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ABSTRACT The robustness of the networks is their capacity to remain operational in the presence of faults
and disruptions, and thereby it is an important tool to provide data transmission in telecommunications
networks such as wireless networks, enterprise networks, and cloud computing networks. The connected
collection of nodes in a network, excluding which results in the decomposition of a network into components
such that the cardinality of each component is at most equal to the cardinality of the collection, is referred
to as a connected safe set (CSS). The least size of CSS is known as connected safe number (CSN). The
identification of the connected collection of nodes in the networks, capable of enduring dual load in case
of faults and disruption, can be realized as CSS. Mesh networks (MNs) have become an integral part of a
variety of domains, such as smart cities, disaster recovery, Internet of Things (IoT) and military defense, due
to their decentralized nature and ability to reconfigure as conditions change dynamically. In this paper, the
CSS and CSN for various types of MNs, such as triangular, triangular circular, double triangular circular, and
quadrangular necklace mesh are computed. Finally, an application of CSS in the context of optimal router
installation on certain MNs is included.

INDEX TERMS Connected safe number, connected safe set, wireless communication networks, mesh
networks, IoT, robustness.

I. INTRODUCTION
Networks play a pivotal role in our modern interconnected
world [9] as they enable seamless communication, facilitate
internet access, connect IoT devices, and enable efficient data
transfer and storage. These networks have been recognized
for their adaptability and topologies, which reflect the com-
munication patterns of various natural phenomena. Topology
in the current scenario, with advanced technology and rapidly
growing dependence on digital connectivity, has become a
crucial factor in ensuring its effectiveness in communication
devices and their mechanisms. Depending on these networks,
it is essential to innovate and optimize the topology to
seek uninterrupted connectivity. Mesh topologies [23] are in
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fashion owing to their efficiency and fast data accessibility,
which rely on interconnected nodes to transmit data. These
are highly reliable through their substantial redundancy,
ensuring the availability of alternative routes to bypass faulty
nodes. They are widely used in areas such as industrial
automation, military communications, and disaster recovery.

Mesh networks [11] are either fully connected, partially
connected, or hybrid. Partially connected mesh networks
are less complex, cost-effective, and easy to maintain as
compared to fully connected ones because some nodes are
not directly connected. On the other hand, they could be more
reliable and more robust on account of limited alternative
paths for data transmission when faults and disruptions occur,
which can lead to more significant downtime and slower
data transfer rates. Therefore, increasing the robustness [2] of
partially connected mesh networks is a significant challenge
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that is the ability of networks to maintain their operations
despite any faults or disruptions. To overcome this challenge,
we propose a technique that uses a connected collection of
nodes in theMNs to distribute the load among its components
in the presence of faults and disruptions. The identification
of such a minimum set of components is regarded in graph
theory, namely the CSS problem. The CSS problem and
its related variant were initially presented in [14] with
the motivation of addressing the facility location problem
(FLP). The FLP pertains to finding the optimal locations to
facilitate the clients and has many applications, including
transportation, emergency response, and distribution [8],
[26]. The FLP is a combinatorial optimization problem
extensively studied in the literature [19].
For terminology and notation not explained in this paper,

we refer readers to [6]. To provide context for our discussion
on CSS, we will review some basic definitions and properties.
When discussing a network, the node and edge sets are
typically referred to as V (G) and E(G), respectively. The
order of G is the number of nodes in the network. The degree
of node v of G denoted by deg(v) is the number of nodes
attached by edges with v. Additionally, the subgraph induced
by a subset X of V (G) can be denoted as G[X ]. The set of
all connected components of G is denoted by C(G). Two
subgraphs X and Y of G are said to be adjacent if they have
no nodes in common, but they share at least one edge. More
formally, X and Y are adjacent if and only if E(X ,Y ) ̸= ∅,
where E(X ,Y ) = {e = uv : u ∈ X and v ∈ Y } ⊆ E(G).
A subsetS(G) ̸= ∅ ⊂ V (G) is called safe set (SS) if, for every
connected component X ∈ C(G \S(G)) and every connected
component Y ∈ C(G[S(G)]), we have |Y | ≥ |X |, whenever
E(X ,Y ) ̸= ∅. If C(G[S(G)]) = {S(G)}, then S(G) is known
as CSS. For a connected network G, the safe number (SN)
and CSN (respectively) are defined as follows:

s(G) = min{|S(G)| : S(G) is a SS of G}.

cs(G) = min{|S(G)| : S(G) is a CSS of G}.

Fujita et al. in [14] investigated the existence of a general
algorithm for computing the SN and CSN. They concluded
that it is an NP-complete. However, the authors in [14] also
demonstrate that the minimum cardinality of SS of a tree
can be calculated in linear time. Additionally, Águeda et al.
in [1] showed that the SN of trees can be computed in O(n5)
time. The authors in [12] explored the connection between
the SN and integrity in a connected graph. Iqbal et al. in [16]
presented the CSS of ladder, wheel, and sunlet graphs, even
though there is no known algorithm to find the minimum SS
and CSS of any connected graph. Furthermore, some authors
in [17] studied the SS and computed the SN and CSN of a
cartesian product of two complete graphs. Belmonte et al. [5]
studied the parameterized complexity of safe set problems.
Different classes of graphs and their CSN have been studied
and computed as shown in TABLE 1.
Bapat et al. [4] considered a large network as a community

of small communities with mutual connections to gain the

TABLE 1. CSN of certain classes of graphs.

majority to control network consensus and introduced the
concept of weighted safe sets (WSS) in graphs. They provide
an efficient algorithm for calculating the WSS for a weighted
path. Recently, for a weighted tree’s CSN, Ehard and
Rautenbach [10] presented a polynomial-time approximation
solution. Fujita et al. [13] explored the potential equality of
a graph’s weighted safe number (WSN) and its connected
weighted safe number (CWSN) for path and cycle graphs.
In addition, the authors in [15] defined a graph G to have a
stable structure if equality holds between itsWSN andCWSN
for any weight function defined on its vertices. For further
research on the WSS problem, see [21], [22], and [27].

A. MAJOR CONTRIBUTIONS
The main results of this study are summarized as follows :
Theorem 1:
a) For n ≥ 1,

cs(Tn) =


⌈
2n+ 1

4
⌉ + 1, if n ∼= 1(mod 2)

⌈
2n+ 1

4
⌉, if n ∼= 0(mod 4).

b) For n ≥ 3,

cs(T 1
n ) = ⌊

2n
3

⌋ + 1.

c) For n ≥ 3,

cs(T 2
n ) = ⌈

2n
3

⌉ + 1

d) For n ≥ 3,

cs(Qn) = ⌈
2n+ 2

3
⌉ + 1.

where Tn, T 1
n , T

2
n , andQn denote the triangular, triangular cir-

cular, double triangular circular, and quadrangular necklace
mesh networks respectively.

This paper is structured as follows: Section II calculates
the CSS and CSN of the triangular mesh network. Section III
focuses on computing the CSS and CSN of the triangular
circular mesh network. In Section IV, the CSS and CSN of
a double triangular circular mesh network are determined.
Section V calculates the CSS and CSN of the quadrangular
necklace mesh network. Section VI showcases an application
of CSS for the optimal installation of routers on certain MNs.
Finally, the paper concludes in Section VII.
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II. CONNECTED SAFE SET OF TRIANGULAR MESH
NETWORK
In this section, the CSS and CSN of the triangular mesh
network are computed. A triangular mesh network Tn of
order 2n + 1 is constructed by beginning with two paths
P1n and P

2
n+1. Then, connect each wj node of P

1
n to the nodes

uj and uj+1 of P2n to produce a mesh of 2n − 1 triangles.
For n ≥ 1, the node set and edge set of Tn are defined as
V (Tn) = {w1,w2, . . . ,wn, u1, u2, . . . , un+1} and E(Tn) =

{wiwi+1, ujuj+1,wjuj,wjuj+1 | 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n}
respectively. The labeling is illustrated in Figure 1. For more
study, we refer the readers to [3].

FIGURE 1. The triangular mesh network Tn.

Lemma 1: For n ≥ 1,

|S(Tn)| ≥


⌈
2n+ 1

4
⌉ + 1, if n ∼= 1(mod 2)

⌈
2n+ 1

4
⌉, if n ∼= 0(mod 2).

Proof 1: For n = 1, 2, it can be verified that
S(Tm1) = {w1, u2} is CSS. When n ≥ 3, the proof is divided
into two cases :
Case 1:When |S(Tn)| is odd.
First, we consider that n ∼= 0(mod 2). Let S(Tmn) =

{u
⌈
k
2 ⌉+1, u⌈

k
2 ⌉+2, . . . , u⌈

k
2 ⌉+(k−3),w⌈

k
2 ⌉

,w
⌈
k
2 ⌉+(k−3)} be sub-

set of V (Tn) such that Tn[S(Tn)] is induced subgraph,
where k = ⌈

2n+1
4 ⌉ + 1. Since the vertices ui in S(Tn)

form an increasing sequence, this implies that the edges
uiui+1, u⌈

k
2 ⌉+1w⌈

k
2 ⌉
, u

⌈
k
2 ⌉+(k−3)w⌈

k
2 ⌉+(k−3) ∈ E(Tn) for all

⌈
k
2⌉ + 1 ≤ i ≤ ⌈

k
2⌉ + (k − 3). Therefore, Tn[S(Tn)]

is connected. Now C(Tn \ S(Tn)) = {D1,D2,D3}, where
D1 = {w1,w2, . . . ,w⌈

k
2 ⌉−1, u1, u2, . . . , u⌈

k
2 ⌉

}, D2 =

{w
⌈
k
2 ⌉+(k−2), w⌈

k
2 ⌉+(k−1), . . . , wn u⌈

k
2 ⌉+(k−2), u⌈

k
2 ⌉+(k), . . . ,

un+1}, and D3 = {w
⌈
k
2 ⌉+1,w⌈

k
2 ⌉+2, . . . ,w⌈

k
2 ⌉+(k−4)}.

It follows that |S(Tn)| = k − 1, |D1| = 2⌈ k2⌉ − 1 ≤ k =

⌈
2n+1
4 ⌉, |D2| ≤ 2n − 2⌈ k2⌉ − 2k + 7 ≤ 2n − 3k + 6, and

|D3| = k − 4, where k = ⌈
2n+1
4 ⌉ + 1. This implies that

|Dj| ≤ |S(Tn)| for all 1 ≤ j ≤ 3. In consequence, S(Tn) is
CSS, and |S(Tn)| ≥ ⌈

2n+1
4 ⌉.

By considering n ∼= 1(mod 2) and choosing S(Tmn) =

{u
⌈
k
2 ⌉+1, u⌈

k
2 ⌉+2, . . . , u⌈

k
2 ⌉+(k−2),w⌈

k
2 ⌉

,w
⌈
k
2 ⌉+(k−2)} for k =

⌈
2n+1
4 ⌉+1, similarly, we can show that |S(Tn)| ≥ ⌈

2n+1
4 ⌉+1.

Case 2:When |S(Tn)| is even.
First, we consider that n ∼= 0(mod 2). Let S(Tmn) =

{w
⌈
k
2 ⌉+1,w⌈

k
2 ⌉+2, . . . ,w⌈

k
2 ⌉+(k−1), u⌈

k
2 ⌉+1, u⌈

k
2 ⌉+(k)} be sub-

set of V (Tn) such that Tn[S(Tn)] is induced subgraph,
where k = ⌈

2n+1
4 ⌉. Since the nodes ui in S(Tn) form

an increasing sequence, it follows that the edges uiui+1,
w

⌈
k
2 ⌉+1u⌈

k
2 ⌉+1, w⌈

k
2 ⌉+(k−1)u⌈

k
2 ⌉+(k) ∈ E(Tn) for all ⌈

k
2⌉ +

1 ≤ i ≤ ⌈
k
2⌉ + (k − 2). Therefore, Tn[S(Tn)]

is connected. Now C(Tn \ S(Tn)) = {D1,D2,D3},
where D1 = {w1,w2, . . . ,w⌈

k
2 ⌉

, u1, u2, . . . , u⌈
k
2 ⌉

}, D2 =

{w
⌈
k
2 ⌉+(k),w⌈

k
2 ⌉+(k+1), . . . ,wn, u⌈

k
2 ⌉+(k+1), u⌈

k
2 ⌉+(k+2), . . . ,

un+1}, and D3 = {u
⌈
k
2 ⌉+2,w⌈

k
2 ⌉+3, . . . ,w⌈

k
2 ⌉+(k−3)}. It can

be verify that |S(Tn)| = k + 1. As |S(Tn)| is even and
|S(Tn)| = k + 1 this implies that k is odd and we have
⌈
k
2⌉ + ⌈

k
2⌉ ≤ k + 1. Now |D1| ≤ k + 1, |D2| ≤ 2n− 3k + 1,

and |D3| = k − 2, where k = ⌈
2n+1
4 ⌉. This implies that

|Dj| ≤ |S(Tn)| for all 1 ≤ j ≤ 3. In consequence, S(Tn) is
CSS, and |S(Tn)| ≥ ⌈

2n+1
4 ⌉.

By considering n ∼= 1(mod 2) and choosing S(Tmn) =

{w
⌈
k
2 ⌉+1,w⌈

k
2 ⌉+2, . . . ,w⌈

k
2 ⌉+(k−1), u⌈

k
2 ⌉+1, u⌈

k
2 ⌉+(k)} for k =

⌈
2n+1
4 ⌉, similarly, we can show that |S(Tn)| ≥ ⌈

2n+1
4 ⌉ + 1.

Theorem 2: For n ≥ 1,

cs(Tn) =


⌈
2n+ 1

4
⌉ + 1, if n ∼= 1(mod 2)

⌈
2n+ 1

4
⌉, if n ∼= 0(mod 2).

Proof 1: The proof is divided into two case :

Case 1: (When n ∼= 1(mod 2))
Consider a CSS S(Tn) with cardinality cs(Tn). Let

D1,D2, . . . ,Dt be the components of C(Tn \S(Tn)), ordered
in such a way that |D1| ≤ |D2| ≤ · · · ≤ |Dt |.
If t = 1, then there must exist a node x in S(Tn) such that:

(i) S(Tn) \ {x} is connected
(ii) Either E(Tn \ S(Tn), x) is empty or non-empty.
If E(Tn \ S(Tn), {x}) = ∅, then there exists a vertex y in

Tn \ S(Tn) such that E(S(Tn), {y}) ̸= ∅. Then by removing x
from S(Tn) and adding y in S(Tn), we obtain another CSS
S∗(Tn) such that the cardinality of greatest component of
C(Tn \S∗(Tn)) is smaller than |D1|, which is a contradiction.
If E(Tn \ S(Tn), {x}) ̸= ∅, there exists a vertex y in

Tn \S(Tn) such that E(S(Tn)\{x}, {y}) ̸= ∅, E({x}, {y}) ̸= ∅,
and Tn[S(Tn)\ {x}∪ {y}] is connected. In that case, removing
x from S(Tn) and adding y to S(Tn) will result in another
CSS S∗(Tn) such that the cardinality of greatest component
of C(Tn \ S∗(Tn)) is smaller than |D1|, and this leads to a
contradiction. It follows from the above discussion and using
Lemma 1 that t ≥ 2.
For n ≤ 4, it is straightforward to verify that t ≤ 2. For

n ≥ 5, we claim that t = 3.
Assume for the sake of argument that t = 4, it is only

possible when S(Tn) have at least three end nodes si, sj, and
sk such that i < j < k . It follows that S∗(G) = S(G) \ {sj} is
another CSS of smaller cardinality, a contradiction. A similar
reasoning applies for t ≥ 5. In consequence, t = 3.
We want to prove that cs(Tn) = ⌈

2n+1
4 ⌉ + 1. Assume for

contradiction cs(Tn) = ⌈
2n+1
4 ⌉. Note that S(Tn) contains two

end nodes, which means that the set of nodes in Tn \ S(Tn)
between these end nodes make a component say D1, and
of course |D1| = |S(Tn)| − 3. From the definition of CSS

VOLUME 12, 2024 18023
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|S(Tn)| ≥ |Dt |, we have

3∑
t=1

|Dt | + S(Tn) =

3∑
t=2

|Dt | + 2|S(Tn)| − 3 ≤ 4|S(G)| − 3

≤ 4⌈
2n+ 1

4
⌉ − 3 < 2n+ 1.

Consequent to this at least one component of C(Tn \ S(Tn))
has cardinality greater than |S(Tn)|, which is a contradiction.
It follows from the above remarks and with the help of
Lemma 1 cs(Tn) = ⌈

2n+1
4 ⌉ + 1.

Case 2: (When n ∼= 0(mod 2)) The same reasoning applies
to this case.

III. CONNECTED SAFE SET OF TRIANGULAR CIRCULAR
MESH NETWORK
In this section, the CSS and CSN of the triangular circular
mesh network are computed. A triangular circular mesh
T 1
n of order 2n is constructed by beginning with a cycle
Cn and inserting uj nodes outside of each adjacent pair of
nodes wj and wj+1 in Cn. Then, connect each uj node to
the nodes wj and wj+1 to form a mesh of n triangles. For
n ≥ 3, the node set and edge set of T 1

n are defined by
V (T 1

n ) = {w1,w2, . . . ,wn, u1, u2, . . . , un} and E(T 1
n ) =

{wiwi+1,wjuj,wiui+1,wnw1,wnu1 | 1 ≤ i ≤ n − 1 and 1 ≤

j ≤ n} respectively. The labeling is illustrated in Figure 2. For
a more detailed study, we refer the readers to [7].

FIGURE 2. The triangular mesh network T 1
n .

Lemma 2: For n ≥ 3,

|S(T 1
n )| ≥ ⌊

2n
3

⌋ + 1.

Proof 2: Let S(T 1
n ) = {w1,w2, . . . ,w⌊

2n
3 ⌋+1} be

the subset of node set V (T 1
n ). Since wiwi+1 ∈ E(T 1

n ),
where 1 ≤ i ≤ ⌊

2n
3 ⌋ + 1. Therefore, T 1

n [S(T
1
n )] is

connected. Now C(T 1
n \ S(T 1

n )) = {D1,D2, . . . ,Dt }, where
D1 = {u2},D2 = {u3}, . . . ,Dt−1 = {ut }, and Dt =

{w
⌊
2n
3 ⌋+2,w⌊

2n
3 ⌋+3, . . . ,wn, u1, u⌊

2n
3 ⌋+2, . . . , un}. It follows

that t = ⌊
2n
3 ⌋ + 1, |S(T 1

n )| = ⌊
2n
3 ⌋ + 1, |Di| = 1 for 1 ≤ i ≤

⌊
2n
3 ⌋, and |Dt | = 2n−|S(T 1

n )|−
∑t−1

i=1 |Di| = 2n−2⌊ 2n
3 ⌋−1.

This implies that |Di| ≤ |S| for 1 ≤ i ≤ t . Hence, S(T 1
n ) is a

connected safe set and |S(T 1
n )| ≥ ⌊

2n
3 ⌋ + 1.

Theorem 3: For n ≥ 3,

cs(T 1
n ) = ⌊

2n
3

⌋ + 1

Proof 3: Let S(T 1
n ) be a CSS of cardinality cs(T 1

n ). Let
C(Hn \ S(T 1

n )) = {D1,D2,D3, . . . ,Dt } ordered such that
|D1| ≤ |D2| ≤ |D3| ≤ · · · ≤ |Dt |.
If t = 1, then there exist such x and y nodes in V (T 1

n ) such
that x ∈ D1, y ∈ S(T 1

n ), E({x},S(T 1
n )) ̸= ∅, E({y},D1) =

∅, and S(T 1
n ) \ {y} is connected. Then by removing node y

from S(T 1
n ) and adding node x in S(T 1

n ). We get another CSS
S∗(T 1

n ), and for S∗(T 1
n ), |D1| > max{|D| | D ∈ C(T 1

n \

S∗(T 1
n ))}, which is a contradiction. As a consequence, t ≥ 2.

We claim that t ≤ |S(T 1
n )|. If S(T 1

n ) ⊂ {w1,w2, . . . ,wn}
and T 1

n [S(T 1
n )] is a path, then C(T 1

n \ S(T 1
n )) contains

maximum components. For that choice of CSS, it follows
from Lemma 2 that C(T 1

n \ S(T 1
n )) have exactly |S(T 1

n )| −

1 components of cardinality 1 and one component of
cardinality greater than 1. It follows that t = |S(T 1

n )|.
If S(T 1

n ) ∩ {w1,w2, . . . ,wn} is not equal to S(T 1
n ), but

is nonempty, then clearly t < |S(T 1
n )|. Consequently,

t ≤ |S(T 1
n )|.

Now we want to show that cs(T 1
n ) = ⌊

2n
3 ⌋ + 1. Suppose

on contrary cs(T 1
n ) = ⌊

2n
3 ⌋. From the definition of CSS, it is

clear that |S(T 1
n )| ≥ |Dt |. Assume |S(T 1

n )| = |Dt |. Note that

t∑
i=1

|Di| + |S(T 1
n )| ≤ 3(⌊

2n
3

⌋) − 1 < 2n.

Consequent to this at least one component of C(T 1
n \

S(T 1
n )) has cardinality greater than |S(T 1

n )|, a contradictions.
It follows from the above remarks and with the help of
Lemma 2 cs(T 1

n ) = ⌊
2n
3 ⌋ + 1.

IV. CONNECTED SAFE SET OF DOUBLE TRIANGULAR
CIRCULAR MESH NETWORK
In this section, the CSS and CSN of the double triangular
circular mesh network are computed. A double triangular
circular mesh T 2

n of order 2n is constructed by beginning
with two cycles C1

n and C2
n . Then, connect uj nodes of C

2
n to

the nodes wj and wj+1 of C1
n to produce a mesh of 2n

triangles. For n ≥ 3, the node set and edge set are defined
by V (T 2

n ) = {w1,w2, . . . ,wn, u1, u2, . . . , un} and E(T 2
n ) =

{wiwi+1, uiui+1,wiui+1,wjuj,w1wn, u1un,wnu1,wnun | 1 ≤

i ≤ n − 1 and 1 ≤ j ≤ n − 1} respectively. The labeling is
illustrated in Figure 3. For more study, we refer the readers
to [25].
Lemma 3: For n ≥ 3,

|S(T 2
n )| ≥ ⌈

2n
3

⌉ + 1

Proof 4: Let S(T 2
n ) = {w1,w2, . . . ,w⌈

2n
3 ⌉−1, u1, u⌈

2n
3 ⌉

}

be the subset of V (T 2
n ). Since wiwi+1,w1u1,w⌈

2n
3 ⌉−1u⌈

2n
3 ⌉

∈

E(T 2
n ), where 1 ≤ i ≤ ⌈

2n
3 ⌉ − 1. Therefore,

T 2
n [S(T 2

n )] is connected. Now C(T 2
n \ S(T 2

n )) =

{D1,D2}, where D1 = {u2, u3, . . . , u⌈
2n
3 ⌉−1} and D2 =

18024 VOLUME 12, 2024



R. Iqbal et al.: Robustness in Mesh Networks Using Connected Safe Set and Applications

FIGURE 3. The double triangular circular mesh network T 2
n .

{w
⌈
2n
3 ⌉

,w
⌈
2n
3 ⌉+1, . . . ,wn, u⌈

2n
3 ⌉+1, u⌈

2n
3 ⌉+2, . . . , un}. It fol-

lows that |D1| = ⌈
2n
3 ⌉ − 2 and |D2| = 2n− 2⌈ 2n

3 ⌉ + 1. This
implies that |S(T 2

n )| ≥ |Di|, where 1 ≤ i ≤ 2. Consequently,
S(T 2

n ) is a CSS and |S(T 2
n )| ≥ ⌈

2n
3 ⌉ + 1.

Theorem 4: For n ≥ 3,

cs(T 2
n ) = ⌈

2n
3

⌉ + 1

Proof 5: Suppose that V (T 2
n ) = A ∪ B, where A =

{w1,w2, . . . ,wn} and B = {u1, u2, . . . , un}. Let S(T 2
n ) = X∪

Y be the CSS of cardinality cs(T 2
n ) such that X ⊂ A and Y ⊂

B. Let D1,D2, . . . ,Dt be the components of C(T 2
n \ S(T 2

n )),
arranged in such a way that |D1| ≤ |D2| ≤ · · · ≤ |Dt |.
If t = 1, then there must exists x1 and x2 nodes in S(T 2

n )
and y1 and y2 nodes in D1 such that:
(i) S(T 2

n ) \ {x1, x2} is connected.
(ii) T 2

n \ S∗(T 2
n ) is disconnected, where S∗(T 2

n ) = S(T 2
n ) ∪

{y1, y2} \ {x1, x2}.
(iii) T 2

n [S∗(T 2
n )] is connected.

Clearly, S∗(T 2
n ) is another CSS and for S∗(T 2

n ), |D1| >

max{|D| | D ∈ C(T 2
n \ S∗(T 2

n ))}, which is a contradiction.
As a consequence, t ≥ 2.
We claim that t = 2. Suppose for the sake of contradiction

that t = 3, then S(T 2
n ) must have three end nodes, namely

xi, xj, and xk with i < j < k . Then S∗(T 2
n ) = S(T 2

n ) \ {xj}
is another CSS of smaller cardinality, which contradicts our
initial assumption. The similar reasoning applies for t ≥ 4.
Therefore, t = 2.
We are going to show that cs(T 2

n ) = ⌈
2n
3 ⌉ + 1. Suppose

for contradiction cs(T 2
n ) = ⌈

2n
3 ⌉. Since t = 2 and there are

two end nodes, xi and xk , in S(T 2
n ), the set of intermediary

nodes on the shortest path connecting nodes xi and xj forms
a component D1. Clearly, |D1| = ⌈

2n
3 ⌉ − 3. As Dt is a

component with t = 2, we have |D2| = 2n − |D1| −

|S(T 2
n )| = 2n−2⌈ 2n

3 ⌉+3 > |S(T 2
n )|, which is contradictory.

It follows from above remarks and with the help of Lemma 3,
cs(T 2

n ) = ⌈
2n
3 ⌉ + 1.

V. CONNECTED SAFE SET OF QUADRANGULAR
NECKLACE MESH NETWORK
In this section, the CSS and CSN of the quadrangular
necklace mesh network are computed. A quadrangular
necklace mesh Qn is constructed by starting with a path
Pn of n nodes and a cycle Cn+2 of n + 2 nodes. The
nodes of Pn are labeled u1, u2, . . . , un, and the nodes of

Cn+2 are labeled w0,w1, . . . ,wn+1. Then, connect the nodes
uj to wj, w0 to u1, and un to wn+1 for j = 1, 2, . . . , n
to form a mesh of n − 1 quadrilateral faces, which are
arranged in a necklace-like fashion. For n ≥ 3, the
node set and edge set of Qn are defined as V (Qn) =

{w0,w1,w2, . . . ,wn,wn+1, u1, u2, . . . , un} and E(Qn) =

{wiwi+1, ujuj+1,wjuj,w0wn+1,w0u1,wnun, unwn+1 | 0 ≤

i ≤ n and 1 ≤ j ≤ n − 1} respectively. The labeling is
illustrated in Figure 4. For more study, we refer the readers
to [28].

FIGURE 4. The quadrangular necklace mesh network Qn.

Lemma 4: For n ≥ 2,

|S(Qn)| ≥ ⌈
2n+ 2

3
⌉ + 1

Proof 6:LetS(Qn) = {w0,w1, . . . ,w⌈
2n+2
3 ⌉−1, u⌈

2n+2
3 ⌉−1

} be the subset of V (Qn) such that Qn[S(Qn)] is induced
subgraph. Since wiwi+1,w⌈

2n+2
3 ⌉−1u⌈

2n+2
3 ⌉−1 ∈ E(Qn),

where 0 ≤ i ≤ ⌈
2n+2
3 ⌉ − 1. From Figure 2, one

can verify that Qn[S(Qn)] is path. Therefore, Qn[S(Qn)]
is connected. Now C(Qn \ S(Qn)) = {D1,D2},
where D1 = {u1, u2, . . . , u⌈

2n+2
3 ⌉−2} and D2 =

{w
⌈
2n+2
3 ⌉

,w
⌈
2n+2
3 ⌉+1, . . . ,wn+1, u⌈

2n+2
3 ⌉

, u
⌈
2n+2
3 ⌉+1, . . . ,

un}. It follows that |S(Qn)| = ⌈
2n+2
3 ⌉+1, |D1| = ⌈

2n+2
3 ⌉−2,

and |D2| = 2n − 2⌈ 2n+2
3 ⌉ + 3. This implies that |S(Qn)| ≥

|Di|, for all 1 ≤ i ≤ 2. As a consequent, S(Qn) is CSS and
|S(Qn)| ≥ ⌈

2n+2
3 ⌉ + 1.

Theorem 5: For n ≥ 2,

cs(Qn) = ⌈
2n+ 2

3
⌉ + 1

Proof 7: Let S(Qn) be a CSS of cardinality cs(Qn).
Let C(Qn \ S(Qn)) = {D1,D2, . . . ,Dt } ordered such that
|D1| ≤ D2 ≤ · · · ≤ |Dt |.

If t = 1, then there exist x and y nodes in V (G) such that :
(i) x ∈ D1 and y ∈ S(Qn).
(ii) E({x},S(Qn)) ̸= ∅ and E({x}, {y}) = ∅.
(iii) S(Qn) \ {y} is connected.
(iv) Qn \ S∗(Qn) is connected, where S∗(Qn) = (S(Qn) \

{y}) ∪ {x}.
Then by removing node y from S(Qn) and adding node x in
S(Qn). We get another CSS S∗(Qn), and for S∗(Qn), |D1| >

max{|D| | D ∈ C(Qn \ S∗(Qn))}, which is a contradiction.
As a consequence, t ≥ 2.
Since Qn have two paths P1(w1 → wn) and P2(u1 → un).

Let v ∈ P1 and u ∈ P2 such that vu ∈ E(Qn). Then {w0, v, u}
is a cut-node set. We assume that {w0, v, u} ⊂ S(Qn) such
that either v or u is end node. Without loss of generality,
we suppose that u is an end node. We claim that there does
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not exist another end node w in S(Qn) such that w /∈ {w0, u}.
We assume for contradiction thatw another end node inS(Qn)
then S(Qn)′ = S(Qn) \ {w} is another CSS of cardinality
smaller than S(Qn), a contradiction. Therefore, by using
Lemma 1, it follows easily thatQn[S(Qn)] is a path and t = 2.
Suppose for contradiction cs(Qn) = ⌈

2n+2
3 ⌉. Since

Qn[S(Qn)] is path, t = 2, and deg(u) = 1 then the nodes
set {u1, u2, . . . , ui−1} makes a component say D1. Since
|S(Qn)| = ⌈

2n+2
3 ⌉ then clearly i = ⌈

2n+2
3 ⌉ − 2. So,

|D1| = ⌈
2n+2
3 ⌉ − 3 and D2 = |V (Qn) − S(Qn) − D1| =

2n+ 2 − 2⌈ 2n+2
3 ⌉ + 3 ≥ |S(Qn)|, a contradiction. It follows

from the above remarks and with the help of Lemma 1
cs(Qn) = ⌈

2n+2
3 ⌉ + 1.

VI. APPLICATION
The applications of CSS and its related variants can be
seen in network design [14] and analysis [4]. In particular,
we consider an application of optimal router installation
in certain MNs in case of faults and disruptions. Routers
are networking devices that connect multiple networks and
forward data packets between them. They can perform
various functions like routing, filtering, firewalling, and
network address translation. As routers have to receive and
forward data packets, their disruption or malfunctioning may
degrade the network performance and security due to the
following problems :
(i) The devices that rely on them for accessing other

networks will lose their connectivity.
(ii) If routers are overloaded or misconfigured, they may

experience delays, errors, or packet loss in forwarding
packets.

The issues discussed in the given scenario can be resolved by
providing backup routers capable of enduring dual loads to
ensure that data is transferred safely and efficiently. It can be
sought by considering as follows :
(i) Some nodes of a mesh network (MN) are to be identified

as backup nodes that can take up the dual loads.
(ii) The loads taken by the faulty nodes can be taken by the

backup nodes.
(iii) The removal of the backup nodes should result in

connected components of MN.
(iv) The count of backup nodes should be greater or equal to

the size of each connected component.
Selecting such required backup components in the MN of
minimum size is related to CSS problems. As an illustrative
case, consider a double triangular circular mesh network
T 2
6 . The aim is to install routers on its nodes and specify

certain nodes with dual capacities. In the view of Lemma 3,
w1, u1, u2, u3 and w4 are nodes of T 2

6 with such capacity. The
robustness of MN can be enhanced by equipping these nodes
to endure dual loads so that the MN remains operational in
the presence of malfunctioning routers. Consider a double
triangular circular mesh network T 2

6 as shown in Figure 5,
then in the view of Lemma 3, S(T 2

6 ) = {u1,w1,w2,w3, u4}
is a CSS, and D1 = {u2, u3}, D2 = {w4,w5,w6, u5, u6, } are
components of C(T 2

6 \ S(T 2
6 )). It is clear from Figure 5 that

FIGURE 5. Optimal router installation on T 2
6 using CSS.

disruptions or malfunctions in either D1 or D2 routers can
potentially degrade the network’s performance and security.
This issue can be handled by shifting faulty components’
loads to backup components S(T 2

6 ). This illustrates the
applicability of CSS for optimal installation of routers on
certain MNs.

VII. CONCLUSION
This article emphasizes the computation of CSS and CSN
for various triangular and quadrangular mesh networks.
Additionally, we demonstrate how CSS can be used to
optimize router installation on specific mesh network nodes.

Computing the minimum value of CSS is an NP-complete
problem [14]. Therefore, our results explain the complexities
associated with these variants and their significance. Our
findings reveal that both variants are order-dependent, which
might limit their applicability in larger wireless commu-
nication networks (WCN). However, CSS decomposes the
larger WCN into subnetworks, which allows more efficient
processing and analysis, and it is also useful to handle larger
networks in a convenient way for uninterrupted and seamless
connectivity. For future studies, it is worth exploring the CSS
and CSN of other types of mesh networks related to IoT.
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