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ABSTRACT Multivariate Time Series (MTS) forecasting entails the intricate process of modeling temporal
dependencies within historical data records. Transformers have demonstrated remarkable performance in
MTS forecasting due to their capability to capture long-term dependencies. However, prior work has been
confined to modeling temporal dependencies at either a fixed scale or multiple scales that exponentially
increase (most with base 2). This limitation impedes their capacity to effectively capture diverse
seasonalities. In our study, we present a dimension-invariant embedding technique designed to capture
short-term temporal dependencies. This procedure projects MTS data into a higher-dimensional space while
preserving the original time steps and variable dimensions. Furthermore, we present a novel Multi-scale
Transformer Pyramid Network (MTPNet), specifically designed to capture temporal dependencies at
multiple unconstrained scales effectively. The predictions are inferred frommulti-scale latent representations
obtained from transformers at various scales. Extensive experiments on nine benchmark datasets demonstrate
that the proposed MTPNet outperforms recent state-of-the-art methods. This enhancement in performance
is particularly pronounced in datasets rich in fine-scale information, as it enables MTPNet to effectively
capture awide spectrum of temporal dependencies, ranging fromfine to coarse scales. This finding highlights
MTPNet’s notable potential in analyzing MTS data sampled at the minute level. Code is available at
github.com/MTPNet.

INDEX TERMS Time series forecasting, transformer, multi-scale feature pyramid, value embedding.

I. INTRODUCTION
Multivariate time series (MTS) data, which captures multiple
variables over time, is of critical importance in various
fields including finance, climate, and energy. MTS forecast-
ing, a critical machine learning task, aims to predict the
future values of multiple variables based on their historical
records. TheMTS data inherently demonstrates low semantic
characteristics, necessitating its analysis as a collection of
multiple values. For instance, this involves analyzing values
of multiple variables at a single time step or values of multiple
time steps for a single variable. This approach facilitates
the extraction of two types of information from the MTS
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data: correlations among variables (spatial dependencies) and
correlations across time steps (temporal dependencies).

In recent years, machine learning models [1], [2], notably
transformers [3], have significantly advanced the exploration
of MTS forecasting problems. The pioneering work by [4]
introduced transformers to MTS forecasting, highlighting
their potential in adeptly capturing temporal dependencies.
Consequently, numerous transformer-based methods have
been introduced for the task of MTS forecasting [5], [6],
[7]. A common technique for extracting spatial dependencies
utilizes a linear layer to project the MTS data into a
higher-dimensional space along the spatial dimension. As a
result, the values of variables at a single time step are
represented as a vector in this higher-dimensional space.
As for temporal dependencies, their scales are critical in
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achieving accurate MTS forecasting. However, most existing
methods are confined to capturing temporal dependencies
solely at a single scale. For example, Informer [5] aims to
model temporal dependency between individual time steps
in the time series sequence. Autoformer [6] proposes an
auto-correlation mechanism to capture temporal dependen-
cies among sub-series. PatchTST [7] and Crossformer [8]
introduce a patch procedure that divides each series within the
MTS data into patches of a specific length, enabling the use
of a canonical transformer to model temporal dependencies
at the sub-series level.

Few methods have been proposed to model multi-scale
temporal dependencies. SCINet [9] leverages an SCI-Block,
which employs downsampling techniques to divide the input
sequence into two sub-sequences. This division enables the
extraction of distinctive temporal relations at a coarser scale
by utilizing two convolution neural network (CNN) kernels.
By arranging multiple SCI-Blocks in a hierarchical tree
structure across multiple levels, SCINet models temporal
relations at various scales. MICN [10] also incorporates
downsampling techniques, involving the reduction of the
original MTS data’s resolution. Then, a multi-scale isometric
convolution layer, comprising multiple branches of the local-
global module, processes downsampled MTS data of varying
scale sizes. Pyraformer [11] introduces a pyramidal graph for
modeling MTS data at different resolutions. This pyramidal
graph embodies a tree structure in which each parent node
has several child nodes. The parent nodes summarize the
sub-series of all child nodes. Thus the scale increases
exponentially at the base of the number of child nodes. Cross-
former [8] comprises three transformer encoder-decoder pairs
that aim to capture temporal dependencies within MTS data
at three scales. Crossformer merges the latent representations
from the lower level as input for the next level, leading to a
doubling of the scale as the levels progress.

FIGURE 1. Illustration of the multi-scale mechanisms in baseline
methods and MTPNet.

However, all those methods suffer from a limitation
wherein their multiple scales increase exponentially (most
with base 2) as shown in Figure 1. For instance, beginning
with a seasonality of 1 hour, current methods scale up in
increments of 2 hours, 4 hours, 8 hours, 16 hours, 32 hours,

and so on. Consequently, this approach overlooks the crucial
daily seasonality and potentially other seasonalities that fall
within the one to 24-hour range. Consequently, they may
fail to capture certain scales of temporal dependencies in
MTS data that are crucial for accurate forecasting tasks.
This limitation underscores the importance of developing
more flexible and adaptable approaches capable of effectively
modeling temporal dependencies across a wider range of
arbitrary scales within the MTS data. To address the afore-
mentioned limitations, we propose Multi-scale Transformer
PyramidNetworks (MTPNet) that effectivelymodel temporal
dependencies at multiple unconstrained scales as shown in
Figure 1. TheMTPNet facilitates the setting of scales tailored
to the specific characteristics of MTS data. The contributions
of our work are summarized as follows:

• We propose a dimension invariant (DI) embedding
mechanism that captures short-term temporal dependen-
cies and projects the MTS data into a high-dimensional
space. Notably, this DI embedding technique preserves
both the spatial and temporal dimensions of the MTS
data. The DI embedding technique further partitions the
embedded feature maps along the temporal dimension.
Consequently, it enables the transformer to model
temporal dependencies at a designated scale.

• We propose a multi-scale transformer-based pyramid
that effectively models temporal dependencies across
multiple unconstrained scales, thereby offering the
versatility to capture temporal patterns at various
resolutions. TheMTPNet comprises multiple transform-
ers, each employing the DI embedding with varying
patch sizes, to effectively model multi-scale temporal
dependencies.

• We evaluate the proposedMTPNet using nine real-world
datasets, and the experimental results demonstrate its
superior performance compared to recent state-of-the-
art methods.

II. RELATED WORKS
A. MTS FORECASTING
The primary objective of theMTS forecasting task is to estab-
lish an accurate inference between historical observations
X ∈ RI×D ofD variables within a look-backwindow of I time
steps and future H time steps’ values of Xpred ∈ RH×D. Tra-
ditional statistical methods like ARIMA [12] and exponential
smoothing [13] are confined to forecast univariate time series.
While VAR andVARMA [14] can be extended tomultivariate
time series (MTS) data, their performance diminishes as the
prediction length H increases. Advances in deep learning
have greatly enhanced the development of MTS forecasting.
LSTNet [15] and TPA-LSTM [16] combine CNN and RNN
to capture short-term and long-term temporal dependencies.
MTGNN [17] introduces a graph neural network framework
explicitly designed to model spatial dependencies among
variables in MTS data. While these methods are based on
various neural network architectures, their common objective
is to discover forecasting inferences through iterative weight
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adjustments that minimize the discrepancies between the
forecasts and the ground truth.

B. TRANSFORMERS
Transformers were first developed for natural language
processing [18], [19], [20] and soon achieved great success
in computer vision [21], [22] and MTS forecasting [4],
[5], [6], [7], [8]. The canonical transformer architecture
includes a self-attention mechanism and a feed-forward
network. To enhance the training process, it employs residual
connections [23] and layer normalization [24].
Early studies that applied transformers in MTS forecasting

focused on modeling temporal dependencies at individual
time step resolution. These approaches encountered quadratic
time complexity issues, which impose limitations on the input
length—a crucial factor for MTS forecasting. Informer [5]
proposed ProbSparse self-attention reduced time complexity
to O(n log n) by only calculating a subset of queries. Fed-
former [25] enhanced transformers with Fourier transforms
and Wavelet transforms and achieved linear computational
complexity and memory cost. Several recent studies [7], [8]
have adopted the patch mechanism introduced in ViT [21]
to partition the MTS data into patches, thus facilitating the
transformer’s efficacy in managing extended input sequences
and capturing temporal dependencies at the sub-series
level.

Despite the successful application of transformers in MTS
forecasting, existing methods have limitations in capturing
temporal dependencies at various constrained scales. This can
hinder their ability to effectively capture seasonality patterns
at arbitrary scales.

III. METHOD
A. DECOMPOSITION
We decompose theMTS data into seasonal and trend-cyclical
components following [6], [25], [26]. Given MTS input X ∈

RI×D, the decomposition procedure is as follows:

Xt = mean

(
n∑
i=1

MovingAvg (Padding (X))i

)
Xs = X − Xt (1)

where Xs ∈ RI×D and Xt ∈ RI×D are seasonal and trend-
cyclical components, respectively.

Figure 2 illustrates our proposed framework, incorporating
seasonal and trend models to learn and forecast the seasonal
and trend-cyclical components, respectively. The MTPNet
functions as the seasonal model, while a simple linear layer
is employed as the trend model to infer predictions directly
from historical records. In scenarios where the MTS data
lacks distinct seasonality and trend, we use MTPNet as
the trend model to effectively learn intricate trend-cyclical
components. Finally, the predictions from both the seasonal
and trend models are summed elementwise to derive the final
MTS predictions.

B. TRANSFORMER FEATURE PYRAMID
To address the limitations of a transformer that captures
temporal dependencies solely at a single scale, we propose
a multi-scale transformer pyramid network, as depicted
in Figure 4. The primary objective of the MTPNet is to
capture temporal dependencies across diverse unconstrained
scales, ranging from fine to coarse resolutions. Notably,
the total number of levels, denoted by K , is not fixed
but depends on the array of available patch sizes, where
k = 1, · · · ,K . This hierarchical architecture empowers
MTPNet to model multi-scale representations of the complex
temporal dependencies within the input sequence.
As illustrated in Figure 4, transformers at all levels take

the MTS sequence as input, which is referred to as all-
scale inputs. Note that the decoder inputs are omitted in
Figure 4 for brevity and details are discussed later. The
DI embedding components are distinctive at each level,
as they partition inputMTS data into patches of unconstrained
lengths of pk ∈ {p1, · · · , pK }. Consequently, the multi-level
transformers focus on capturing the temporal dependencies at
scales from fine to coarse.
The inter-scale connections facilitate information flow

between transformers at different levels within the pyramid
architecture. Encoders and decoders are symmetrically struc-
tured, with encoders adopting a bottom-up approach and
decoders following a top-down pattern. This design allows
encoders to progressively learn latent representations from
fine to coarse scales, while decoders generate fine-scale
representations guided by coarse-scale levels. This yields
K latent representations from the feature pyramid. Finally,
a 1-layer CNN generates predictions from the concatenated
K latent representations.

C. DIMENSION INVARIANT EMBEDDING
This section introduces the DI embedding technique and
emphasizes the significance of maintaining both spatial and
temporal dimensions intact. Due to the inherent lack of
semantic information in MTS data compared to words or
images, transformer-based methods for MTS forecasting
commonly group values either along the spatial dimension
(variables) or the temporal dimension (time steps) for further
analysis.
Figure 3 shows the workflow of spatial, temporal, and DI

embedding techniques. The spatial embedding [5] employs a
linear layer to project the values of all variables at a single
time step into an alternately dimensional space (e.g., 64,
128) while preserving the temporal dimension invariant. The
temporal embedding [7], [8] preserves the spatial dimension’s
invariance while employing a linear layer to embed values of
a variable at multiple time steps into a higher-dimensional
space. Both embedding techniques break one dimension of
the MTS data: spatial embedding mixes spatial information,
while temporal embedding restricts the temporal scale.
To avoid these disadvantages, we introduce the DI

embedding technique which utilizes a 1-layer CNN with a
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FIGURE 2. Illustration of the overall framework: Decomposition of MTS data into seasonal and
trend-cyclical components, employing Multi-scale Transformer Pyramid Networks (MTPNet) as the
seasonal model and a linear layer as the trend model. The seasonal and trend predictions are
summed to obtain the final predictions.

FIGURE 3. Illustration of spatial, temporal, and dimension invariant embedding techniques.

kernel size of 3 × 1 to embed the MTS data into feature
maps while preserving both spatial and temporal dimensions
invariant as follows:

Xemb = Conv
(
Xinput

)
(2)

where the Xinput ∈ R1×I×D is either Xs (seasonal) or Xt
(trend), Xemb ∈ Rc×I×D is the embedded feature maps.
The 3× 1 CNN kernel captures local temporal dependencies
while keeping variables independent. The Conv also captures
short-term temporal dependencies.

The DI embedding then applies the Patch procedure to
the embedded inputs, generating patched inputs at scale p as
follows:

Xemb = Patch (Xemb,X0, p) (3)

whereX0 is zero-padding if the length of the time series is not
divisible by the patch size p. The Patch procedure divides the
time series intoN = ⌈I/p⌉ non-overlapping patches of size p,
yieldingXemb ∈ Rc×N×p×D, as shown in Figure 3. In contrast
to Vision Transformers [27], which partition an image across
height and width dimensions, MTS data require division
solely along the time step dimension. Consequently, the
embedded feature maps transformed to N × p along the time
step dimension, diverging from the original total of I time

steps. It is important to note that the dimensions of the feature
map and variables remain unchanged. The DI embedding
enhances forecasting accuracy by enabling the model to learn
temporal dependencies at multiple unconstrained sub-series
levels. This advancement is driven by two primary factors:
firstly, it allows MTS data to be analyzed independently
of variables; secondly, it empowers the model to capture
dependencies among time series patches of varying sizes.
In contrast, spatial embedding techniques limit the model’s
ability to capture temporal dependencies at the individual
time step level and require combining multiple variables.
Temporal embedding typically generates patches of a fixed
size, thus constraining the machine learning model to operate
at either a single scale or at multiple scales that grow
exponentially.

D. TRANSFORMER ENCODER AND DECODER
The MTPNet comprises multiple transformer encoder-
decoder pairs, designed to learn temporal dependencies
at multiple unconstrained scales. Figure 4 illustrates the
detailed computation procedure of one level of the MTP-
Net. The multiple transformer pyramid architecture in our
design overcomes the constraints observed in Informer and
PatchTST, where a single transformer is employed to model
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FIGURE 4. Left: The workflow of a single-level transformer-based encoder-decoder pair. Right: Illustration of the proposed multi-scale transformer
pyramid network (MTPNet).

a singular scale. Existing methods like Crossformer, MICN,
and Pyraformer aim to model scales that grow exponentially
through the concatenation of fine-scale patches to generate
coarse-scale patches. Our proposed MTPNet concatenates
embeddings along the feature dimension, and then each
transformer within the pyramid utilizes DI embedding to
partition the feature embeddings to a designated scale. This
ensures that the scale at each level remains independent,
enhancing the model’s versatility and effectiveness.

We take the k-th level ofMTPNet as an illustrative example
to elaborate on the detailed computation process of the
transformer encoder-decoder pair.

1) ENCODER
The inputXenc ∈ R1×I×D are the same for the encoder at any
level in the MTPNet. The DI embedding at k-th level takes
input MTS data and patch size pk as follows:

Xk
di = DI (Xenc, pk) (4)

where Xk
di ∈ Rc×N k

enc×pk×D represents the embeded and
patched k-th level encoder’s input. Then, the inter-scale
connections concatenate and fuse input embedding Xk

di with
lower level encoder’s output Hk−1

enc as follows:

Xk
emb =

{
Xk
di if k = 1,

Conv
(
Concat

(
Xk
di,H

k−1
enc

))
if k > 1.

(5)

where Concat denote concatenate process along the feature
map dimension (c) and Conv represents 1-layer CNN with
a kernel size of 1 × 1 to fuse and reduce the concatenated
feature map dimension from 2c to c. Note that the numbers
of patches N k

enc and N
k
enc − 1 differ. To address this, we apply

an inverse patch operation to reassemble the patches into a
complete sequence before concatenating them. Subsequently,
we partition the concatenated embeddings into patches of size
pk . To incorporate positional information, we add a learnable
position embedding Wk

pos (denoted pos) to input embedding
as follows:

Xk
emb = Xk

emb + Wk
pos (6)

This step is critical because the inherent nature of the
Transformer architecture is order-agnostic. Therefore, posi-
tional information needs to be incorporated to capture
the temporal dependencies within the input sequence. The
input embedding Xk

emb is split into univariate embeddings.
Therefore, we obtain the transformer encoder’s input Xk,d

emb ∈

Rc×N k
enc×pk×1 which represents the d-th variable.

We employ the canonical transformer encoder [18],
utilizing the scaled dot-product attention mechanism as
follows:

Q,K ,V = Linear
(
Xk,d
emb

)
Attention (Q,K ,V ) = Softmax

(
QKT /

√
dk
)
V (7)

where the Q, K , and V are query, keys, and values embedded
from the input sequence of d-th series of Xk,d

p ∈ Rc×N k
enc×pk .

Note that we flatten the feature map and patch size dimension
of Xk,d

p so that Xk,d
p ∈ RN k

enc×(c×pk ) represents the latent
representations of patches of size pk . We also utilize the
canonical multi-head attention as follows:

Qh,Kh,Vh = Linear (Q,K ,V )h

Hk,d
h = Attention (Qh,Kh,Vh)

Hk,d
enc = Linear

(
Concat

(
Hk

1, · · · ,Hk
h, · · ·

))
(8)

where the Hk,d
enc ∈ Rc×N k

enc×pk is the output of transformer
encoder at level k for d-th series, and the subscript h
indicates the h-th head of multi-head attention. By applying
the encoder to all D series in the MTS data, we obtained
the k-th level’s encoder output Hk

enc ∈ Rc×N k
enc×pk×D.

The transformer encoder also includes normalization layers,
a feed-forward network, and residual connections, details are
available in [18].

The last step of the encoder is skip-connection as follows:

Hk
enc = Hk

enc + Xk
di (9)

where Hk
enc ∈ Rc×N k

enc×pk×D is the output of k-th level
encoder.
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2) DECODER
The decoder’s input Xdec ∈ R(L+H )×D is the concatenation
of the historical records (L time steps) and zero-padding
(H future time steps). Similar to the encoder’s workflow
presented in Equations 4, 5, and 6, the decoder’s input
goes through DI embedding and inter-scale connections to
obtain a patched embedding for the transformer decoder. It is
worth mentioning that the decoder’s inter-scale connections
follow a top-down order, thus the decoder’s output latent
representations flow from coarse-scale to fine-scale. Then a
learnable position embedding (denoted pos) is added to the
input embedding. Consequently, we obtain the transformer
decoder’s input, denoted Xk

dec ∈ Rc×N k
dec×pk×D. The

decoder’s number of patches is N k
dec = ⌈(L + H )/pk⌉.

We also employ the canonical transformer decoder [18],
utilizing the scaled dot-product attention and multi-head
attention presented in Equations 7 and 8. The decoder also
includes normalization layers, a feed-forward network, and
residual connections, as described in [18]. The last step of the
decoder is also a skip connection as presented in Equation 9.
The output of the decoder at k-th level is Hk

dec ∈

Rc×N k
dec×pk×D. To conduct the MTS forecasting task, we only

need the latent representations of future time steps. Therefore,
we only need the lastN k

pred = ⌈H/pk⌉ patches that presenting

future time steps, denoted Hk
dec ∈ Rc×N k

pred×pk×D. At each
level, the latent representations represent the predicted value
using a vector of length c, containing temporal dependencies
at a scale of patch size pk .

E. MULTI-SCALE PREDICTION
Lastly, we concatenate latent representations of all K levels
and generate predictions using a Conv layer as follows:

H = Concat
(
H1
dec, · · · ,HK

dec

)
Xpred = Conv (H) (10)

To concatenate latent representations at different scales,
we apply an inverse patch operation to reassemble patches
into the complete sequence. Subsequently, all K latent repre-
sentations are concatenated, resulting in H ∈ R(K×c)×H×D.
Each predicting future value is represented as a vector of
length K × c, which captures the temporal dependencies at
scales ranging from p1 to pK . The Conv layer project each
vector of length K × c into predicting value, generating
the predictions Xpred ∈ RH×D. The process of inferring
predictions from multi-scale latent representations enables
the effective utilization of temporal dependencies across a
wide range of unconstrained scales, ultimately enhancing
forecasting accuracy.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) DATA
In our experiments, we employed nine benchmark datasets
[6]. These datasets are ETTh1, ETTh2, ETTm1, ETTm2,

Weather, Traffic, Electricity, Exchange-Rate, and ILI, all of
which are publicly accessible. Each dataset encompasses a
range of variables, exhibiting diverse features. The sampling
frequency of these datasets varies substantially, ranging
from every 10 minutes to weekly intervals. This variation
introduces differing degrees of temporal dependencies within
each dataset. A summary of the characteristics of these
nine benchmark datasets, integral for our methodological
evaluation, is presented below:

• ETT1: The Electricity Transformer Temperature (ETT)
is essential for long-term electric power infrastructure
planning. The Informer study [5] compiled data from
two Chinese counties’ electricity transformers, focusing
on seven indicators such as oil temperature and load.
The ETTh1 and ETTh2 datasets feature 17,420 hourly
samples each, while ETTm1 and ETTm2 have 69,680
samples recorded every 15 minutes.

• Traffic2: This dataset, obtained from the California
Department of Transportation, includes road occupancy
rates (0 to 1) from 862 freeway sites in the San Francisco
Bay area, covering over a decade. Lai [15] compiled
hourly data for 48 months (2015-2016), yielding 17,544
samples.

• Electricity3: This dataset from the UCI Machine Learn-
ing Repository features hourly electricity consumption
data for 321 clients from 2012 to 2014, amounting to
26,304 samples.

• Weather4: This dataset includes 21 meteorological
indicators recorded every 10 minutes over a year in
Germany, totaling 52,696 samples.

• Exchange-Rate5: This dataset covers 27 years
(1990-2016) and contains daily exchange rates for eight
major economies: Australia, Britain, Canada, Switzer-
land, China, Japan, New Zealand, and Singapore,
totaling 7,588 samples.

• ILI6: This dataset includes patient data with seven
indicators from 2002 to 2021, sampled weekly, totaling
966 samples, and is distinguished by its unique forecast-
ing horizon setting.

We divided each dataset into training, validation, and test
subsets using a 0.6:0.2:0.2 ratio for the four ETT datasets and
a 0.7:0.1:0.2 ratio for the other five datasets.

2) IMPLEMENTATION DETAILS
For training, we utilize the Adam optimizer and Cosine
Annealing scheduler with an initial learning rate ranging
between 1e − 5 and 1e − 3 and set the batch size to
32 while using L1 loss. The patch sizes of MTPNet are
selected from {4, 6, 8, 12, 24, 32, 48, 96} via grid search.

1https://github.com/zhouhaoyi/ETDataset
2http://pems.dot.ca.gov
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams

20112014
4https://www.bgc-jena.mpg.de/wetter/
5https://github.com/laiguokun/multivariate-time-series-data
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

14736 VOLUME 12, 2024



Y. Zhang et al.: Multi-Scale Transformer Pyramid Networks for MTS Forecasting

The look-back window sizes of MTPNet are selected from
{96, 192, 336, 720} through grid search, except for the ILI
dataset, where it was set to 104. The transformers of
MTPNet consist of 2 encoder layers and 1 decoder layer.
The multi-head attention number is set to 4. The MTPNet
is implemented with PyTorch and runs with an NVIDIA
GeForce RTX 3090 GPU and an NVIDIA RTX A6000 GPU.
The main results are averaged across six runs with distinct
seeds: 1, 2022, 2023, 2024, 2025, and 2026. Additionally,
ablation studies were conducted using seed 1.

3) EVALUATION AND BASELINES
We selected seven state-of-the-art (SOTA) baseline methods
as follows:

• Transformer-based methods: Informer [5], Pyraformer
[11], FEDformer [25], Crossformer [8], PatchTST [7].

• Linear methods: DLinear [26].
• CNN methods: MICN [10].

We obtained the results of DLinear, Pyraformer, Fed-
former, and Informer from Dlinear [26]. The results for
PatchTST and Crossformer were obtained from the original
paper. In cases where results are not available, we conducted
experiments using the optimal hyperparameters as presented
in the original papers. In particular, for a fair comparison,
we did not fix the input length to 96, as recent studies [7],
[8], [26] have highlighted the significance of optimal input
lengths for method performance.

We employed Mean Squared Error (MSE) and Mean
Absolute Error (MAE) as quantitative metrics for assessing
forecasting accuracy. These measures are consistently used
across all baseline methods, providing a standardized basis
for comparison and evaluation. Consequently, the results of
the baseline methods presented in the experiments represent
their respective best performances.

B. MAIN RESULTS
Table 1 shows the main experimental results of all methods
for nine datasets on MSE and MAE, where the best and
second-best results for each case (dataset, horizon, and
metric) are highlighted in bold and underlined, respec-
tively. The MTPNet outperforms SOTA baseline methods,
achieving 45 best results and 19 second-best results out
of 72 cases. MTPNet achieves a modest enhancement in
accuracy when compared with the best existing method,
PatchTST. Compared to DLinear, which raised questions
about the effectiveness of transformers in MTS forecasting,
MTPNet demonstrates a reduction of 7.04% in MSE
and 8.56% in MAE. Notably, PatchTST and Dlinear are
limited to modeling temporal dependencies at a fixed scale.
In contrast, the implementation of a multi-scale transformer
pyramid architecture in our proposed MTPNet has enhanced
forecasting accuracy. This highlights the efficacy of modeling
multi-scale temporal dependencies in predictive tasks.

Compared to methods that model temporal dependencies
across multiple scales that exponentially increase, MTPNet

significantly enhances forecasting accuracy. In comparison
with MICN, MTPNet exhibited a performance enhancement
of 19.53% in MSE and 16.72% in MAE. Against Cross-
former, it achieved noteworthy reductions in MSE and MAE,
averaging 39.84% and 30.32%, respectively. Additionally,
MTPNet demonstrates a substantial decrease in MSE and
MAE by 64.35% and 51.63%, showcasing its efficacy.
These findings highlight the critical role of effectively
modeling unconstrained multi-scale temporal dependencies
in forecasting tasks.

The MTPNet, designed to model temporal dependencies
from fine to coarse scales, exhibits increased proficiency
with datasets containing high-frequency information (e.g.,
sampled every 10 minutes). Consequently, MTPNet achieved
the best results in 22 out of 24 cases for datasets like
ETTm1 (15 minutes), ETTm2 (15 minutes), and Weather
(10 minutes). Conversely, MTPNet’s performance was
marginally surpassed by PatchTST and Dlinear in the
Exchange (1 day) and ILI (1 week) datasets. This is attributed
to the lack of fine-scale information in these particular
datasets. We conclude that MTPNet exhibits advantages
in forecasting datasets that encompass rich information
spanning from fine to coarse scales. It is worth noting that
the average standard deviations of MTPNet across all cases,
with six different random seeds, are 0.036 and 0.009 for MSE
and MAE, respectively, demonstrating its robustness against
randomness.

C. ABLATION STUDY
1) HOW IMPORTANT IS DI EMBEDDING?
Table 2 presents a comparison of DI embedding with spatial
embedding and temporal embedding. The mechanisms of
spatial and temporal embedding are illustrated in Figure 3.
The DI embedding consistently outperformed the spatial
embedding mechanism. For the horizon of 96, the MSE and
MAE values of the spatial embedding were 9.09% and 5.6%
higher, respectively, compared to the DI embedding. The
performance gap increased further for the horizon of 720,
with the spatial embedding showing 32.11% higher MSE and
12.95% higher MAE compared to the DI embedding. The
temporal embedding slightly degrades the MSE and MAE
values for ETTh1, ETTm1, and Weather datasets by 3.9%
and 3.8%, respectively. Notably, the temporal embedding
achieved the best performance for the Exchange-Rate dataset.
We conjecture that this is because the Exchange-Rate dataset
inherently exhibits less temporal dependence. In conclusion,
our findings demonstrate that DI embedding outperforms
both spatial and temporal embeddings. Furthermore, break-
ing the dimensionality of MTS data leads to a degradation in
performance.

2) HOW IMPORTANT IS MULTI-SCALE TEMPORAL
DEPENDENCY LEARNING?
To evaluate the effectiveness of multi-scale temporal
dependency learning, we present experimental results of
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TABLE 1. Quantitative evaluation (MSE/MAE) of state-of-the-art multivariate time series forecasting methods on nine datasets. The forecasting horizons
include 24, 36, 48, 96 for the ILI dataset, and 96, 192, 336, 720 for the others. Bold results indicate the best performance while underlined results
represent the second-best performance.

TABLE 2. Multivariate time series forecasting results of MTPNet with
three embedding mechanisms: dimension invariant embedding, spatial
embedding, and temporal embedding.

single-scale MTPNet of coarse (large patch size) and fine
(small patch size) in Table 3. Both modifications performed
worse than themulti-scale design. Specifically,MTPNet-Fine
exhibited a more substantial performance drop thanMTPNet-
Coarse, showing the challenge of capturing meaningful
temporal dependencies from a small number of time steps due
to time series data’s naturally low semantic characteristics.
Furthermore, the multi-scale transformer pyramid archi-
tecture consistently outperformed individual fixed scales.

This observation emphasizes the critical importance of the
multi-scale transformer pyramid design in the context ofMTS
forecasting.

3) HOW IMPORTANT ARE INTER-SCALE CONNECTIONS?
We modified the MTPNet by removing the inter-scale
connections, resulting in no information flow between
multiple levels. Each transformer level now receives input
solely from the embedded input sequence patches of fixed
scale. The results are presented in Table 3 as ‘‘w/o inter-
scale.’’ Surprisingly, the performance of MTPNet without
inter-scale connections was even improved by a trivial
amount. We conjecture that this improvement may be due to
time series data’s naturally low semantic characteristics. As a
result, MTS forecasting doesn’t require latent representation
flow between levels to extract high semantic information.

4) HOW IMPORTANT ARE INPUTS FOR ALL SCALES?
The ‘‘w/o inter-scale’’ column in Table 3 presents the
results of MTPNet without the inputs for all levels. In this
configuration, transformers, except for the first level, only
take the latent representation from the previous level as input.
The performance ofMTPNet without all scale inputs dropped
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TABLE 3. The ablation study results of MTPNet’s pyramid structure.

FIGURE 5. The forecasting results in terms of MAE for different look-back window sizes at horizons 96 and 720.

for ETTh1 and ETTm1 datasets when the forecasting horizon
was 720 and for both horizons of Weather and Exchange-
Rate datasets. The latent representations from the lower
level are grounded in a different temporal scale. In contrast,
the direct MTS data input integrates a DI embedding
component, patching input at the specific scale of the current
level. As the forecasting horizon increases, the task grows
more challenging, emphasizing the greater significance of
direct input. From the experiments, we conclude that direct
MTS data input is critical for more challenging forecasting
scenarios.

5) TOP-DOWN VS. BOTTOM-UP
The ‘‘bottom-up’’ column in Table 3 shows the results of
MTPNet with a modification where the top-down latent
representation flow in decoders is replaced with a bottom-
up approach. This reversal in information flow means

that each transformer decoder’s input is a fusion of the
input sequence and the latent representation of the lower
layer (finer scale). This modification only degrades the
performance of the Exchange-Rate dataset. It is worth noting
that MTPNet generates predictions by utilizing a Conv layer
to project from the latent representations of all K levels.
Thus, the information from all temporal scales is utilized
when generating predictions. This finding indicates that both
information flow from coarse to fine and from fine to coarse
can enhance forecasting accuracy.

6) HOW DOES THE LOOK-BACK WINDOW LENGTH AFFECT
THE PERFORMANCE?
The size of the input sequence plays a crucial role in
MTS forecasting as it determines the amount of historical
information that can be utilized. Theoretically, an extended
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input sequence is expected to enhance forecasting accuracy
as it encompasses a greater volume of information. However,
recent studies [7], [26] have shown that this assumption
does not always hold. Figure 5 illustrates the effect of the
input sequence length on the forecasting accuracy. For both
horizons, no method consistently benefits from a longer
input sequence across all four datasets. In most cases,
a method reaches an optimal input sequence length, and
its performance degrades when the input sequence becomes
longer. Notably, for the Exchange-Rate dataset, a shorter
input sequence appears to be optimal for most methods.
We attribute this to the inherently low temporal dependency in
this dataset. In conclusion, the optimal input sequence length
varies depending on the dataset and forecasting horizon.

V. CONCLUSION
Time series data often exhibit various scales of seasonality,
and these temporal dependencies are crucial for accurate
forecasting tasks. In this study, we proposed a multi-scale
transformer-based pyramid network for MTS forecasting.
The proposed MTPNet tackles the complexity of model-
ing temporal dependencies across either a fixed scale or
constrained multi-scales. The overall framework initially
decomposes MTS data into seasonal and trend components.
A linear layer is employed to directly generate predictions
for the trend component from its historical data. In parallel,
MTPNet is employed to model temporal dependencies and
generate predictions for the seasonal component. The DI
embedding procedure is utilized to segment the time series
sequence into patches, where the size of each patch varies
according to the level. Subsequently, MTPNet leverages mul-
tiple transformers to capture temporal dependencies across
a range of unconstrained scales. These multi-scale latent
representations are subsequently concatenated, followed by
the application of a CNN layer to generate predictions for
the seasonal component. The final predictions are derived
by summing the predictions of the seasonal and trend com-
ponents in an element-wise manner. Extensive experimental
results demonstrate that MTPNet outperforms existing state-
of-the-art methods, particularly those that aim to address
the multi-scale temporal dependency issue. Moving forward,
we intend to further develop a sparse attention mechanism as
a substitute for the canonical attention mechanism. We aim
to decrease the computational complexity from quadratic
to linear by enabling each query to attend to a limited
number of highly correlated keys. We are committed to
further developing an application that employs our proposed
methods to visualize meteorological MTS data in the Lake
Tahoe region. This application aims to forecast critical events,
including snowstorms, icy road conditions, and wildfires.

ACKNOWLEDGMENT
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES
[1] W. Zheng and J. Hu, ‘‘Multivariate time series prediction based on temporal

change information learning method,’’ IEEE Trans. Neural Netw. Learn.
Syst., pp. 1–15, Jan. 2022.

[2] T. Y. Lin, P. Dollàr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 2117–2125.

[3] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun,
‘‘Transformers in time series: A survey,’’ in Proc. 32nd Int. Joint Conf.
Artif. Intell., Aug. 2023, pp. 1–8.

[4] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan,
Enhancing Locality Breaking Memory Bottleneck Transformer Time Ser.
Forecasting. Red Hook, NY, USA: Curran Associates, 2019.

[5] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
‘‘Informer: Beyond efficient transformer for long sequence time-series
forecasting,’’ in Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, 2021,
pp. 11106–11115.

[6] H. Wu, J. Xu, J. Wang, and M. Long, ‘‘Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2021.

[7] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, ‘‘A time series is
worth 64 words: Long-term forecasting with transformers,’’ in Int. Conf.
Learn. Represent., 2023.

[8] Y. Zhang and J. Yan, ‘‘Crossformer: Transformer utilizing cross-dimension
dependency for multivariate time series forecasting,’’ in Proc. Int. Conf.
Learn. Represent., 2023.

[9] M. Liu, A. Zeng,M. Chen, Z. Xu, Q. Lai, L.Ma, andQ. Xu, ‘‘SCINet: Time
series modeling and forecasting with sample convolution and interaction,’’
in Proc. 36th Conf. Neural Inf. Process. Syst. (NeurIPS), 2022.

[10] H.Wang, J. Peng, F. Huang, J. Wang, J. Chen, and Y. Xiao, ‘‘MICN:Multi-
scale local and global context modeling for long-term series forecasting,’’
Tech. Rep., 2023.

[11] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar,
‘‘Pyraformer: Low-complexity pyramidal attention for long-range time
series modeling and forecasting,’’ in Proc. Int. Conf. Learn. Represent.,
2022.

[12] G. E. Box and G. M. Jenkins, ‘‘Some recent advances in forecasting and
control,’’ J. Roy. Stat. Soc., Ser. C, Appl. Statist., vol. 17, no. 2, pp. 91–109,
1968.

[13] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting
With Exponential Smoothing: State Space Approach. Cham, Switzerland:
Springer, 2008.

[14] L. Kilian and H. Lütkepohl, Structural Vector Autoregressive Analysis.
Cambridge, U.K.: Cambridge Univ. Press, 2017.

[15] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, ‘‘Modeling long-and short-term
temporal patterns with deep neural networks,’’ inProc. Int. ACMConf. Res.
Devel. Inf. Retrieval (SIGIR), 2018, pp. 95–104.

[16] S.-Y. Shih, F.-K. Sun, and H.-Y. Lee, ‘‘Temporal pattern attention for
multivariate time series forecasting,’’ Mach. Learn., vol. 108, nos. 8–9,
pp. 1421–1441, Sep. 2019.

[17] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, ‘‘Connecting
the dots: Multivariate time series forecasting with graph neural networks,’’
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you
need,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates,
2017, pp. 1–15. [Online]. Available: https://proceedings.neurips.
cc/paperfiles/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf

[19] S. Bano and S. Khalid, ‘‘BERT-based extractive text summarization of
scholarly articles: A novel architecture,’’ in Proc. Int. Conf. Artif. Intell.
Things (ICAIoT), Dec. 2022, pp. 1–5.

[20] S. Bano, S. Khalid, N. M. Tairan, H. Shah, and H. A. Khattak,
‘‘Summarization of scholarly articles using BERT and BiGRU: Deep
learning-based extractive approach,’’ J. King Saud Univ. Comput. Inf. Sci.,
vol. 35, no. 9, Oct. 2023, Art. no. 101739.

[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words:
Transformers for image recognition at scale,’’ in Proc. ICLR, 2021.

14740 VOLUME 12, 2024



Y. Zhang et al.: Multi-Scale Transformer Pyramid Networks for MTS Forecasting

[22] W. Wang, ‘‘Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 568–578.

[23] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[24] J. L. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’
Tech. Rep., 2016.

[25] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, ‘‘FEDformer:
Frequency enhanced decomposed transformer for long-term series fore-
casting,’’ in Proc. 39th Int. Conf. Mach. Learn. (ICML), 2022.

[26] A. Zeng, M. Chen, L. Zhang, and Q. Xu, ‘‘Are transformers effective for
time series forecasting?’’ Tech. Rep., 2023.

[27] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words:
Transformers for image recognition at scale,’’ 2020, arXiv:2010.11929.

YIFAN ZHANG received the bachelor’s degree
in automation from Huainan Normal University,
China, in 2016, and the master’s degree in control
science and engineering from the Nanjing Uni-
versity of Aeronautics and Astronautics, China,
in 2019. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and
Engineering, University of Nevada at Reno, Reno,
NV, USA. His research interests include machine
learning, time series data analysis, and computer
vision.

RUI WU (Member, IEEE) received the bache-
lor’s degree in computer science and technology
from Jilin University, China, in 2013, and the
master’s and Ph.D. degrees in computer science
and engineering from the University of Nevada
at Reno, Reno, NV, USA, in 2015 and 2018,
respectively. He is currently an Assistant Profes-
sor with the Department of Computer Science,
East Carolina University, and collaborates with
geological and hydrological scientists to protect

ecological systems. His main research interests includemachine learning and
data visualization using AR/VR devices.

SERGIU M. DASCALU (Member, IEEE) received
the master’s degree in automatic control and
computers from the Politehnica University of
Bucharest, Romania, in 1982, and the Ph.D. degree
in computer science from Dalhousie University,
Canada, in 2001. In July 2022, he joined the
Department of Computer Science and Engineer-
ing, University of Nevada at Reno (UNR), Reno,
NV, USA, as a Professor. At UNR, he is also the
Director of the Software Engineering Laboratory

(SOELA) and the Co-Director of the Cyberinfrastructure Laboratory (CIL).
Since joining UNR, he has worked on research projects funded by federal
agencies (NSF, NASA, DoD-ONR) as well as the industry. He has
advised 11 Ph.D. and more than 50 master’s students. He is a Senior Member
of ACM. He received several awards, including the 2009 Nevada Center
for Entrepreneurship Faculty Advisor Award, the 2011 UNR Outstanding
Undergraduate Research Faculty Mentor Award, the 2011 UNR Donald
Tibbitts Distinguished Teacher of the Year Award, the 2014 CoEN Faculty
Excellence Award, and the 2019 UNR Vada Trimble Outstanding Graduate
Mentor Award.

FREDERICK C. HARRIS JR. received the B.S.
and M.S. degrees in mathematics and educa-
tional administration from Bob Jones University,
Greenville, SC, USA, in 1986 and 1988, respec-
tively, and the M.S. and Ph.D. degrees in computer
science from Clemson University, Clemson, SC,
USA, in 1991 and 1994, respectively.

He is currently the Associate Dean of Research
with the College of Engineering, a Foundation Pro-
fessor with the Department of Computer Science

and Engineering, and the Director of the High Performance Computation
and Visualization Laboratory, University of Nevada at Reno (UNR). Since
joining UNR, he has worked on research projects funded by federal agencies
(NSF, NASA, DARPA, ONR, DoD) as well as industry. He is also the Nevada
State EPSCoR Director and the Project Director of Nevada NSF EPSCoR.
He has published more than 300 peer-reviewed journals and conference
papers along with several book chapters. He edited or co-edited 15 books.
He has 14 Ph.D. students and 84 M.S. thesis students finished under his
supervision. His research interests include parallel computation, simulation,
computer graphics, and virtual reality. He is a Senior Member of ACM and
the International Society for Computers and their Applications (ISCA).

VOLUME 12, 2024 14741


