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ABSTRACT The advent of the Internet of Medical Things (IoMT) devices has led to a healthcare
revolution, introducing a new era of smart applications driven by Artificial Intelligence (AI). These
advanced technologies have greatly influenced the healthcare industry and have played a crucial role
in enhancing the quality of life globally. Federated Learning (FL) has become popular as a technique
to create models that can be shared universally using the vast datasets collected from IoMT devices
while maintaining data privacy. However, the complex variations in IoMT environments, including diverse
devices, data characteristics, and model complexities, create challenges for the straightforward application
of traditional FL methods. Consequently, it is not well-suited for deployment in such contexts. This
paper introduces FedCure, a personalized FL framework tailored for intelligent IoMT-based healthcare
applications operating within a cloud-edge architecture. FedCure is adept at addressing the challenges within
IoMT environments by employing personalized FL techniques that can effectively mitigate the impact of
heterogeneity. Furthermore, the integration of edge computing technology enhances processing speed and
minimizes latency in intelligent IoMT applications. Lastly, this research showcases several case studies
encompassing IoMT-based applications, such as Eye Retinopathy Detection, Diabetes Monitoring, Maternal
Health, Remote Health Monitoring, and Human Activity Recognition. These case studies provide a means
to assess the effectiveness of the proposed FedCure framework and showcase exceptional performance
with accuracy and minimal communication overhead, especially in addressing the challenges posed by
heterogeneity.

INDEX TERMS Federated learning, edge computing, digital healthcare, Internet of Medical Things (IoMT).

I. INTRODUCTION
The Internet of Medical Things (IoMT) is a rapidly evolving
field that has captured the interest of researchers in machine
learning (ML) and healthcare technology for more than
a decade [1]. IoMT is a transformative paradigm within
healthcare, leveraging interconnected medical devices to
enhance patient care, streamline medical processes, and drive
innovation in healthcare solutions [2]. This convergence
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of technology and medicine has ushered in significant
advancements in the digital healthcare landscape [3]. IoMT’s
impact within the healthcare sector is profound, driven by
many interconnected devices and systems that revolutionize
patient care and medical processes [4]. These functions
encompass data collection, real-timemonitoring, diagnostics,
treatment, and disease management. IoMT has empowered
individuals by granting them greater access to medical
data, fostering patient empowerment and proactive healthcare
management [3]. One pivotal aspect of IoMT’s transforma-
tive power lies in medical data management and analysis.
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The vast volume of healthcare data generated by IoMT
devices, including remote monitoring equipment, wearable
fitness trackers, and intelligent medical devices, presents
a wealth of valuable information [5]. ML algorithms are
at the core of the Internet of Medical Things (IoMT) and
have been instrumental in analyzing and interpreting the
massive amounts of data generated by it. One of the key areas
where IoMT-driven ML models have been successful is in
medical image segmentation. These models can accurately
identify and outline structures within medical images, which
is useful in diagnosing and planning treatments for medical
conditions [5]. These models also demonstrate impressive
capabilities in disease classification, facilitating the rapid
and accurate categorization of ailments based on symptom
profiles and patient data. Additionally, IoMT aids in disease
detection, enabling early diagnosis and intervention, ulti-
mately enhancing patient outcomes [4]. There are significant
challenges when it comes to using AI to train patient data,
such as data privacy and distributed data learning. In order
to train models, patient data needs to be shared, which
raises concerns about privacy. Regulations like GDPR [6]
and HIPAA [7] ensure secure handling of data, but can
also lead to fragmentation of data, making it difficult to
share and train AI models. Another challenge lies in the
distributed nature of IoMT data. It originates from diverse
sensors and devices, typically not centralized. Consequently,
data from various hospitals and servers must be trained in a
distributed manner. These data sources often exhibit distinct
patterns or distributions, further complicating the learning
process [8]. These challenges form the backdrop against
which this research seeks to contribute.

To address this challenge, Federated Learning (FL) offers
an evolved solution [9]. FL presents a sophisticated mecha-
nism for the collaborative training of a high-caliber shared
model. This collaborative approach involves aggregating
locally computed updates contributed by IoMT devices.
A major benefit of this methodology is its capability to
separate the model training process from direct access to
training data. Essentially, FL empowers the creation of a
dependable global model while upholding the utmost privacy
of user data. However, it is crucial to acknowledge that
the intricate nature of IoMT environments poses significant
impediments to the seamless integration of FL, rendering its
direct implementation in IoMT applications a challenging
endeavor. The main challenges using FL in complex IoMT
environments are data, device, and model heterogeneity [10].
First, the data heterogeneity arises due to IoMT devices
collecting various health data, such as heart rate or blood
pulse, resulting in distinct data patterns influenced by
individual habits. Second, the devices differ in storage,
processing power, and communication abilities, complicating
data management. Lastly, diverse devices require unique
models to suit their specific applications; for instance, some
may only support basic models due to limited resources, lead-
ing to communication and performance issues. Traditional
FL methods often encounter difficulties addressing these

challenges when applied to collaborative learning in IoMT
networks. While researchers have put in a lot of effort to deal
with the problem of heterogeneity by suggesting the result
of a global model that combines knowledge from all devices
involved, this approach falls short in preserving the unique
information from each device [9], [11], [12]. Consequently,
it leads to a decline in performance when making predictions
or classifications. Yet, traditional FL methods operate under
the assumption of ample data and resources at the edge,
a condition often unmet in real-world situations, particularly
within IoMT-based healthcare networks. For instance, con-
sidering the issue of data heterogeneity, some hospitals have
more sensitive patient information, while others have mostly
normal data. This discrepancy creates ‘‘data partitions with
non-identical distribution’’ [13].

To address these heterogeneity challenges effectively,
a promising approach involves implementing personalization
at the device, data, and model levels. This strategy helps
alleviate disparities and achieve high-quality personalized
models tailored to each device. Recently, there’s been
growing interest in Personalized FL. Researchers have
suggested these frameworks to address the issue of data
differences [14], [15], [16]. However, there haven’t been
many experiments on healthcare applications with IoMT
networks with diverse data, so there’s room for more research
in this area.

This paper delved into examining emerging personalized
FL approaches. It proposed FedCure, a cloud-edge-based
framework for personalized FL offering promising solutions
to address various heterogeneity challenges within complex
IoMT environments. These techniques hold significant
potential for enabling the development of intelligent IoMT
applications. Edge computing allows IoMT devices to
delegate computationally intensive learning tasks to the edge,
resulting in fast processing and minimal latency despite
device heterogeneity. This framework adopted different
personalized FL approaches at the device level to deploy
customizedmodels tailored to specific application needs. The
suggested framework underwent evaluation through various
case studies involving IoMT applications, such as Human
Activity Recognition, Eye Retinopathy Classification, Fit-
ness Tracking, Diabetic Prediction, and Mental Health
Analysis. The outcomes highlight remarkable performance in
terms of accuracy with minimal communication overhead.

The main contribution of this paper is outlined below:
• Proposed FedCure: a cloud-edge-based personalized
FL framework for Intelligent healthcare applications in
complex IoMT environments.

• Data heterogeneity: FedCure addresses challenges stem-
ming from data and model heterogeneity by imple-
menting various personalization techniques at the device
level, facilitating the deployment of customized models
tailored to specific requirements.

• Device heterogeneity: Additionally, to mitigate issues
related to device heterogeneity, the framework incor-
porates computational offloading techniques using
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edge computing, ensuring efficient processing and
optimization.

• Performance & Evaluation: Testing the proposed frame-
work on various IoMT-based healthcare application use
cases, it outperformed in handling heterogeneity issues
in complex IoMT environments.

The paper adheres to a specific structure, as outlined
below. In the upcoming section II, the paper delves into
the primary challenges of implementing FL in IoMT
environments. To tackle these challenges, the proposed work
introduces a personalized FL framework based on a cloud-
edge architecture, as detailed in Section III. Various emerging
personalization solutions are explored within this section.
Subsequently, in Section V, the paper presents a study
encompassing different case scenarios and evaluates the
efficacy of personalized FL methods through practical case
studies. Finally, the concluding remarks on the proposedwork
are provided in Section VI.

II. BACKGROUND AND MOTIVATION
In this section, a detailed exploration will be under-
taken to examine the various applications of FL-based
healthcare technologies to improve patient outcomes. Addi-
tionally, we will address the intricacies of implementing
these solutions within complex IoMT environments, where
challenges arise due to varying data distributions, learn-
ing tasks, communication complexities, and computational
issues.

A. FL-IOMT BASED HEALTHCARE
In modern healthcare applications, IoMT systems play an
integral role. These systems are multifaceted and designed
to perform various functions, including data acquisition
and local storage, communication with other devices, data
processing, analysis, and global data storage, as elucidated
by Gupta et al. [17]. Khowaja et al. [1] contribution
in healthcare is underscored by their ability to provide
real-time patient monitoring, facilitate remote diagnostics,
and ultimately enhance patient outcomes. However, this
domain has challenges as IoMT systems grapple with inter-
operability, security, mobility, standardization, and licensing
issues. These challenges have driven research and inno-
vation, yielding various solutions to safeguard sensitive
medical data. Prominent among these solutions are cutting-
edge technologies, including Blockchain, Access Control
models, and Homomorphic Encryption, as outlined by
Ahmed et al. [18].

FL emerges as a promising approach to tackle some
of these IoMT challenges. FL [9] operates by collabo-
ratively harnessing data from numerous mobile devices
worldwide. This collaborative approach holds great potential
for enhancing the efficiency and security of IoMT systems
while rigorously safeguarding the privacy and integrity
of medical data. Nevertheless, the intricacies of IoMT,
such as device heterogeneity, can introduce its challenges,

including communication bottlenecks, straggler problems,
and faulty nodes [18]. Notable IoMT frameworks have been
developed to address specific healthcare needs. For instance,
MyWear [19] employs smart garments to monitor patient
vitals and predict heart failure risk continuously. In contrast,
iLog [20] identifies food intake and stress levels through an
innovative IoMT solution.

Several frameworks and architectures have been pro-
posed in the realm of healthcare technology. One example
is FedHome [21], aimed at in-home health monitoring,
utilizing a generative convolutional autoencoder (GCAE).
Alzubi et al. [22] introduced a cloud-based and blockchain-
enabled FL architecture to preserve the privacy of electronic
health records. Additionally, Lu et al. [23] proposed a
personalized FL system catering to the distinct data dis-
tributions of clients. Despite the notable advancements in
FL-based systems within the IoMT context, challenges still
impact the effectiveness of healthcare services. These include
addressing issues like sparse data, diverse user behavior, and
system heterogeneity, which have not been comprehensively
explored in existing literature. Moreover, it is essential to
highlight that previous research efforts are yet to create
a personalized FL-enabled heterogeneous IoMT system
tailored specifically for healthcare applications.

B. CHALLENGES OF USING FL IN HETEROGENEOUS
IOMT ENVIRONMENTS
IoMT environments require an IoMT-oriented FL framework.
The existing FL works are not derived from genuine IoMT
devices, which makes it vital to bridge the gap by developing
an IoMT-oriented FL framework. The main challenge is
that healthcare data comes from various sources, leading
to heterogeneity. In a supervised task, when training a
model with user data distribution represented as Pi(x, y),
x usually signifies the input features or attributes of the
data. Meanwhile, y represents the corresponding class labels
or target variable. It is crucial to recognize that data
collected from different devices may not conform to the same
distribution pattern because of varying environments. User
data can exhibit differences in several aspects, including the
distribution of features, assignment of labels, and shifts in
underlying concepts [24]. This complicates the optimization
process and increases the risk of straggler clients. In an
IoMT-equipped healthcare setting, patients can access diverse
data and health parameters. Training AI models on data
from a single hospital or clinic can introduce bias. Smaller
healthcare clinics may have limited Electronic Health
Record (EHR) data, leading to data sparsity. Nonetheless,
it is worth noting that FL methods are typically evalu-
ated using compact datasets with restricted characteristics
[25], [26].

Using IoMT devices from different vendors with varying
hardware, software, and training platforms presents signif-
icant challenges to FL. These challenges include problems
with data communication due to the heterogeneity of data
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characteristics and dimensions, leading to discreteness in
local data storage formats [17]. An effective FL framework
for IoMT should be able to adjust to these various sources
of diversity to enhance performance. In an FL environment,
slow or expensive connections, offline devices, and devices
with limited computing capacity can become a communica-
tion constraint, causing participating devices to drop out due
to poor connectivity and energy constraints [27]. Therefore,
addressing the communication and computation issues of
heterogeneous devices in the FL-based IoMT environment
is crucial. FL uses customized models tailored to individual
devices, leading to model heterogeneity. Within IoMT,
diverse devices aim to construct adaptable models driven
by the distinctive requirements of their application envi-
ronments and limitations in available resources. However,
privacy concerns prevent model sharing, leading to different
model architectures that cannot be naively aggregated using
traditional FL [28]. This can manifest in different ways,
such as varying neural network architectures, optimization
techniques, or learning rates. Managing heterogeneity is
crucial for efficient collaboration and success in diverse
environments [26].

AI-based IoMT is a rapidly growing technology used
in complex healthcare environments to monitor individuals.
However, since this technology involves collecting sensitive
patient data, it is necessary to encrypt the data before
transmitting it to central servers to ensure privacy. Sending
these healthcare data over networks can be inefficient and
incur substantial costs. Additionally, training healthcare
data solely on individual devices can lead to accuracy
challenges [29]. To address these concerns, an FL approach
is used, which involves conducting local data training and
transmitting only the trained models to central servers. This
approach helps to address accuracy and privacy issues.
Conventional FL techniques might not be well-suited for
devices with limited resources operating in the heterogeneous
IoMT settings, marked by diverse data types and distributions
among edge devices. FL can be used to extract common
knowledge from all devices and create a high-quality global
model. Nonetheless, it falls short of capturing individualized
information, leading to a decline in inference quality.
In the complex landscape of IoMT applications, achieving
universal consensus among devices for a shared model is
impractical. Each edge device holds valuable and sensitive
information crucial in IoMT-based healthcare applications.
Challenges in IoMT environments arise from data and device
issues, hindering the collaborative development of intelligent
applications while ensuring data privacy. Conventional FL
approaches often fall short in efficiently addressing these
challenges. Our research is driven by the goal of preserving
all critical information within complex healthcare settings by
involving all IoMT devices in the FL process. Our primary
focus is on tackling the data and device heterogeneity present
in IoMT networks, a challenge inadequately handled by
standard FL methods.

III. PERSONALIZED FL FRAMEWORK FOR
HETEROGENEOUS IOMT ENVIRONMENTS
In the complex IoMT network landscape, interconnectivity
spans a vast ecosystem. This intricate network seamlessly
links cloud servers, various hospital medical research
labs, mobile health application servers, and numerous
healthcare organizations. Each healthcare entity employs
many IoMT devices within this extensive infrastructure,
generating diverse heterogeneous data. The difficulty arises
because each IoMT device is uniquely configured w.r.t data
processing capabilities and capacity, resulting in a highly
intricate data environment. The conventional FL approach
faces substantial obstacles when dealing with this unprece-
dented heterogeneity. Device heterogeneity, stemming from
differences in data generation and transmission capabilities,
introduces a layer of complexity that traditional FL struggles
to address. Statistical heterogeneity arises from the varied
data distributions in healthcare entities and research labs,
further complicating the FL process. Additionally, model
heterogeneity, driven by the differing configurations of
IoMT devices, adds another layer of intricacy. Consequently,
a global FL model may not perform optimally across a
multifaceted environment. A compelling solution to address
these heterogeneity issues is personalization. By tailoring
learning models to the unique characteristics of each IoMT
device, cloud server, or healthcare organization, we can
effectively manage the complexity of data distributions,
device capabilities, and network structures. In this context,
personalization becomes a pivotal strategy for enhancing data
analysis and processing efficiency and accuracy within the
IoMT network. Advanced FL techniques enable personalized
models for IoMT devices with resource constraints while
facilitating collective knowledge sharing. The need for
adaptable and personalized models becomes self-evident
within the intricate IoMT ecosystem characterized by diverse
devices and complex data landscapes. These personalized
models can be fine-tuned to cater to the specific demands
of each device, thereby ensuring the optimal utilization
of resources and superior performance. By integrating the
principles of FL, the network can effectively coordinate
these personalized models and promote collaboration among
devices, allowing them to pool their knowledge resources
while maintaining their unique models. This synergistic
approach, combining advanced FL methods with personal-
ized modeling, promises to enable the IoMT network to
navigate the challenges of device heterogeneity, statistical
disparities, and model variations. It provides the framework
for a data-driven collaborative environment where each
component can flourishwhile significantly contributing to the
collaborative learning pool. This paper introduces a tailored
FL framework designed for intelligent IoMT applications,
with the primary goal of comprehensively tackling the
challenges posed by heterogeneity.

In the depicted scenario, Figure 1 illustrates a complex
IoMT-based healthcare environment structured into three
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FIGURE 1. FedCure framework.

distinct layers: cloud, edge, and IoMT devices. This frame-
work is designed to facilitate the development of intelligent
healthcare applications while maintaining data privacy by
transmitting data to a centralized server. In the proposed
FedCure framework, a FL server is situated in the cloud layer,
is responsible for coordinating the model training process and
consolidating model updates from different sources. The sec-
ond layer, termed the ‘edge layer,’ is purpose-built to provide
data processing capabilities close to the data sources. This
layer comprises different healthcare servers, each serving a
range of healthcare institutions and organizations, ensuring
efficient data processing. Each healthcare edge server is
connected to different IoMT devices, which generate various
types of distributed data. Finally, the third layer, known as
the ‘IoMT layer,’ encompasses various healthcare devices.
These devices are taskedwith collecting and transmitting data
related to healthcare andmedical parameters, making them an
indispensable component of the overall ecosystem.

In the proposed intelligent IoMT ecosystem, in order to
enable efficient computation and alleviate the computational
load on IoMT devices, the architecture allows these devices
to offload their computational tasks and data to trusted
healthcare edge servers via network connections. This
strategy enables IoMT devices to harness the computational
capabilities offered by edge servers, guaranteeing the ful-
fillment of requirements for high processing efficiency and
minimal latency in healthcare applications. Additionally, this

strategy maintains data privacy and security while enhancing
the overall performance of intelligent healthcare systems
in order to facilitate collaborative learning by using FL.
With this method, edge servers, the distant cloud, and IoMT
devices jointly train a global model. This maintains the
privacy of sensitive data on individual devices while tailoring
the learning model to each device’s unique capabilities.

In the proposed framework, collaborative learning occurs
in three stages: offloading, learning, and model personal-
ization. These stages solve heterogeneity issues in complex
IoMT network-based intelligent applications. In the offload-
ing stage, IoMT devices from hospitals and healthcare
organizations collaborate to train edge models in our
healthcare ecosystem. Devices with limited computational
resources offload their tasks and data to edge servers for
collective model training [30]. The global loss function is
expressed as:

F(w) =
1

|D|

∑
i∈D

fi(w) (1)

where the dataset size is denoted by |D|, the global loss is
represented by F(w), and the specific loss for each data point
i is denoted by fi(w). Finding the ideal model variablesw∗ that
minimize this global loss is the main goal, and this is defined
as:

w∗
= argmin

w
F(w) (2)
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In addition to this objective, the system delay encompasses
data offloading and model training delays. Data offloading
delay TEL takes in accounts for bandwidth B, transmission
power pk , channel gain gk , and more. The model delay
includes server computationW and CPU frequency es, where
W = Ne · CD. Here, Ne is the number of epochs, CD is the
number of CPU cycles needed for 1-bit data, and D is the
dataset.

During the learning phase, all participants, edge servers,
and devices independently conduct updates based on their
respective local datasets. Each participant exclusively sends
their model parameters to the central server during this
process. Following this, the server combines these newly
updated parameters to create a global model, which is then
shared with the participants for subsequent local updates.
Before aggregating these parameters, each participant may
undertake one or more training epochs as part of their local
update phase, commonly called a ‘communication round.’
For a specific participant indexed as k , the loss function is
represented as follows:

Fk (wk ) =
1

|Dk |

∑
i∈Dk

fi(wk ) (3)

In this context, wk represents the local model parameter
specific to client k . Following the principles outlined in the
FedAvg algorithm [9], the global model parameter is defined
as:

w =
1
D

∑
k∈K

Dkwk (4)

This iterative process continues until convergence is
achieved. After obtaining a high-quality global model, it is
transmitted back to clients for further personalization.

The personalization stage is a way to balance inter-client
collaboration and individual performance. Standard FL uses
a global model for all clients without personalization.
Nevertheless, this method may prove less effective when
client data distributions are not uniform. Each client trains
its model in a local learning setting, resulting in a fully
personalized model for each client θk . The objective in
this setup is to optimize and fine-tune their model without
considering inputs or contributions from other clients.

min
θ1,...,θk∈Rd

F(θ ) =
1

|Dk |

∑
i∈Dk

fi(θk ) (5)

Here, θk ∈ Rd signifies the local model parameters
unique to client k . Nevertheless, this method may not
attain optimal generalization performance. Personalized FL
approaches strike a balance between conventional FL and
local learning settings. They enable clients to collaborate and
share knowledge while delivering personalized outcomes for
each client.

Another pressing issue emerges in the complex IoMT
network, where device diversity and computational lim-
itations create hurdles. It pertains to the varied data

characteristics - differing in distribution, quality, and quan-
tity, and often not adhering to the standard IID (independently
and identically distributed) pattern. Non-IID data can also
exhibit label and feature imbalances, adding complexity.
Furthermore, data on each node follows distinct distributions
with varying data points. Managing and utilizing these
various data may be difficult due to the possibility of
an underlying structure connecting these nodes and their
data patterns. To tackle these complexities, this paper
introduces the FedCure framework. It uses edge computing to
improve the capabilities of individual devices by offloading
computations addressing straggling. Additionally, we reduce
the communication workload by aggregating local models at
the edge server. FedCure’s adaptability allows it to seamlessly
incorporate various personalized federatedmethods, enabling
the exchange of diverse model information between edge
devices and the cloud. These strategies aim to streamline
data processing and sharing, mitigating heterogeneity and
complexity within the IoMT network. FedCure is ideal for
large-scale practical healthcare applications in the IoMT
field.

IV. PERSONALIZED FEDERATED LEARNING
(PFL) APPROACHES
This section examined and provided detailed insights into
various essential personalized FL methods that can be
seamlessly combined with the FedCure framework in the
context of intelligent IoMT applications.

A. HYPERNETWROKS BASED PFL
Hypernetworks (HN) [31] are neural networks capable of
generating weights and architectures for other networks.
They find their application in various ML fields. HNs play
a vital role in adapting and generating target networks based
on the input data. Due to their versatility, HNs are especially
useful for creating diverse personalized models.

To tackle the pFL challenge, a novel strategy called
Personalised Federated Hypernetworks (pFedHN) [32] has
been proposed. This approach utilizes hypernetworks, deep
neural networks that generate the weights for another network
based on their input. Hypernetworks are unique because they
can learn multiple target networks simultaneously, allowing
them to adapt to various specific needs. This makes them a
promising tool in personalized FL and can be represented by
equation 5. The updated pFL objective with HN is shown
below:

min
ϕ,v1,...,vn

F(θ ) =
1

|Dk |

∑
i∈Dk

fi (h (vi; ϕ)) (6)

where, h (vi; ϕ) is model-size independent, allowing any
hyper-network size to enhance overall performance. Hyper-
network updates are achieved through gradient chain rule
calculations as below.

∇ϕ fi =
(
∇ϕθi

)T
∇θi fi (7)
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To optimize θi and vi, calculated ∇θi fi and ∇ϕθi, respec-
tively. The local client uses its training samples to optimize
θi, determined by vi and shared ϕ. This maintains uniqueness
and enables parameter sharing without any contradictory
local updates. This method trains a unified Heterogeneous
Network (HN) model to generate a series of models, each
tailored for an individual client. As you can see in Figure 2,
this architecture allows for the sharing of parameters across
clients while still being able to generate distinct and varied
individual models.

FIGURE 2. Personalized federated learning using hypernetwork
framework in FedCure.

B. META-LEARNING BASED PFL
Meta-learning, or ‘‘learning to learn,’’ improves learning
by exposing the algorithm to various tasks. Optimization-
basedmeta-learning algorithms are particularly useful as they
can generalize and adapt quickly to new tasks. They are
model-agnostic, making them applicable for supervised and
reinforcement learning [33].

Federated Meta-Learning is an innovative approach com-
bining FL and meta-learning principles to create highly
personalized models for complex IoMT-based applications.
In the context of IoMT networks, where diverse medical
devices generate data with varying characteristics and
follow unique data distributions, Federated Meta-Learning
capitalizes on meta-learning to craft personalized models for
individual devices. This process involves learning the unique
characteristics of each device’s data patterns and how they
behave over time. Furthermore, Federated Meta-Learning
facilitates knowledge transfer by training models on one
device and adapting them to others with similar data patterns,
thus building personalized models for devices with limited
local data. IoMT environments can be optimized for edge
computing to reduce the computational load and ensure
scalability across various healthcare applications [26].

Per-FedAvg [15] an innovative method inspired by the
popular FedAvg approach. Per-FedAvg is uniquely designed
to address the pFL problem.

min
w∈Rd

F(w) :=
1

|Dk |

∑
i∈Dk

fi (w− α∇fi(w)) , (8)

During each round of FedAvg, a certain number of users
are chosen, and their models are updated through multiple
gradient descent steps. On the other hand, Per-FedAvg
also involves selecting users. However, the focus is on
personalizing the solution for the equationmentioned in 8. It’s
worth noting that this equation can be considered an average
of individual ‘‘meta-functions,’’ each linked to a specific
user. These meta-functions are defined to adapt models to
their respective data and loss functions. This personalized
approach improves the effectiveness of FL, especially in
environments like the IoMT. Compared to the Federated
Transfer Learning strategy, the Federated Meta Learning
approach is more difficult to deploy since it frequently uses
complex training algorithms. On the other hand, Federated
Meta Learning produces a more reliable model, which can be
especially helpful for devices with small data sets.

C. REGULARIZATION BASED PFL
ML models are susceptible to overfitting, resulting in
subpar performance when confronted with new, unseen data.
Regularization techniques are frequently employed to combat
this challenge during the model training process. In FL,
a distributed learning paradigm where data is distributed
across diverse devices, regularization can be harnessed to
control the influence of local updates on the global model.
This, in turn, enhances the stability of convergence and
the overall generalization of the global model, ultimately
yielding improved personalized models.

Each client device in FL has its own local data and
model parameters. To update the global model, these local
models need to be combined to minimize a global objective
function. Typically, each client minimizes its local objective
function, a function of its local model parameters and data.
However, this can lead to overfitting, especially when the
local data is limited or noisy. Regularization can be applied
to the local objective functions to prevent overfitting and
improve generalization. Specifically, each client minimizes
the following regularized objective function:

min
θ∈Rd

hk (θ;w) := fk (θ ) + lreg(θ;w) (9)

Here, fk (θ ) is the local objective function of client k .
The regularization term lreg(θ;w) penalizes complex models
and encourages simpler models that generalize better. This
function is contingent on the model parameters θ and the
global model parameters w. Regularisation of the local
objective functions makes it possible to limit the impact of
local updates on the global model, improving convergence
stability and strengthening the global model’s ability to
generalize. For a visual representation, please refer to
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FIGURE 3. Personalized federated learning via regularization in FedCure.

Figure 3, which provides an overview of achieving model
personalization through regularizing local losses.

Recently, a novel approach known as MOON (Minimizing
Weight Divergence and Optimizing for Fast Convergence
in FL) has emerged within the field of FL [34]. The main
goal of MOON is to reduce the difference between the
global model and the learned representations of local models.
It does this by focusing on weight divergence, a metric that
measures the difference in weights between local and global
models. Beyond minimizing weight divergence, MOON also
prioritizes expediting the convergence process in FL. To this
end, the difference between the representations learned by a
particular local model and its prior iteration is amplified. This
incentivizes the localmodel to learn enhanced representations
and progress from its prior version, thus accelerating the
learning trajectory. MOON boasts multiple advantages,
starting with each client’s ability to acquire a representation
that closely aligns with the global model, thereby reducing
local model discrepancies. Additionally, it stimulates local
models to learn more refined representations compared to
their earlier versions, resulting in a faster learning process.
Overall, the MOON approach can potentially enhance the
efficiency and effectiveness of FL, rendering it a more
proficient technique for a wide array of machine-learning
tasks. Regularization can be applied in various ways in
FL, depending on the type of regularization used and the
optimization algorithm used to solve the global objective
function [33]. L1 and L2 regularisation, dropout, and early
halting are a few regularisation strategies applied in FL.

Regularisation inside FL can improve the performance of
the global model and, in the end, lead to the development
of more customized models for each client device. Utilizing
the similarity between model representations is the core idea
behind MOON regarding IoMT edge devices, hospitals, and
medical facilities working together with a cloud-based FL

server. This is done to improve each entity’s local training
procedures.

D. MULTI-TASK LEARNING BASED PFL
Multi-task learning is a powerful technique in IoMT-based
healthcare applications to address statistical heterogeneity
and foster relationship modeling among devices. This
approach allows models to learn from different data
sources simultaneously, making them highly adaptable to
the heterogeneity of IoMT data. Additionally, it aids in
identifying underlying relationships between clients, making
it a powerful tool for personalization. With the help of multi-
task learning, we can learn several tasks simultaneously,
utilizing the shared knowledge to enhance our performance
on each task. FL aims to create a shared model across IoMT
devices. Conversely, federated multi-task learning focuses
on distinct tasks across various devices and seeks to unveil
inherent model relationships while safeguarding privacy. This
approach allows each device’s model to gain insights from
the information gleaned from other devices, resulting in a
device-specific model that is consistently personalized to suit
the unique characteristics of each device.

Figure 4 shows that Federated multi-task learning uses
model parameters from the edge and IoMT devices to give the
cloud server insights into the relationships between different
tasks. Afterward, any device can modify its parameters based
on its information and the current relationships between
the models. This collaborative approach empowers health-
care devices to collectively train local models, effectively
addressing statistical differences and creating high-quality
personalized models.

FIGURE 4. Multi-task federated learning for FedCure.

FedAMP [35] represents an innovative FL framework
designed to foster cooperation among clients who share
similar data distributions. This architecture creates and
maintains a customized cloud model on the central server
for each client, which is put together by linearly combining
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local models. The customer receives the customized cloud
model for localized training at the end of each communication
cycle. The local model’s weights are obtained by optimizing
a certain objective function, as explained in the source.

θ∗
k = arg min

θ∈Rd
fk (θ ) +

µ

2α
||θ − uk ||2 (10)

Here, α represents the step size of the gradient descent.
FedAMP’s unique approach ensures more personalized
and effective model training, promoting stronger client
collaboration. It can improve FL systems’ performance,
particularly among clients with similar data distributions.
This paper adopted MOCHA [36], a distributed optimization
method used in complex IoMT network-based healthcare
applications. MOCHA optimizes communication efficiency,
reduces communication rounds, and minimizes the impact
of stragglers. Furthermore, it introduces an asynchronous
updating approach and demonstrates resilience in fault
tolerance issues. Nevertheless, the conventional federated
multi-task learning approach encounters certain constraints
in IoMT scenarios due to the inherent device disparities.
Exploring cluster-based federated multi-task learning could
offer a promising avenue for future research in this domain.

E. MODEL INTERPOLATION BASED PFL
Model Interpolation is an advanced technique used in per-
sonalized FL [37]. This technique balances personalization
and generalization, as shown in Figure 5. This is achieved by
blending a client’s local model, represented by Medge, with a
global model shared across all clients, represented byMserver
and Pm denoted as a personalized model. A parameter called
λ is used to adjust the degree of personalization. When λ is
set close to 1, the combined model leans heavily towards the
local model, emphasizing the uniqueness of the client’s data.
Conversely, when λ approaches 0, the influence of the global
model dominates, emphasizing the common patterns shared
across all clients.

Pm = λ ·Medge + (1 − λ) ·Mserver (11)

FL is an efficient approach that can be integrated
into healthcare applications. It maintains communication
cost and security levels while training a single model.
In IoMT environments, patient data is distributed across
various healthcare providers and medical devices. FL can be
used along with model interpolation to create personalized
healthcare models for individual patients to ensure privacy
and data security. FL faces the challenge of combining global
and local models while adapting to unique communication
constraints. The APFL algorithm introduces a dynamically
learned mixing parameter for each client. In contrast,
the HeteroFL framework trains local models with diverse
complexities while operating based on a single global model.
A practical and resource-efficient approach for implementing
model interpolation in FL utilizes the Bagging algorithm to
combine multiple models and enhance generalization [38].

FIGURE 5. Model interpolation-based Personalized federated learning for
FedCure.

They use shallow neural networks as basic learners to min-
imize computing resources and communication bandwidth
requirements. The approach enables information exchange
among various client clusters and achieves personalized
FL. The proposed approach is promising for enhancing FL
in scenarios with resource constraints and heterogeneous
data distributions. These tools empower the development
of tailored and effective healthcare solutions that respect
each client’s distinct characteristics and constraints. FL and
model interpolation are powerful techniques that can create
personalized healthcare models while preserving data privacy
and security.

F. KNOWLEDGE DISTILLATION BASED PFL
In IoMT environments, entities like hospitals, research
institutions, and IoMT devices face unique challenges when
engaged in FL. Unlike traditional FL, healthcare and medical
research participants possess the capacity and inclination to
develop their own distinct ML model due to data privacy and
intellectual property concerns. The heterogeneity of models
in IoMT environments presents a challenge to conventional
FL practices, requiring a focus on accommodating diverse
model architectures while deriving collective insights from
their data. The variety of models involved in the process can
create difficulties for regular FL, posing new challenges that
must be addressed.

Knowledge Distillation (KD) [39] is a popular method for
transferring valuable insights from a set of teacher models
to a more lightweight student model in FL. KD typically
involves representing knowledge as class scores. There
are four principal architectures for FL-based knowledge
distillation. The client-centric approach focuses on distilling
knowledge independently to each FL client, enabling them
to refine their personalized models by assimilating collective
wisdom from the teachermodels. The server-centric approach
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directs the knowledge distillation process toward bolstering
the central FL server’s model by incorporating insights
from the teacher models. Bidirectional knowledge distillation
facilitates knowledge exchange between clients and the server
to enhance the FL ecosystem comprehensively. Lastly, inter-
client knowledge distillation promotes collaborative learning
among FL clients, where they mutually share and trans-
fer knowledge, fostering cooperative model enhancement.
These distinct KD strategies are pivotal in advancing the
effectiveness and resilience of FL models tailored to diverse
applications and use cases.

To tackle the issue of model heterogeneity in FL,
clients can train multiple models utilizing their private data
through KD [40]. This procedure calculates a consensus
using a public dataset’s average class ratings. Every client
uses its private dataset to fine-tune its model after each
communication round, using the public datasets with the
latest consensus. Using the combined expertise of other
clients, this method allows each client to receive a customized
model. Additionally, FedGen [41], presents a framework for
data-free distillation that uses a generative model trained
on the FL server to provide FL clients with knowledge.
Clients utilize this knowledge as an inductive bias to
generate augmented representations and regulate their local
learning process. Additionally, the FedDF algorithm [42]
acknowledges that edge clients may require different model
architectures due to their varying processing capacities. Here,
the FL server creates multiple distinct prototype models.
Cross-architecture learning is facilitated through ensemble
distillation, employing an unlabeled public dataset to train
each student model. KD proves to be a versatile technique for
bidirectional exchanges, enhancing FL in diverse contexts.
He et al. [8] proposed FedGKT, which uses bidirectional
distillation and alternating lowering to train tiny edge models
and a bigger server model. This optimizes computing by
moving the computational load from edge clients to the more
potent FL server. By controlling its local loss, this technique is
a distributed algorithm for on-device learning that continually
updates the client’s model weights. By sharing information
with nearby FL clients in the network, this cyclical process
facilitates distributed and collaborative learning and speeds
up model learning. Participants in IoMT-based healthcare
applications can effectively address issues resulting from het-
erogeneousmodel architectures by implementing Knowledge
Distillation. With this approach, participants can use high-
performance, personalized machine-learning models tailored
to their particular operational and data requirements. As a
result, it improves healthcare decision-making, facilitates
medical research, and improves patient care.

V. CASE STUDY
This section discusses various use cases tested, the datasets
utilized, and the pFL approaches supported, all within
different heterogeneity settings. This analysis is conducted
using the proposed framework, FedCure. The experiments
considered the use case of diabetes monitoring, remote

health monitoring, maternal healthcare, eye retinopathy
classification, and Human Activity Recognition (HAR) with
publicly available datasets.

Table 1 provides a comprehensive summary of the FedCure
framework’s compatibility with various pFL approaches and
algorithms in the context of distinct healthcare datasets.
FL Approaches lists different FL strategies specifically
designed for various healthcare use cases. pFL Algorithms
introduce pFL algorithms customized to meet the unique
requirements of different healthcare applications. These
algorithms allow for personalized model training within the
FedCure framework. The rest of the table represents various
healthcare datasets, such as Diabetes,1 Body Performance,2

Maternal Health,3 OCT Images,4 UCIHAR,5 and PAMAP2.6

For each dataset, the table indicates whether the associated FL
approach or pFL algorithm is supported by displaying ‘‘Yes’’
or ‘‘No.’’

A. DATASETS AND IMPLEMENTATION DETAILS
The datasets used in this study form the backbone of various
healthcare applications, each tailored to address specific
healthcare challenges. They are pivotal for conducting
experiments using FedCure with different healthcare use
cases. Table 2 shows the datasets and their relevance within
the context of specific healthcare applications. <Diabetes
Dataset> Diabetes Monitoring: This dataset, curated for
diabetes monitoring, encompasses 769 samples with eight
attributes. It focuses on a binary classification task related
to diabetes. In the FL experiments, 20 clients contributed
their data, reflecting real-world healthcare scenarios. <Body
Performance Dataset> Remote Health Monitoring (RHM):
The body performance dataset is employed for RHM,
a sample size of 13,394 samples with eleven attributes.
It covers a classification problem with four distinct classes.
Similar to the diabetes dataset, 20 clients are involved,
mirroring remote health monitoring situations. <Mater-
nal Health Datase> (Maternal Health Care): Specifically
designed for maternal health care, this dataset consists of
1,015 samples and six attributes. It tackles a three-class
classification problem and, once again, involves 20 clients
in the FL process. <OCT Image Dataset> (Eye Retinopathy
Classification): Eye retinopathy classification hinges on a
remarkable scale dataset comprising 84,495 samples, with
images at 256 × 256 pixel resolution. The task involves
classifying retinopathy into four categories. Here, 10 clients
partake in FL experiments. <UCI HAR Dataset> (Human
Activity Recognition): With a dataset of 10,299 samples,
the HAR dataset includes nine attributes for recognizing
human activities across six categories. This dataset leverages

1https://www.kaggle.com/datasets/mathchi/diabetes-data-set
2https://www.kaggle.com/datasets/kukuroo3/body-performance-data
3https://www.kaggle.com/datasets/csafrit2/maternal-health-risk-data
4https://www.kaggle.com/datasets/paultimothymooney/kermany2018/
5https://archive.ics.uci.edu/dataset/240/human+activity+recognition
6https://archive.ics.uci.edu/dataset/231/pamap2+physical+activity+

monitoring
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TABLE 1. FedCure supported datasets and pFL approaches.

TABLE 2. Details about datasets used.

TABLE 3. FedCure supported heterogeneity setting.

18 clients in the FL process. <PAMAP2 Dataset> (Human
Activity Recognition): Another dataset for HAR, PAMAP2,
contains 15,012 samples. It presents nine attributes, classify-
ing activities into 12 unique categories. In this FL setup, nine
clients actively participate. In order to assess the effectiveness
of the FedCure framework, it is crucial to carefully divide
all datasets into separate training and testing sets. The
recommended approach involves assigning 80% of the data
for training purposes while setting aside the remaining
20% for evaluating the model’s ability to generalize. These
datasets are crucial for training and evaluating Federated
Learning (FL) models, with each dataset serving a unique
purpose in healthcare applications. Collectively, they reflect
the diversity and intricacy of real-world healthcare data,
making them indispensable resources for developing and
evaluating FL solutions within the healthcare domain.

Table 3 demonstrates how FedCure is adaptable and
robust in addressing real-world challenges by presenting the
various heterogeneity settings explored in the framework.
FedCure is designed to handle diverse data and system
heterogeneity scenarios, ensuring its effectiveness across
practical applications. To address data heterogeneity issues,

FedCure considers two distinct situations: pathological
non-IID and practical non-IID scenarios, each reflecting
unique challenges. In the pathological non-IID scenario,
the individual clients’ data is characterized by an extreme
form of non-IID distribution, such as clients possessing
data with only a specific subset of labels, even though
the complete dataset encompasses a broader spectrum of
categories. In contrast, in the practical non-IID scenario,
FedCure uses the Dirichlet distribution [12] to simulate
realistic non-IID data in healthcare applications, effectively
modeling variations in data distribution across different
clients. FedCure addresses different key factors, including
the struggler effect, slow learners, and slow senders, all
contributing to the dynamic nature of FL in healthcare
applications. FedCure employs a dropout rate to address the
struggler effect, where selected clients are randomly dropped
at each training round. Clients designated as ‘‘slow trainers’’
persistently train at a slower pace than their peers, while
clients identified as ‘‘slow senders’’ consistently make their
data slower. These measures ensure FedCure adapts and
manages the varying system heterogeneity within healthcare
FL. FedCure’s adaptability across these diverse settings
underscores its efficacy in addressing the complexity of
healthcare-related FL.

The comprehensive overview of the models utilized for
different case studies is detailed below. For the diabetes
dataset, a Logistic Regression model is employed, taking
8 attributes as input and generating a binary output using
a softmax activation function. In the case of the maternal
health dataset, a Deep Neural Network (DNN) architecture
is adopted, consisting of one input layer with 6 neurons,
one hidden layer with 20 neurons, and an output layer with
3 neurons. The body performance dataset also utilizes a DNN
with a similar architecture, featuring one input layer with
11 neurons, one hidden layer with 20 neurons, and an output
layer with 4 neurons. These DNN models employ softmax
activation at the output layer and categorical cross-entropy
as the loss function. On the other hand, a more complex
Custom Convolutional Neural Network (CNN) is designed
for the OCT Images dataset. It incorporates two convolutional
layers with distinct hyperparameters and max-pooling layers
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with specific stride lengths. Three fully connected layers are
also included, where the output layer consists of 4 classes
for classification. The first convolution layer consists of
3 input channels, 16 output channels, kernel size 5, and the
second convolution layer is defined as a 16 input channels,
32 output channels, kernel size 5. These tailored models
are crafted to address the unique characteristics of each
dataset, ensuring optimal performance for their respective
tasks. For the HAR dataset, a CNN architecture has been
implemented. This architecture consists of two convolutional
layers. The first convolution layer uses hyperparameters
with input channels set to 9, output channels to 32, and a
kernel size of (1,9), and applies the Rectified Linear Unit
(ReLU) activation function. A max-pooling layer with a
kernel size of (1,2) and a stride of 2 is employed. The second
convolution layer has hyperparameters: input channels 32,
output channels 64, kernel size is (1,9), and ReLU activation.
Again, a max-pooling layer follows with the same kernel
size and stride. The fully connected layers in this network
consist of an input layer with 1664 neurons, two hidden layers
with 1024 and 512 neurons, and an output layer with six
neurons to classify the six different activities. Similarly, for
the PAMAP2 dataset, a CNN architecture is adopted. This
architecture mirrors the HAR model with two convolutional
layers, max-pooling layers, and fully connected layers.
However, the PAMAP2 dataset’s CNN differs in terms of the
input layer configuration, which consists of 3712 neurons,
and it has an output layer with 12 neurons, corresponding
to the 12 different classes for classification. These CNN
architectures are specifically designed to capture and classify
patterns in sensor data from the respective datasets for
activities and action recognition.

B. EXPERIMENTS RESULTS AND ANALYSIS
This work conducted experiments on five different case stud-
ies, namely Diabetes monitoring, Human Activity Recog-
nition, Eye Retinopathy Classification, Remote Healthcare,
and Maternal health monitoring. These case studies utilized
different sizes of datasets with two types of heterogeneity
settings: pathological non-IID unbalanced and practical non-
IID unbalanced. The experiments were simulated multiple
times to ensure a fair study. Accuracy is a fundamental
metric that measures the overall correctness of the model
predictions. In the context of intelligent IoMT applications,
accuracy provides a clear indication of how well FedCure is
able to correctly classify instances. This metric is essential
for evaluating the general efficacy of the model in making
accurate predictions across different tasks. The results
were compared with centralized, traditional FL, and pFL
approaches. The centralized approach involved using a single
system with complete data. On the other hand, in the FL
approach, each application case study divided the data set
into different clients, as mentioned in Table 2. Five different
approaches were adopted for personalized FL, as shown in
Table 1. In the pFL approach, individual clients could tailor
their models to suit their needs. Notably, clients also had the

option to delegate their learning tasks from their devices to
nearby edge computing resources, like an edge server located
in the hospital. The proposed FedCure framework allows
for swift and efficient computation. Furthermore, practical
device heterogeneity like client dropout, slow sender, and
slow learner was also included in the experiments, as shown
in Tables 2 and 3. This helped to create a more realistic
and practical scenario, as these types of heterogeneities are
common in real-world applications.

In the context of the Diabetes Monitoring case study and
Remote Health monitoring, we evaluated the experiment’s
performance under two different data heterogeneity settings
involving 20 clients. In real-world IoMT-based FL healthcare
applications, it’s common for clients not to participate
in every communication round. To mimic this scenario,
we conducted experiments to assess the effectiveness of
our proposed FedCure framework. This framework supports
a client dropout ratio of 20%, and in another scenario,
10% of clients are slower learners and slower data senders.
Our experiments spanned 2,500 communication rounds and
contained the traditional FL (FedAvg) approach and various
personalized pFL approaches supported by FedCure. These
pFL approaches included KD, Multi-Task, Regularization,
and Meta-Learning-based methods. Remarkably, the results
highlighted the superior performance of pFL approaches over
traditional FL (FedAvg) in the face of both heterogeneous
environmental settings and observed in Diabetes Monitoring,
pFL approach KD (FedProto) even below the performance
of traditional FL. It’s essential to emphasize that different
application case studies demand tailored approaches, as there
isn’t a one-size-fits-all solution in pFL. Among these
approaches, themulti-task-based pFL approach demonstrated
the highest accuracy in pathological and practical non-IID
unbalanced settings of the Diabetes Monitoring case study,
as illustrated in Figure 6. In Remote Health Monitoring,
all pFL approaches perform well, as shown in Figure 7.
This outcome holds significant implications for guiding
the development of IoMT-based FL healthcare applications,
showing that a thoughtful choice of pFL strategy can yield
substantial benefits in real-world healthcare scenarios.

In the Maternal Health monitoring case study, we main-
tained consistency with the experimental approach employed
in the Diabetes and Remote Health Monitoring studies. With
a group of 20 clients, we executed 2,500 communication
rounds, utilizing pathological and practical unbalanced
non-IID data for our investigations. This uniformity in
our experimental setup allowed us to draw meaningful
comparisons and comprehensively evaluate our methodolo-
gies. Figure 8 illustrates how various approaches perform
regarding accuracy. These experiments reaffirmed that pFL
approaches outperform traditional FL in handling the diverse
environments encountered in IoMT data-based applications.
In the case of pathological non-IID data distributions,
we noticed significant fluctuations in the learning process.
This signifies that data on different clients exhibits variations
in quality, quantity, and distribution, impacting the learning
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FIGURE 6. Accuracy vs. communications rounds of diabetes monitoring case study.

FIGURE 7. Accuracy vs. communications rounds of remote health monitoring case study.

FIGURE 8. Accuracy vs. communications rounds of maternal health monitoring case study.

process at each round of FL in practical IoMT-based
environments. As the number of communication rounds
increases, the model’s learning improves. Still, it is worth
noting that in the KD-based pFL algorithm, FedProto’s

performance tends to decline, mirroring our findings in
the Diabetes monitoring case study. On the other hand,
in practical non-IID settings, all pFL approaches prove to be
more effective than traditional FL approaches.
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FIGURE 9. Accuracy vs. communications rounds of har case study.

FIGURE 10. Accuracy vs. Communications rounds of HAR (PAMP2) case
study.

In the HAR case study, we employed twowidely accessible
datasets. We maintained the same device heterogeneity
settings as those used in the aforementioned case studies.
We examined the UCI HAR dataset in both pathological
and practical non-IID data contexts, involving 18 clients.
For the PAMAP2 dataset, we tested only the practical
non-IID data setting with 9 clients due to data quantity
considerations. This case study provides further compelling
evidence of the superior performance of pFL approaches
compared to traditional FL methods. Figure 9 illustrates
the accuracy of the UCI HAR dataset, where KD-based
pFL notably outperforms other approaches. It’s important
to note that while KD-based pFL excels in this setting,
it exhibited decreased performance in other case studies,
highlighting the need for different approaches in varying
heterogeneous environments. This study underscores the
importance of adapting to different pFL approaches to
train optimal models. The proposed FedCure framework
offers flexibility texpanding these experiments to encompass
a broader range of scenarios and applications would be
valuable training. Figure 10 showcases the performance
accuracy of the PAMAP2 dataset in a pathological non-IID

FIGURE 11. Performance analysis of eye retinopathy classification using
hypernetwroks.

unbalanced data setting. Collectively, these case studies
emphasize the versatility and effectiveness of pFL in
addressing heterogeneity issues within FL across diverse
healthcare applications. In the context of Eye Retinopathy
Classification, we worked with an image dataset that
underlines the effectiveness of pFL approaches in cross-silo
FL scenarios. This setting reflects a scenario where multiple
medical organizations collaborate to develop a shared model
for performing Eye Retinopathy Classification. We opted for
a non-heterogeneous setting for this particular case study,
specifically a non-IID balanced dataset involving 10 clients.
Notably, we didn’t introduce device heterogeneity into this
experiment since the participating organizations boasted
substantial computational power and robust communication
capabilities. The results, depicted in Figure 11, highlight
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FIGURE 12. Accuracy of different learning approaches of all case studies tested.

the exceptional performance of hypernetwork-based pFL
in handling image-based datasets. This underscores the
potential of hypernetwork-based approaches for scenarios
like eye retinopathy classification, where image data plays
a crucial role. In future research endeavors, it would be
valuable to expand these experiments to encompass a
broader range of scenarios and applications, exploring the
full potential of hypernetwork-based pFL across different
healthcare contexts.

Figure 12 provides a comprehensive performance
overview across all case studies, excluding Eye Retinopathy
Classification. It showcases the performance accuracy
achieved through centralized training, traditional FL, and
the best-performing pFL approach for each case study
in a pathological non-IID data setting. Comparing these
results shows that FL can deliver strong performance
while preserving data privacy. With personalization, where
each client fine-tunes the model with its unique data,
we witness minimal accuracy variations among clients. This
observation underscores the power of personalization, as it
captures fine-grained personal information. The personalized
models for each participant help mitigate the performance
degradation associated with non-IID data distributions.
These experiments consistently highlight the superiority of
pFL in heterogeneous IoMT network environments. They
underscore the enhanced performance and data privacy
advantages personalized FL offers compared to traditional
approaches. This finding holds significant promise for
complex IoMT networks and healthcare applications.

The experiments provide compelling evidence for the
effectiveness of FedCure, a heterogeneity-aware Personal-
ized FL framework. This framework demonstrates its ability
to construct efficient models for intelligent IoMT-based

healthcare applications within complex networks. The
framework encompasses five distinct case studies and six
healthcare datasets, incorporating five pFL approaches.
It excels in handling two data heterogeneity settings, making
it a versatile and scalable solution for real-time applications
in the healthcare domain. The FedCure framework has its
strengths, but there are also some limitations that need
to be addressed. The use of edge computing in FedCure
raises concerns about the security and privacy of sensitive
health data, particularly with regards to privacy concerns.
Edge devices may be vulnerable to local attacks, and the
transmission of personalized model updates between edge
and cloud components could expose potential vulnerabilities.
It is important to ensure that robust security measures and
encryption protocols are in place to safeguard patient data.
Additionally, the framework should address potential privacy
risks associated with sharing global models across devices,
even in an FL setting, to mitigate the risk of unintended data
exposure.

VI. CONCLUSION
This paper presents FedCure, an innovative personalized
FL framework tailored for intelligent IoMT applications,
delivering robust data privacy protection in a cloud-edge
architecture. FedCure empowers the acquisition of a globally
shared model by amalgamating local updates sourced from
distributed IoMT devices, effectively capitalizing on edge
computing capabilities. Notably, it tackles the inherent
heterogeneities encompassing device disparities, statistical
variations, and model diversity in IoMT environments. This
comprehensive approach integrates diverse personalized FL
techniques to achieve tailored personalization and elevate
the performance of individual devices. The case studies,
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spanning human activity recognition, Eye Retinopathy classi-
fication, diabetes, Maternal, and Remote Health Monitoring,
underscore FedCure’s potential to cater to a wide range of
intelligent IoMT applications. Future research endeavors will
expand the horizons by conducting additional experiments,
especially within the domain of Hypernetwork-based pFL for
tasks such as medical image segmentation and classification.
Moreover, the ongoing development of the FedCure frame-
work will include integrating additional pFL approaches and
diverse datasets to enhance its capabilities further.
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