to detect clean PDF.

cyber criminal’s primary intention is to insert malice-related
contents such as inserting JavaScript code, OpenAction files,
etc. within the structure of the PDFs to harm the victim’s
systems.

We provided an explicit interpretation and explanation of
the classifier’s performance by generating a decision tree
from one of the classifier’s estimators, as well as highlighting
a few critical decision rules for recognizing malicious and
clean PDFs. We discovered some strong decision rules for
recognizing both types of PDFs that provide up to 100%
confidence and can identify a large number of samples;
nevertheless, we noticed a number of rules that require a
significant number of constraints to be verified, making them
somewhat less effective. In addition to that, these weak rules
can accurately identify a small number of samples yet yield
high confidence. However, the decision rules offer a clear
understanding and interpretation of how the features can be
utilized to detect PDF malware.

In this study, we added evasive behaviors to our experimen-
tal dataset to make our classifier more resilient. Nevertheless,

the strength of the classifier can be enhanced to combat
modern advanced attacks more precisely if we can include
more evasive PDF properties through careful inspection.
We extracted characteristics in this experiment using three
tools: PDFiD, PDFINFO, and PDF-PARSER. These tools
while very popular, are known to have vulnerabilities (for
instance, PDFiD tool) to some attacks. One such attack is
known as the parser confusion attack where the fraudulent
material is disguised and concealed using a variety of
approaches to avoid detection while retaining the ability
to execute and exploit. Also, run-time and other dynamic
characteristics may be leveraged to further investigate
questionable documents. We intend to address each of these
constraints in our future work. Additional analysis can be
performed by combining aspects from various parsers and
analysis techniques to investigate complicated content such
as JavaScript code.

Furthermore, the present feature set is derived from three
extraction methods, and the features employed by the three
programs depend on heuristics and insights made by their
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TABLE 12. Top decision rules extracted from random forest classifier to detect malicious PDF.

TABLE 13. Comparision of our work with various existing studies for PDF malware detection.

developers. A greater comprehensive feature set can be
added by incorporating new sources, such as malicious
document generation tools or in-depth study of malicious
PDF documents. One such analysis can be to consider the
internal text of malicious PDFs where the attackers can
hide their harmful code segment behind the text content.
Also, we want to assess the generalizability of our suggested
method against multiple types of PDF malware by investigat-
ing how the model performs against different types of PDF
malware, including newer or more advanced variations. Plus,
we want to implement the proposed method in real-world

scenarios or simulations to justify its practical effectiveness in
identifying various types of PDFmalware. Besides, we intend
to investigate certificateless signcryption [48] and proxy
signcryption [49] as advanced strategies for safeguarding
PDFs which can add additional layers of security for
PDFs that could potentially mitigate the risks posed by
PDF malware and leading the way for future research that
integrates cryptographic techniques with malware detection.
In addition to that, adversarial PDFmalware still poses a great
threat to a secure cyberspace. In the future, to combat such
threats we want to develop a data-driven intelligent approach
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that can tackle adversarial PDF malware effectively. Besides,
we want to publish an additional dataset comprised solely of
evasive PDF samples covering a wide range of approaches to
cyber attacks.

VI. CONCLUSION
In this study, we performed an extensive analysis for
PDF malware detection. For this, we first developed a
comprehensive dataset of 15958 PDF samples by taking into
account the non-malicious, malicious, and evasive natures of
the PDF samples. We also developed a method to generate an
effective and explainable feature set by extracting important
traits from our freshly constructed dataset’s PDF samples
using multiple PDF analysis tools. Further, we also derived
features that are empirically demonstrated to be useful for
classifying PDF malware. We investigated different machine
learning classifiers and highlighted the effectiveness of the
Random Forest model not only for performance comparison
but also for the explainability analysis with generating
decision rules. Moreover, we clarified the behaviors of the
characteristics in charge of detecting PDF malware and
pointed out a few relevant observations that may aid in the
detection of hazardous PDF files. Finally, we compared our
findings to several state-of-the-art research and highlighted
some key observations of our study.
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