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ABSTRACT Plant leaf diseases have various causes, leading to severe disorders. The early and accurate
detection and classification of these diseases are fundamental for fostering healthy crop production. In
recent years, smart agricultural systems have garnered significant attention due to their capability to enhance
efficiency by deploying sensor networks and Internet of Things (IoT) devices that collect and analyze
environmental data. However, traditional plant disease detection methods are manual, time-consuming,
and often need help handling the data’s complexity and dynamism. These manual methods do not use
heterogeneous data to make better decisions. Corn holds significant importance yet it faces numerous
diseases that include main three diseases such as blight, common rust, and grey leaf spot. The advancement of
computer technology has led to a pivotal focus on corn leaf diseases classification application based on deep
learning. Convolutional Neural Networks (CNNs) have revealed remarkable achievements within Precision
Agriculture (PA) due to their ability to enhance information. To this end, this work introduces a CNN-
based architecture, the Multi-Model Fusion Network (MMF-Net). Its primary objective is to classify diseases
within the realm of PA. MMF-Net integrates multi-contextual features using RL-block and PL-blocks 1 & 2,
thus effectively combining different model streams trained on heterogeneous data. The RL-block uses spatial
range to process coarse grained images to convolve the local context, while PL-block 1 extracts fine-grained
global context by expanding the perceptual area of images. PL-block 2 deals with real-life environmental
parameters as features. The extracted features are syndicated using multiple classifiers that ensemble three
individual blocks at the decision level to improve the accuracy. After fusion, it uses adaptively the majority
voting scheme to generate the final decision probability score of the base model. Multiple experiments are
conducted involving the corn leaf diseases dataset and a real-life numerical dataset, generating an impressive
99.23% accuracy in the classification of corn leaf diseases. Overall, MMF-Net provides a promising and
smart solution to identify plant leaf diseases in PA effectively.

INDEX TERMS Precision agriculture, corn disease, sensors, pest control, CNN, decision level fusion, multi-
model, MULTI-context, AlexNet, VGG-16, ResNeXt, heterogeneous data.

I. INTRODUCTION
Precision Agriculture (PA) aims to enhance crop produc-
tion in challenging and multifaceted environments. In recent
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years, there has been a rise in various plant leaf diseases,
resulting in a decline in the average potential crop yield
and food availability. However, traditional plant leaf disease
diagnosis methods have some deficiencies, such as human
fatigue, and are time-consuming and labor-intensive [1]. The
other leading causes are seasonally unstable environmental
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conditions and climate changes. It hinders crops’ average
growth, ultimately reducing the yield [2]. Crops can also
experience damage on plant leaves that depend on crop types,
sensitive physical properties, water logging, drought, low
soil fertility, insects, viruses, weeds, and the presence of
pathogens [3]. Disease-ridden plants tend to show different
abnormalities and unique noticeable patterns such as cuts,
wounds, marks or lesions on fruits, flowers or leaves. Plant
leaves are the primary source of these abnormalities, and most
disease symptoms appear on leaves at early stages [4]. At
early stages, the detection and prevention of plant leaf dis-
eases are fully developed and of great significance. In totality,
this effective treatment and knowledge may lead to expe-
riencing fewer complications, which play an essential role
in growing at the excessively appropriate rate. So, the right
decision can assist farmers in accurately achieving higher
crops at the appropriate times and locations [5]. Therefore,
an accurate and automatic plant leaf disease detection and
classification system ensures a high yield that eludes manual
detection procedures in the field. It can also help conserve
land resources and improve farmers’ profits [6].

Deep learning (DL) models have achieved remarkable
progress in agricultural applications by identifying plant dis-
eases. Numerous standard schemes of DL are built, trained
and tested on the collected data for detection. Convolutional
neural networks (CNNs) play a crucial role in enhancing the
performance of various tasks by detecting salient content.
Still, they might be unable to determine visual attention due
to the lack of explicit representation of prominent features
[7]. These models eliminate the need for feature engineering
by effectively capturing data in a more representative format.
They are designed to extract intricate features from input
images and then integrate these extracted features to cre-
ate an automatic image-based classification system [8]. The
ground theory of proposed approach is to understand the the-
oretical concept of botanical knowledge about how diseases
affect plant tissues and leverages the inherent capabilities of
CNN architectures. The main phenomena marked as visual
symptoms appear at different location of leaves, including
discoloration, lesions, spots and other abnormalities that
exhibit spatial patterns and textures. The proposed approach
is designed to recognize spatial features at different scales,
capturing local basic features and complex global structures.
It can synergy between theory and technology contribute to
distinguish between healthy and diseases leaves. The most
common image-based features in any CNN detection model
are edges, corners, ridges, regions of interest/blobs, shapes-
based, etc. The automatic analysis of images using image
processing techniques is challenging due to several charac-
teristics such as complex background, minor lesion portion,
image illumination, and presence of multiple disease spots
on leaves [9]. CNN networks have been employed to identify
these patterns within images, indicating diseases in afflicted
plants’ images. It also incorporates global and local object
features, considering the overall appearance of objects and
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their parts as distinct components [10]. A comprehensive
investigation was conducted to demonstrate the entire process
of detecting and categorizing diseases in plant images. The
classification process encompasses two main stages: training
and testing, which encompass tasks such as input acquisition,
pre-processing and feature extraction [11]. The PA is more
critical in any developing country for improving agricultural
production with the support of many intelligent technologies
such as IoT, cloud computing and data analysis with DL
models. Combining Deep learning and the Internet of Things
has opened up new ways in human life.

The basic principle of using the IoT and deep learn-
ing multi-models in the context of early plant diseases
detection is to develop an autonomous system that should
be pervasive and ubiquities. Multimodality system is also
remove erroneous condition at some distinctive condition.
The advantages of early diagnosis of plant leaf diseases using
autonomous system enable to identify the subtle changes in
leaf images with minimum human interference. Early detec-
tion allows farmers for timely intervention and minimizes
the spread of diseases only where and when necessary that
enhance the quality and quantity of food production. It helps
in capacity with higher crop yields for precise monitoring and
farmers can optimize the use of resources that can minimizes
the input cost. Consequently, it would be commendable to
research CNN-based classification systems, including the IoT
paradigm in the agricultural domain, for detecting diseased
plants. Thus, plant leaf disease surveillance can be charac-
terized by extracting visual features from 2D digital images
and measurement of complex growing contextual environ-
mental factors [12]. A fabulous improvement has been made
by collecting high-level contextual information from various
sources like IoT sensors and images that may be utilized
to effectively increase the progress in modern recognition
systems in the agriculture industry. Thus, due to their porta-
bility, embedded and mobile devices are more favorable than
computers or servers in agricultural fields. In addition to this,
commercial agricultural tools are so classy to get revenue.
So, a new low-cost technology with CNN variant would be
an optimum solution for diagnosing plant leaf diseases that
speed up the work [13]. Furthermore, CNN-based approaches
and fusion techniques have advanced standing that fuses
multiple forms of agricultural data, resulting in widespread
research for early plant disease diagnosis control systems. It
will support the protection of plant leaves from diseases that
comprehend yield growth [14]. The complexity of customary
plant leaf disease detection architecture has made it more
challenging to streamline agricultural operations. Most of
these approaches are built on variant of CNN architecture.
However, the low-level visual features may not be a supe-
rior solution for higher accuracy and CNN does not provide
high-level semantic features for accurate plant leaf disease
classification. In addition, the captured images might need
help with background clutter and illumination variation. For
this reason, our research focuses on getting contextual and
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real-life parameters for the high performance of any custom-
ary plant leaf disease detection system when deployed in
real-world settings. Such limitation highlights the need for
techniques to enhance the accuracy and robustness of these
models to handle the various complexities and variations
encountered in practical applications. In the context of this
situation, the proposed research will explore the following
research questions:

RQI1. How can we improve the accuracy of the plant
leaf disease detection model in real-world scenarios?
This remains our main research question.

RQ2. Related to RQ1, which techniques are effective for
improving the accuracy of the plant leaf disease
model? The effectiveness of the said techniques is
to be evaluated quantitatively.

RQ3. Related to RQ2, if the fusion of multi-contextual
features is selected as an effective technique,
what are the main challenges and how to address
them?

RQ4. Related to RQ3, how can our proposed fusion archi-
tecture be trained on heterogeneous datasets?

The main objective of this work is to develop an automatic
and smart solution for a classification system in PA that sup-
ports the improvement of classification accuracy of different
plant leaf diseases in real-world scenarios. Thus, we explore
the syndication of pre-processed visual and real-life multi-
contextual features with a fusion mechanism. The desire is
to get one robust multi-model network of three sub-networks
based on RL-block and PL-blocks 1 & 2 feature represen-
tation inspired by end-to-end variant forms of CNNs. To
capture different levels of detail, individual CNNss are trained
exclusively for specific multi-scale details. This is achieved
by resizing the training images with one CNN dedicated to the
object level and the others focused on the part level. MMF-
Net incorporates heterogeneous data, including the image’s
pixel values and environmental parameters. RL-block and
PL-block 1 provide more discriminative local and global level
features, such as edges and patterns for background stacks
around that are sent to the recognition part as feature maps.
PL-block 2 is considered for attaining environmental-based
features such as temperature, humidity, and air pressure
and soil moisture. That wealth of data can be leveraged
to optimize crop growth and identify plant diseases. The
robust selected features are passed to multiple classifiers for
decision-level fusion. The fusion of multi-contextual features
based on image and numerical data is a versatile single-fused
interpretation that may boost the system’s accuracy. Inter-
estingly, this strategy has two different forms of design that
learn features correspondingly before fusion and then fuse
three paths to form a single result. After decision-level fusion,
it integrated the salient information linearly, significantly
improving results. The ultimate detection process returns a
recognition label for each testing image. The main steps
involved in MMF-Net are depicted in Figure 1. The inte-
gration of IoT and CNNs in context of plant leaf diseases
detection system faced some challenges.
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o Quality of data collected by IoT devices change rapidly

due to different climate and soil type.

« An autonomous corn leaf diseases detection system in

real-world required enhanced accuracy.

« Implementation of corn leaf diseases system with differ-

ent classifier using ensemble method.

The rest of the paper is arranged as follows: Section II
discusses the related work. Section III explains the pro-
posed methodology. Experimental details are expounded in
Section IV. The performance evaluation and results of the
proposed network is shown in V Finally, we end up with
conclusions in Section VI.

Il. RELATED WORK

The latest trend in using various deep learning models has
presented promising results for plant leaf disease detection.
The fusion of features approaches used for plant leaf disease
detection is a significant challenge for researchers. Several
CNN models have been presented in the literature for clas-
sifying plant leaf diseases. The authors proposed a (PD R-
CNN) discrimination algorithm of decision fusion based on
multiple features on crop surfaces. The algorithm uses an
R-CNN computer vision processing model that can identify
crop surface lesions and analyze the growth of cucumber
seedlings. It reduced the workload effectively and distin-
guished crop diseases during the occurrence of pests [15]. The
authors focused on determining the best DCNN classification
model that fuses the features of seven one-dimensional CNN
models for five disease-grading classes of rice leaf samples.
The sample number was increased by using data augmenta-
tion and amplification techniques. This proposed model was
compared with different CNN models, and machine learning
techniques showed that the results of fused features were
significantly better in accuracy [16]. An loT-based model was
deployed to recognize crop diseases in the wild. It adopted
CNN as the backbone to extract discriminated features from
in-field crop disease samples or images. Contextual parame-
ters are collected from image acquisition sensors that reduce
false positives to build a deep, fully connected network for
crop disease classification [17]. It presented a fine-grained
visual classification model with a cross-stage partial net-
work backbone, cross-level fusion, and three parallel sub-
networks. This multi-stream hybrid architecture can distin-
guish interclass discrepancies for identifying crop categories
[18]. A two-stream deep fusion architecture was employed
for automatic detection and classification. It was based on
CNN-SNM and CNN softmax pipeline to infer classes. Its
results achieved better accuracy and lower false positives
than others [19]. Features were extracted from hyper-spectral
and chlorophyll fluorescence images and end-to-end fused to
detect the hazardous substance. Fusion used low, middle, and
high-level information to improve accuracy [20]. A multi-
source feature-level fusion method sped up the training pro-
cess by transfer learning for integration. The multi-model
fusion method identifies the features to retain the critical
information. It used R-CNN and ResNet34 models to classify
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six types of diseases [21]. Efficient Net B7 deep learning
architecture is used for transfer learning to get features from
digital images. These features were down-sampled by Logis-
tic Regression to identify the most discriminant traits with the
highest constant accuracy [22].

Acquisition of Feature Sets From Images
and Environmental Parameters
v
Analysis of Features by RL-block, PL-
block 1& 2 based on variant form of CNN
v
Fusion of Multi Contextual Networks at

Decision Level Scores

Performance Evaluation is Performed by

Accuracy

FIGURE 1. Main steps involved in MMF-Net.

SCNN-KSVM and SCNN-RF are used to classify, but a
shallow CNN cannot extract enough information from the
image dataset. The experiments were carried out on three
different datasets and outperformed other pretrained deep
models, which showed that combining two shallow CNN
models was a positive attempt [23]. Two sub-networks were
provided with more discriminative feature segmentation sep-
arated from the background and used to increase the clas-
sification accuracy. Then trained the model with early and
later fusion to get the final feature information that was
semantic—level spot features [24]. A dilated inception embed-
ded attention module for extracting the multi-scale features
strengthening the performance of DISE-Net was proposed.
These modules learn the inter-channel relationship for input
feature maps that dense the connection strategy for model
building. The dataset of maize with all small leaf spots was
made by the authors [25]. Two automatic CNN models for
learning and extracting features were fused to identify infec-
tion in the input images. RL learnt the significant features of
the attention mechanism in the 5-fold cross-validation [26].
VGG19 extracted deep features using the pretrained model,
and partial least squares regression fused parallel extracted
features. PLS projection method selected the best discrim-
inant features for final recognition plugged into the tree
classifier [27]. Another novel approach was proposed. This
novel work uses multiple features to improve the classifica-
tion accuracy and reduce computational time. Hu-Moments,
local-Binary-Pattern, Color-Histograms and Haralick fea-
tures are considered for training and testing. Two classifiers
were used for fusion at the decision level, but the random
forest was more accurate than the decision tree classifier [28].
A comparison between different multi-fusion techniques for
detection and classification is shown in Table 1.

The authors considered an urgent need to develop a rapid
protocol that evaluates disease severity accurately. Three
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networks were used to assess the severity of apple diseases.
Apple leaf images were segmented into different backbone
portions. Then, PSPNET with MobileNetV2 network was
applied to the affected and segmented leaves [29]. An effec-
tive loss-fused CNN network was proposed to identify the
area with diseases of its type on plant leaves. This system
better combines two different loss functions to predict the
model’s final layer [30]. However, there still needs to be a
sufficient gap in this field to improve the accuracy of classi-
fying any disease using machine learning algorithms.

Ill. MULTI-MODEL FUSION NETWORK

The autonomous proposed approach holds significant poten-
tial for early detection of corn leaf diseases that have proac-
tive diseases management strategies towards enhance crop
yields. Once a potential issue is identified, farmers can take
prompt action, such as targeted pesticide application, to pre-
vent the spread of the disease. This proactive approach can
contribute to better overall disease management and higher
crop yields. We proposed a multi-model fusion network
(MMEF-Net) based on RL-block and PL-blocks 1 & 2 with
an embedded modified CNN parameter. For multi-category
plant leaf disease detection, an efficient and smart solution
is proposed by integrating three parallel individual sub net-
works through the inexpensive RL-block, PL-blocks 1 &
2 inspired by the deep learning framework of CNNs. In MMF-
Net, simple shapes, edges, and boundaries are automatically
extracted as rich features in the initial layers. In contrast,
high-level features such as complex shapes and complete
objects are extracted from deeper layers. These different sets
of features from different layers are fused at the decision
level to improve the performance. MMF-Net was an inte-
gration analysis scheme with a feed-forward neural network
with a plant leaf disease detection application. The train-
ing was performed on the heterogeneous dataset, a fusion
of multi-contextual features of images and environmental
parameters at the decision level. Specialized sensors cap-
ture environmental conditions surrounding the corn plants.
Transmit data from sensors to system for analysis using
multi-models architecture combining with image processing.
Analyzing images and environmental data to detect patterns
indicative of diseases by training the model. The architecture
of the designed framework is shown in Figure 2.We improved
the accuracy of the trained classifier by choosing environ-
mental parameter features such as temperature, humidity,
and air pressure and moisture level. A good compromise
was present between semantic and spatial, global and local
representation in images and numerical datasets. The last
convolution layer in the fused network responded to the
predicted results. Finally, the trained model was deployed
anywhere to provide end-user services, where the test image
was converted into the required dimensions and normalized
environmental parameters. Input is evaluated by assessing the
intensity level of the environment and performing plant leaf
disease detection by a trained classifier. The trained model
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TABLE 1. Comparison between different multi-contextual fusion and loT techniques used for plant leaf disease detection and classification.

Year Model Category Dataset Algorithm Classes Classifier OA(%)
2022, [15] PD R-NN Cucumber CNKI R-CNN 6 FInference 99.95
Rules

2021, [16] DCNN Rice Plant Selfmade CNN 5 Nadam Algo 98.58

2020, [17]  MCEN Different Selfmade CNN 77 SF 97.50
Crop

2021, [18] MCF-Net Different crop ~ CropDeepv2 CNN 60 GP 96.2
species

2022, [19] Two-stream Eggplant Selfmade CNN-SVM, CNN 9 SF 98.9

2022, [20] CNN-S Rice Plant L-VIS/NIR, S-VIS/NIR,  SVM, CNN 5 Cross- 94.7

L-Chl-FKC, S-Chl-FKC Entropy loss
2022, [21] Proposed Model ~ Tomato Leaf PlantVillage,Selfmade Mask R-CNN, 6 SF 98.9
ResNet34
2022, [22] Hy-CNN Grape Plant PlantVillage ENet B7 4 ENet B7 98.7
2020, [23] SCNN-KSVM, Apple, Grape, PlantVillage CNN, RF 4 SVM 99.0
SCNN-RF Maize
2020, [24] LSA-Net Apple Images provided by CNN 3 SVM 89.4
Apple Research Institute

2022,[25]  DISE-Net Maiz Selfmade CNN SGD 97.12

2020, [26] Residual-CNN Tomato PlantVillage CNN 4 SF 98.0

2021,[27]  PLS Tomato PlantVillage VGG19 ESD 91.67

Classifier

2020, [28] FGVR Reality Selfmade ResNet50+LSTM Muliple - 97.74
objects

2022, [29] PSNet, Unet Apple PlantVillage VGG,MNV2 5 96.41

2021, [30] Proposed Model ~ Potato,Tomat  PlantVillage CNN 5 SF 98.93

o

Remark: The used abreviations have the following meanings: CNN (convolutional neuro network), SVM (super vector machine),
LR (logistic regression), RF (random forest), DT (decision tree), SF (softmax funtion), MNV2 (mobile network v2), EN (Efficient
Net B7), GP (Gaussian probability) and FInference Rules (Fuzzy Inference Rules).

can process incoming data and providing quick feedback to
farmers for timely decision.

A. LAYERED ARCHITECTURE OF RL BLOCK

In deep learning, CNN is a multilayer extraordinary design
that extracts rich different patterns automatically from images
to produce features for decision. We developed the RL-block
with the cardinality concept of width dimension. ““Cardinal-
ity”” adjusts the width of convolutional layers with residual
knowledge by changing the training parameters. Further-
more, cardinality is considered an essential property for
getting better results instead of going deep [10]. The learning
patterns were based on aggregated feature maps derived from
the “16”° multilevel branches. For passing significant details
extracted in the initial layers, residual or skip connections
were employed to collect simple shapes like edges and bound-
aries or feature maps. RL-block used residual-like connec-
tions with different spatial ranges of ““16-cardinality x 4 d”’

VOLUME 12, 2024

for convolving to learn the hierarchy of multi-scale feature
aggregation from coarse-scale image-like edges in an orderly
fashion. In the first convolutional layer, we used 32 inputs
with kernel size “7 x 77 and stride = *“2”” which produced
64 feature maps followed by a subsampling of the max pool
layer with stride = ““2”. This stride value states the movement
of a sliding window. There were four modules piled up by
adding Conv2-x, Conv3-x, Conv4-x, Conv5-x, consisting of
residual blocks, in each module, there were two convolutional
layers with kernel size “3 x 3 and pad = *“2”. After each
convolutional layer, a batch normalization layer and a ReLu
function were present. Finally, a global average pool layer
was added. It formed 34 convolutional layers, with one first
convolutional layer and the final fully connected layer. There-
fore, we call it RL-block as presented in Figure 3 (a), a block
of skip connection with two convolutional layers (b). A block
of skip connection for RL-block with 16-cardinality is shown
in Figure 3 (c).
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A deep learning based Mulii-model Fusion Network (MMF-Net)
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FIGURE 2. Detail architecture of the MMF-Net, which comprises decision-level fusion of heterogeneous
data features.

Image(3,128,128)

Conv(32)kernel=7-7,stride=
2
MaxPool
(22} stride=2

Conv(64}kernel=3-3,pad=1 [ - 3,c=16

Conv(64)kernel=1x1 pad=2 | Conv2-x (b)
Conv({128)kernel=1x1,pad=2 | - 4,c=16 4\|zs.n in
Conv({128}kernel=3-3,pad=1 | Conv3-x G

Conv{256)kernel=1x1,pad=2 6,c=16
Conv(256)kernel=3-3,pad=1 | Convéd-x ‘ 128,1x1, 2 | | 128,1x1,2 J

16-
Cardinality

Conv{512}kernel=3-3,pad=1 | - 3, c=16

Conv{512)kernel=1x1,pad=2 | Conv5-x ‘ 128,3°3,1 I l 128,33, 1 |
Global Average Pool I
128 dout +
Fe(10) l
{a) c)

FIGURE 3. Layered architecture of RL-block based on ResNeXt model. In this model, the convolutional layers
are shown as channels, filter, pad (a), and a block of skip connection (RL-block) with two convolutional layers
(b), a block of RL with cardinality-16 (c).

B. LAYERED ACHITECTURE OF PL-BLOCK 1 dimension of “224 x 224 x3”’. The network filters finer gran-
The PL-block 1 is used to extract fine-grained features in ularity level information from the image’s perceptual area
diverse channels by reducing noise in fine scale images with a which is to be expanded. The input images are passed through
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a stack of convolutional layers. The architecture’s evaluation
study is done by increasing the layer depth to 16-19 weight
layers with a very small filter size of “3 x 3 which sub-
stantially improves the prior architectures. This small filter
size captures the notion of up-down and left-right center
with padding necessary for keeping the same resolution of
intermediate outputs. In this architecture, 13 convolutional
and 3 dense layers with activation function “ReLU” are
used. At the end, the final layer has an output, which is
equal to the number of classes that need to be identified.
In this configuration, we used a “1 x 1” filter as a linear
transformation followed by non-linearity. The spatial padding
of the convolution stride is 1 pixel, which preserves the spatial
resolution after convolution. Spatial max-pooling layers are
carried out over a “2 x 2 pixel window. At the end, the
three fully connected layers follow the heap of convolutional
layers. Soft-max layer is used for generating the final results.
The architecture of PL-block 1 (left) is shown in Figure 4.

C. LAYERED ARCHITECTURE OF PL-BLOCK 2

CNN is a very renowned feed-forward architecture. There
are three types of CNN such as 1D, 2D, and 3D. In 1D
CNN, the kernel slides along only one dimension, which
is favorable for real-time and time-series data [31]. There-
fore, we trained our plainly learning model on a real-time
numerical dataset by using 1D CNN based on AlexNet model
[7]. Tt achieved significant features on a trivial dataset by
applying some function to the input values coming from the
receptive field, each neuron computes the output values. It
consisted of seven layers of convolutional layers and one
fully connected layer to reduce overfitting by using dropout
layers. Tensor with two dimensions was created as input.
The first dimension represents the total number of features
in one record. We found that more meaningful features were
present in the form of neural responses at higher layers than
at lower layers. The last layer converted neural responses into
classification scores. We used a small convolutional window
shape of “3 x 3” with “pad=2" or “pad=1". First, Conv
layer with input 32 was followed by a max-pooling layer with
a convolutional window shape of “2 x 2”’. To overcome the
overfitting problem, we added the dropout layer after each
max-pooling layer. After the last dropout layer, there was only
one fully connected layer before decision-level fusion with
10 outputs. The architecture of PL-block 2 (right) is shown in
Figure 4.

D. MULTI-MODEL FUSION OF MULTI-CONTEXTUAL
FUSION

In order to solve the plant leaf disease detection problem,
fusion is a process to integrate multi-contextual features for
improving the performance of classification models of multi-
classes. It can be found that decision-level and feature-level
fusion methods are effective for improving the classification
results and increasing the accuracy of any classification appli-
cation. From the existing literature, decision-level fusion is
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FIGURE 4. Layered architecture of PL-blocks 1 & 2 based on the variant
form of VGG-16 and AlexNet-8. PL-block 1(left) and PL-block 2(right).

more favorable when the training datasets are different [32].
Therefore, the proposed multi-model intends to optimize the
multi-stream network with decision-level fusion of two dif-
ferent datasets: one is publically available and the other is
built according to the local environment. It is considered as
one, the stream carries image features according to standards,
and two, and the stream has environmental and contextual
features. Both streams independently gather various feature
maps during training and fuse at the end. It is a linear com-
bination of probability-based multiple classifiers that fuses
multi-contextual features at the decision level. This multi-
model is responsible for getting the final decision results
by mixing up the probability scores. Finally, the classifier
produced 4 final probable classes for the 4 definite labels.
Let V be an input dataset that has d(n) sample images, for
the sample image d(j) € V, where j = 1, 2, 3, 4, ...... n,
the output was generated by Conv-1 for one sample image
is shown mathematically as in (1), where x! is the resultant
features of Conv-1 with training factors, weights and bias.

x! :O‘(Z:l:ldil X w} xbl). e
For ResNeXt-34 model
FR =x"+x2+x3+.. +x5 )

The resultant output after “k” Conv layer is obtained by
putting the value of Eq. (1) into Eq. (2) accordingly

f@® =0 (3 dlxwlxb)
+o (Z:l:]diz xwl2 sz) +...
to (Z; db x wE x bk) . 3)
For AlexNet-8 model.
FA =x"+x2+33+.. +x 4)
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The resultant output after “k” Conv layer is obtained by
putting the value of Eq. (1) into Eq. (4) accordingly.

fay=o (3 dlxwlxb)
+o0o (Z;; a’i2 X wl-2 X b2)
+...+U(Z:l:1dikxwfxbk). (5)
For VGG-16 model.
f(V)=x1+x2+x3+...+xk. (6)

The resultant output after “k” Conv layer is obtained by
putting the value of Eq. (1) into Eq. (6) accordingly.

Fwy=o (3 df xwlxb')

+o (ijldiz x w? sz)
+...+o(2f:1d{‘xw{fxbk). %)

Final result after decision-level fusion of multi-contextual
model’s outputs is shown in (8).

F=fR)+fA+f). ®)

IV. EXPERIMENTAL DETAILS (A CASE STUDY)

In precision agriculture, plant leaf diseased datasets are more
challenging for detection and classification because of the
nature of the domain-specific images having inter-and intra-
claseses variances. So, corn leaf diseased datasets are con-
sidered as a case study to apply the proposed MMF-Net for
accurate recognition of the diseases.

A. DATASET ACQUISITION

This section covers the experimental setup of developing
MME-Net that includes different steps to put on for plant
leaf diseases detection and classification. Corn leaf diseased
datasets are available online, but a Sensor Network Hub
(SNH) setup is built for the acquisition of real-time datasets.
Thus, we trained multi-model based multi-contextual fusion
at decision level, and then deployed for testing.

Corn leaf disease dataset: ““Plant Village” dataset contains
over 50,000 leaf images of healthy and unhealthy plants of
14 crop species, and 38 types of plant diseases [33] but it
contains only 4188 images of corn leaf diseases. Corn leaf
diseases dataset can be increased by using different tech-
niques of augmentation. There are three corn leaf diseases
such as blight, common rust, grey leaf spot, and one healthy
form, as shown in Figure 5. Various portions of the leaf were
taken with full light, rotated to 360 degrees to get more data
images, and cropped unnecessary background with the leaf
tip pointed upwards at the experimental research stations. In
this dataset, plant pathologists labelled the plant leaf disease
for identification. For training, the proposed architecture used
the corn leaf disease image dataset with around 4,188 images.
Total number of images of a specific type in the corn leaf
disease dataset are shown in Table 2.
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FIGURE 5. Sample images of corn plant leaves from Plant Village dataset.

TABLE 2. Corn leaf disease dataset separated from Plant Village.

Corn leaf diseases name Number of images

Blight 1145
Common Rust 1306
Gray Leaf Spot 575

Healthy 1162
Total 4188

Real-Time Dataset: For getting the real-time environmen-
tal parameters, we built a SNH with electronic components
and low-cost sensing device that detects changes in its sur-
roundings. SNH is utilized to sense environmental factors
such as soil moisture level, temperature, atmospheric pres-
sure, and humidity, which act like a hub to collect the data
from the field to make a numerical dataset. All four sensors
and “Bluetooth Module are wired up to Arduino micro-
controller for sensing field data. All sensors except the soil
moisture sensor are connected to digital pins. A program
code in Arduino software (IDE) for getting sensor data on
a serial monitor is uploaded. At this time, we ran PLX-
DAQ software that copied sensor data from a serial port and
transmitted it into Excel file (csv) for saving record entries
to form the numerical dataset. The utilization of IoT sensors
(SNH) for data collection in the context of corn leaf disease
detection is a critical aspect of the proposed approach that
is shown in Figure 6. For data acquisition, we deployed
SNH in different sites of corn plants locally at different time
intervals, day and night. We executed the experiment by sens-
ing the real-time environmental information. We obtained
four climate factors at low, medium, and extreme ranges in
different weather conditions. It was recorded for 40 days
(100/day) to build the numerical dataset for further use, which
is around about 4,000 records. We used a working range
of environmental parameters for corn leaf disease classifica-
tion that was designed after learning from related literature
[34] and local pathologists. Local pathologists suggested
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TABLE 3. Working rules applied for corn leaf disease environmental parameter-based features.

Disease Name Class Temperature Atmospheric Soil Moisture  Humidity
1d Range (°C) Pressure Range (hPa) Range (%) Range (%)
Blight 0 23-35 900 - 1250 75-82 >80
Common Rust 1 6.8-22.9 335-990 65-179 60 — 82
Gray Leaf Spot 2 21-29 390 - 989 70 -80 50-70
Healthy 3 >40 745 — 1300 75 -85 55-170

environmental parameters’ working ranges according to the
local climate. These working rules are shown in Table 3.

Data  Normalization &  Preparation:  Numerical
environmental-based data must be normalized before the
training process because it might contain varying degrees of
units, noise and missing values. Normalization is a prepro-
cessing technique applied to change the values of numeric
columns into a common scale without changing the range of
values, then it is used for further decision making. Normal-
ization is required only when the input dataset has different
feature ranges [34]. Therefore, we applied min-max data
normalization technique on real- time numerical raw dataset
because our numerical dataset has different feature value
ranges. It reconstructed our numerical dataset into a reformed
shape which will increase the decision-making performance.
For this purpose, we used the sklearn package and ““‘transform
()” function for data normalization. Both datasets are sepa-
rated randomly into training and testing datasets with 75-25%
ratio. The language function “train_test_split ()"’ was used to
split at this ratio. It meant the training dataset contained 3,141
images and the same numerical records. The testing dataset
consisted of 1,048 images and the same numerical records.
The quality of the dataset was not compromised for getting
better recognition results. Table 4 shows the sample data of
the numerical dataset.

TABLE 4. Environmental parameter-based numerical sample dataset
collected by SNH module used for corn leaf disease classification.

Record Temperature | Humidity | Soil Air

No. Moisture | Pressure
1 26.00 59.00 97.00 449.14
2 26.00 50.00 97.00 448.00
3 28.00 45.00 94.00 456.00
4 28.00 43.00 94.00 490.45
5 29.00 42.00 94.00 978.00
6 24.00 39.00 80.00 1001.00

B. MULTI-MODEL TRAINING

In this phase, it is needed to construct a multi-model network
by using two different types of datasets for developing a
trained classifier. Initially, the diseased images are resized
into “128 x 128x3” and “224 x 224x3” dimensions for
the RL-block and PL-block 1. The field numeric datasets of
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FIGURE 6. SNH with HC-05(Bluetooth Module), TMP- 36 (Temperature
sensor), DHT-11 (Humidity sensor) and FC-28 (Soil Moisture sensor), and
BMP-180 (Air pressure sensor).

shape “1 x 4 are used for PL-block 2. The whole dataset is
divided into batches and covers every sample in each batch.
After completing this process with all data examples for all
batches, one epoch is concluded. In this work, we divided
the image and numeric datasets into ““32” batch sizes with
“50 epochs”. After 45 epochs, our proposed multi-model
starts to converge and tends to be stable at “50 epochs”.
This plant leaf disease detection task is accomplished through
three stream training models independently. Three sets of
final features, extracted from the last fully connected layer
and generated ‘10’ outputs at the last fully connected layer,
are used as input for the “softmax layer”. Each model is
generated decision weights from the accurate classification
rate and obtained top-4 possible classes from the probabilities
which are computed by softmax layer. The multiple softmax
layers of three independent streams are used to obtain the
top-4 possible classes. Online diseases dataset are classi-
fied according to the classification labels and environmental
parameters features are classified according to the working
range. After learning, each classification category is cor-
responded to each other of the online and environmental
parameters dataset. Before decision-level fusion, the number
of outputs from each softmax should be equal. The weighted
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average ensembling were accomplished through ‘“Voting-
Classifier()” function with soft voting parameters that predict
class membership probabilities. We used the *“Cross entropy”’
loss function because its value was always towards positive
for multiclass and it did not slow down the learning process.
The model is optimized with paramount values of weight
by using an optimizing function “AdamOptimizer” with a
learning rate “le-4”. At the end, the initialized learning
parameters were saved to form the weight file of the trained
classifier.

V. RESULTS

The main complexity is to find the effective techniques
for improving the accuracy of plant leaf disease detection
system in real-world scenarios that would be operational
on heterogeneous datasets. As a result, we reconnoiter the
online pre-processed and real-life features for decision level
fusion for developing a smart solution of plant leaf diseases
detection in PA. We are integrating three parallel stream
architectures for plant leaf disease classification and learn
end-to-end learning parameters with forward propagation of
three stream models. To evaluate our multiclass proposed
architecture, performance metrics are discussed in terms
of “accuracy”. To improve the accuracy, we fused multi-
contextual features at the decision level and performed an
appropriate experiment by changing the architecture, batch
size value, and total number of epochs. The training accuracy
started from 96.85%, 97.80% to 98.48%, and 99.23% at
the first to 50 epochs. After every epoch, different model
streams are evaluated to test the testing images and numerical
data and print the loss and accuracy curves. The training
vs test accuracy and training vs test loss learning curves of
RL-block and PL-blocks 1 & 2 before multi-contextual fusion
at decision level are shown in Figure 7 (1% and 2™ Column)
with 97.80% and 98.48% accuracy respectively. The training
vs test accuracy and training vs test loss learning curves
are plotted after fusion of multi-contextual features at the
decision level and represented in Figure 7 (3" Column) with
99.23% accuracy. After combining the heterogeneous data,
the final accuracy of our proposed multi-model network was
improved by 0.75%. The proposed multi-model got better
results after multi-contextual fusion at decision level with
accuracy 99.23% on heterogeneous datasets. In addition to
this, the performance of a recognition model can be described
by a table named as confusion matrix. It is a very effec-
tive tool that can examine all probable results on test data,
where the true values of a recognition model are known. The
confusion matrix with the true label and predicted label for
corn leaf disease dataset and numerical dataset before fusion
with 50 epochs as shown in Figure 8 (a, b, ¢). The confusion
matrix with the true label and predicted label for corn leaf
disease dataset after decision-level fusion with 50 epochs
as shown in Figure 8 (d). The overall accuracy on test-
ing dataset instances separated from images and numerical
dataset is shown in Table 5. In the final confusion matrix,
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after fusion of multi-contextual features, presenting, the total
“Predicted” classes were 1,048 out of which 8 were pre-
dicted incorrectly. The fused unified model has an accuracy
of 100% for the healthy class, above 99% for 2 classes, and
over 98% for 1 class. Classification accuracy of “Blight”,
“Common Rust”, “Gray Leaf spot”, and “Healthy” have
reached 99.30%, 98.77%, 100%, and 99.31%, respectively
and found that the fusion of multi-contextual at the decision
level of three stream models was a natural way to find adapted
features, that improved the significant performance of the
proposed framework. Table 6 shows the total testing dataset
instances.

We proposed a multi-model feature extraction network
(MMF-Net) that integrates with RL-block and PL-blocks 1
& 2. It is trained on images and numerical datasets that per-
form classification better in determining the correct condition
of plant leaf disease with great accuracy. Accuracy is the ratio
of correctly predicted instances to the total number of input
instances. Here, the combination of cardinality and plainly
learning can investigate its performed accuracy by comparing
it with various CNN models which were used for corn leaf
disease classification. These models used the same dataset
with the different number of classes. MMF-Net is signifi-
cantly ahead of the six CNN approaches, with the highest
accuracy of 99.23%. It can be seen from Table 7, AlexNet
[35] has only 0.07% lower accuracy than our model, but this
model can classify only one disease to one healthy class.
Table 7 shows the comparative accuracy with total number
of images dataset. All the cited models had small sample
size except one given [37] but the proposed framework has
higher accuracy than others instead of small dataset instances
due to the fusion of images and environmental features at
decision level. The effectiveness of the proposed strategy
in detecting corn leaf diseases is increased by using field
sensors and images at the same time. Its comparison to other
methods shows the evaluation results and accuracy of various
deep learning models for early corn leaf disease detection
system. Table 7 has shown improved accuracy of proposed
method in identifying diseases symptoms by reducing false
positives and negatives as compared to traditional methods
which are subjective, time-consuming, and less sensitive to
early stage symptoms. On the other side, based on our results,
it can be seen from Table 7, our proposed framework has
great robustness and well predicts three corn leaf diseases
with one healthy class. It is proven that our proposed frame-
work has better performance with a high diagnosis accuracy.
The potential limitation in timeliness is not issue due to
cloud computing facility. Implementing a plant leaf diseases
detection system in practical field management involves a
combination of technology deployment, data collection, and
decision making processes. Enable continuous monitoring of
the field. Set up necessary IoT infrastructure with camera to
collect data from the field. Implement real time data stream-
ing from IoT devices to the central monitoring system by
using online edge computing. Set up alerts or notifications for
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FIGURE 7. (In the 15t Column) Training vs Test Accuracy and Training vs Test Loss for corn leaf disease image dataset by using
RL-block before fusion. (In the 2"d Column) Training vs Test Accuracy and Training vs Test Loss for numerical dataset by using
PL-block 1 before fusion. (In the 3'9 Column) Training vs Test Accuracy and Training vs Test loss for multi-contextual dataset of corn
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FIGURE 8. Confusion matrix generated by three stream models based on corn leaf disease dataset with ratio (75-25) before decision-level fusion with
multi-contextual features. The total number of epochs are 50 for training the individual model stream. Confusion matrix (a) is based on the corn leaf
disease image dataset of Plant Village with coarse scale dimensions (coarse scale features) before fusion. Confusion matrix (b) is based on the corn leaf
disease image dataset of Plant Village with fine scale dimensions (Fine scale features) before fusion. Confusion matrix (c) is based on the environmental
parameters (Features) dataset collected from corn fields before fusion. Confusion Matrix (d) generated by the proposed model after multi-contextual
fusion based on multiple features when the total number of epochs are 50. In every confusion matrix figure, where BL stands for Blight, CR stands for
Common Rust, G stands for Gray Leaf Spot and HE stands for Healthy.

TABLE 5. Overall accuracy on testing dataset instances separated from images and numerical dataset.

Dataset Dimension Dataset Accuracy
Images with coarse-scale features before 128 x 128 x3 Plant village 96.85%
fusion

Images with fine-scale features before 224 x 224 %3 Plant Village 97.80%
fusion

Numerical environmental-based features 1 x4 Numerical 98.48%
before fusion

Multi contextual features after fusion 10-4 Both 99.23%

immediate response to detected diseases. Integrate the disease
detection model with a user friendly interface accessible to
farmers. Generate reports or visualizations to communicate

the status of the crops.
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A. LIMITATIONS AND FUTURE WORK
Some limitations associated with implementing MMF-Net
which are discussed as: Other important environmental

aspects that may play an important role for getting high
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TABLE 6. Total testing dataset instances separated from Plant Village with true & false positive rate.

Corn leaf Total Number Correct Wrong True Positive  False Overall

disease of Instances Predicted Predicted Rate (%) Positive Accuracy
Instances Instances Rate (%)

Blight 287 285 2 99.30 0.70

Common Rust 326 322 4 98.77 1.23

Gray Leaf Spot 144 0 0 100 0 99.23%

Healthy 291 289 2 99.31 0.69

TABLE 7. Comparison of different CNN models used for classification of corn leaf disease on the Plant village dataset while the classification classes are

different.

Paper Publisher Year Model Classes Input OA (%)
Images

[35] Springer 2020 AlexNet 2 2292 99.16

[36] CSSE 2020 Proposed 4 4354 98.15
CNN Model

[37] IEEE 2022 ResNet152 4 15408 97.49
(CNN)

[38] MDPI 2022 GLS_net(Mas 4 3852 94.1
kRCNN)

[39] Springer 2021 DenseNet121( 4 4188 91.49
CNN)

[40] Elsevier 2022 CBAM 3 - 98.44

MMF-Net (Our proposed model) 4 4188 99.23

prediction results are not considered. For real-time prediction,
internet availability and online mechanism with edge comput-
ing are not handled yet. The need for further improvements
in the proposed approach are:

o More advancements in algorithms are required through
regular updates with incorporating more diverse
datasets to enhance accuracy, efficiency, and processing
capabilities.

o Further integration of additional data modalities, spec-
tral data, and genetic information can provide a more
comprehensive understating of plant health.

« An online notification system with edge computing can
improve the on-site efficiency of the system.

VI. CONCLUSION

Our target is to develop a multi-model network with the fusion
of multi-contextual networks that is automatically exploited
with the CNN strategies with some variant forms. This is
a general idea based on the integration of RL-block and
PL-blocks 1 & 2 with width cardinality and environmental
parameters for learning effective feature sets that are fused
at the decision level. These feature sets are identified at the
global and local level for effectiveness of the proposed mod-
eling accuracy. The proposed model helps to select learning
parameters for receptive fields to look at feature maps at
different layers. In addition, a deep multi-model network
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is designed to fuse the contextual features of 1D as well
as visual features of 2D CNN and is generating potential
results for plant leaf disease detection and classification in
any application. The experiment results proved that MMF-
Net with fused features is considerably better than without
fused feature methodology in terms of accuracy. MMF-Net is
able to recognize corn leaf diseases with an overall accuracy
0f 99.23% and the improved accuracy is due to training on the
combination of heterogeneous datasets. Finally, we explored
the fused detection features to establish a more accurate, sta-
ble, and comprehensive plant leaf diseases detection model.
Such a model could be an operative solution to classify
diseases in agriculture or health sectors and be utilized in real-
world IoT applications.
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