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ABSTRACT With recent advancements in wearable devices and the Internet of Things (IoT), human
activity recognition (HAR) has attracted increasing interest in the wearable technology market. However,
for sensor-based HAR, collecting sufficient labeled data for deep neural network learning is difficult
because experts must find visually recognizable patterns in time-series data. In addition, collecting data
is difficult due to privacy issues. To overcome these limitations, self-supervised learning (SSL)-based
HAR methods have recently been proposed; these can learn representations without using labeled data.
However, such methods only utilize sensor data and do not include the sensor wearer’s biometric information.
A learning method that excludes biometric information can identify typical movement patterns but cannot
learn customized movement patterns effectively. Thus, in this paper, we proposed the Temporal Fusion
Contrastive Learning (TFCL) method, which considers a sensor wearer’s biometric information while
training. Experimental results demonstrate that, when fine-tuned with biometric information, the proposed
TFCL method obtained the highest F1 score of 0.9791 and 0.7433 on the DLR and MobiAct datasets,
respectively. Furthermore, the results obtained when the proposed TFCL method was used to learn the
representation and then applied to the downstream task were similar to or better than those obtained using
supervised learning from scratch. These results indicate that representations can be learned effectively
through TFCL. The experimental code can be found on GitHub at https://github.com/IKKIMO0O0/temporal-
fusion-contrastive-learning

INDEX TERMS Activity recognition, deep learning, contrastive learning, self-supervised learning, feature
fusion, time series analysis, anomaly detection.

I. INTRODUCTION

A. BACKGROUND

Wearable technologies are gaining widespread interest due to
various advancements in wearable devices and the Internet
of Things (IoT). The demand for wearable technology has
increased due to increasing interest in personal health in light
of the ongoing COVID-19 pandemic [1]. Market research
analysis by Grand View Research indicates that the global
wearable technology market was worth USD 40.65 billion in
2020, and this market is expected to grow between 2021 and
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2028 at an average annual rate of 13.8% [1]. Individuals
become concerned for their health by periodically observing
their health conditions in order to improve their quality of
life, and human activity recognition (HAR) is a representative
example. In addition, according to the Centers for Disease
Control and Prevention (CDC), a public health agency of
the United States, the American the elderly population is
expected to increase from 52 million in 2018 to 73 million in
2030 [2]. With an aging of society, the health and well-being
of the elderly has attracted increased interest. In particular,
smart elderly care using sensor-based wearable devices is
becoming popular as a way to improve the lifestyle of elderly
people. Such devices can be used to predict and issue timely
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warnings for falls or other unexpected events that may pose
risks to the elderly [3].

B. CHALLENGES

Deep neural network (DNN)-based deep learning methods
that utilize data collected using wearable devices have been
proposed previously. A large dataset with labeled data is
required to train a DNN in supervised learning approach.
In contrast to computer vision datasets, the amount of labeled
data in most real-world time-series datasets is limited because
it is more difficult to identify visually observable patterns
in time-series data than in computer vision data; experts
must find such patterns, which is quite expensive and time
consuming. Thus, self-supervised learning (SSL), which was
proposed in the computer vision field, is now being applied
to time-series data.

C. RESEARCH MOTIVATION

Recently, studies have proven that SSL methods can be
employed to learn representations effectively using unlabeled
data. Note that semi-supervised learning only uses some
labels. In contrast, SSL learns the representation without
using labels. After generating a pretrained model, the learned
representation is applied to a downstream task. Chen et al. [4]
used a pretrained self-supervised model through the proposed
SimCLR, which is a simple framework to realize contrastive
learning of visual representations, and they proved that their
model can perform as well as supervised models even if
labeled data are lacking. In addition, contrastive learning
has been verified as being capable of learning invariant
representations in the computer vision field [5], [6], [7], [8].

However, the augmentation method proposed in the
computer vision domain has limitations in that it cannot be
applied as-is to time-series data. This is because temporal
dependency is an important factor in time-series data. Thus,
various augmentation methods have been proposed in recent
time-series data-based SSL methods [9], [10], [11].

In addition, SSL-based methods have been proposed for
HAR tasks using sensor data. However, in HAR, data labeling
is difficult due to privacy and security issues in the data
collection process. Furthermore, the labeling process is time
intensive. Thus, the labeling process is slow relative to the
data collection speed, and only a small amount of labeled data
is available publicly. To overcome these limitations, recent
studies have applied SSL to HAR [11], [12], [13].

D. CONTRIBUTION

Previously proposed methods only used movement infor-
mation, and they excluded biometric information. When
the wearer’s biometric information is excluded, patterns
of general movement can be learned; however, movement
patterns customized to the wearer cannot be learned easily.
To overcome the problems associated with the limited
amount of labeled data for HAR and to learn individual
movement patterns, we propose SSL-based Temporal Fusion
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Contrastive Learning (TFCL) method. Figure 1 shows the
overall architecture of the proposed TFCL method. The
experimental results demonstrate that when our TFCL is
used, activity recognition is as effective as when supervised
learning is used. In addition, when representations are learned
with biometric information, movements can be detected more
accurately than the absence of the sensor wearer’s biometric
information.

Our primary contributions are summarized as follows.

« We propose the TFCL method, which is a contrastive
learning method for HAR based on SSL using sensor
data with a small amount of labeled data.

o We quantitatively verified that the sensor wearer’s
biometric information is required for more accurate
action recognition than the absence of the sensor
wearer’s biometric information.

o We propose a framework to conduct extensive exper-
iments with two datasets that include sensor wearers’
biometric information. The experimental results confirm
that representations of TFCL method were learned
effectively.

Il. RELATED WORK

A. CONTRASTIVE LEARNING FOR COMPUTER VISION AND
TIME SERIES

It has been proven that useful representations can be learned,
and many advancements have been made in SSL and applied
to downstream tasks in the computer vision field. For
example, contrastive learning is becoming primary research
topic in the machine learning field because it provides a
way to learn invariant representation through advanced data
augmentation. Various SSL methods that utilize contrastive
learning have been proposed in the computer vision field.
He et al. [6] proposed MoCo, which uses a momentum
encoder to learn the representation of negative pairs acquired
through a memory bank. Chen et al. [4] proposed SimCLR,
which is a contrastive learning method that replaces the
momentum encoder while using the negative pairs of a
large batch. Grill et al. [7] developed Bootstrap Your Own
Latent (BYOL), a contrastive learning method that did not use
negative samples. Chen and He [8] proposed SimSiam, which
is a Siamese network-based method without using negative
samples and achieved state-of-the-art performance.

As studies began demonstrating the effectiveness of
contrastive learning in the computer vision field, researchers
started applying contrastive learning to time-series data.
For example, Oord et al. [14] proposed contrastive predictive
coding (CPC) based on a predictive coding theory proposed in
the neuro-engineering field. For the encoder model, they used
a one-dimensional (1D) convolutional neural network (CNN)
to compress the input data and applied compressed latent
representations to an autoregressive model to predict the
values of multiple steps in the future. Tonekaboni et al. [10]
applied contrastive learning, in which a Gaussian distribution
was used to approximate a neighborhood of time series;
contexts obtained from the same and other distributions were
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FIGURE 1. Overview of temporal fusion contrastive learning.

set as positive and negative samples, respectively. Eldele et
al. [9] proposed a contrastive learning method using weak and
strong augmentation methods.

B. CONTRASTIVE LEARNING IN HAR

Most existing HAR studies are based on supervised learn-
ing [15], [16], [17], [18], [19]. With recent developments
in SSL-based on time-series data, attempts have been made
to apply SSL to HAR tasks to overcome the limitations
and difficulties associated with labeling data. For example,
Tang et al. [11] investigated the efficiency of contrastive
learning for the first time in a sensor-based HAR task. They
employed the SImCLR [4] as a visual representation learning
method, and a data augmentation method for time-series
sensor data instead of the image augmentation operator.
Additionally, eight popular time-series data augmentation
methods were used to compare experimental results between
augmentation methods. Khaertdinov et al. [12] also used the
SimCLR framework; however, they combined a 1D CNN and
the transformer’s encoder part as a backbone encoder model.
Furthermore, they configured their model to randomly select
an augmentation method from five time-series augmentation
methods. Haresamudram et al. [13] applied the CPC [14]
framework to HAR. They used a 1D CNN as the encoder and
applied a gated recurrent unit (GRU) for the autoregressive
network.

However, all of these methods excluded the sensor wearer’s
human biometric information and used only the sensor
data. Therefore, Considering that movement patterns vary
by age, gender, height, and weight, the wearer’s biometric
information is emerged to provide customized activity
recognition.

lll. METHODS

In the following, we describe the proposed TFCL method in
detail. The dataset used in our experiment contains biometric
information about sensor wearers i € /. Each sensor wearer i
performs a specific movement for time ¢ € [0, T;], and each
dataset contains m, sensor inputs, where x; ; € R, and m;
sensor wearer’s biometric information, where s; € R,

The overall flow of the proposed architecture is shown
in figure 2. The encoder of the model consists of an
observed encoder that processes sensor data information and
a static encoder that processes the sensor wearers’ biometric
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static information. Two augmentations are generated using
the observed values measured through the sensor, and the
generated augmentations are passed to the observed encoder.
For the static input value that represents the biometric
information of the sensor wearer, important information is
extracted, and this extracted static information is included by
adding to the input and output values of the observed encoder,
respectively. Then, using the context vector ¢;, which is
the output value of the autoregressive model, a predicted
value for t € [t + 1,t + k] is generated and compared
to the actual value. Using the values obtained by passing
the context vector ¢, through the projection head, we learn
to maximize the similarity of augmentation from the same
sample and minimize the similarity of augmentation from
different samples.

A. TIME SERIES DATA AUGMENTATION
A total of 10 time series data augmentation methods
were used in our experiment. Here, we compared the
performance of various augmentation methods by applying
all of the previous time series methods. We implemented
eight augmentation methods used by Tangetal. [11] and
Saeed et al. [20], and two methods used by Eldele et al. [9].
These 10 augmentation methods are summarized in Table 1.
For each input sample x;, two augmentation methods are
selected from 7 to create x;' ~ 7 and x{2 ~ 7.

B. OBSERVED ENCODER

We used a modification of the three-block CNN proposed
by Wang et al. [22] as the observed encoder. The observed
encoder uses each of x{' and x;? with augmentations
as input values. As shown in Equation 1, the observed
encoder maps the given input value x; to a high-order latent
representation z; = fyps enc(X). Here, each convolutional
block comprises a 1D CNN, 1D batch normalization layer,
and a rectified linear unit (ReLU) [23], where only the first
convolutional block performs max pooling. After passing all
convolutional blocks, global average pooling is performed.

a a
Z; ! = Jfobs_enc(X; O

Z?Z = fobs_enc (X?Z ) (D

During this process, the measured value of each sensor x;,
and s;, i.e., the biometric information of the sensor wearer,
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FIGURE 3. Architecture of observed encoder.

are used together as the input values to fyps enc. The, the
biometric information of the sensor wearer is added with
the output value z; of the observed encoder f,ps onc and
passed through a Gated Residual Network (GRN) block. The
GRN block strengthens the temporal features along with the
use of static information (biometric information). The GRN
block is explained in further detail in section III-C. The
result according to each augmentation method is as shown
in Equation 2.

Z" = GRN (z%, s;),
7 = GRN(z%, s)) 2)
C. STATIC ENCODER

The static encoder consists of a static embedding layer,
a static variable selection layer, and a GRN layer. The static
variable selection and the GRN layers are constructed using
the method proposed by Lim et al. [24]. First, when the static
input value s; comes in, a transformation is performed accord-
ing to the type of input value. Static input value s; can be a
categorical variable or a real variable. A categorical variable
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can be classified according to categories, e.g., gender, and a
real variable takes continuous values, e.g., height and weight.
Here, embedding is performed for categorical variables, and
linear transformation for continuous variables. Flattening the
transformed input & € R%model can be expressed as & =
[ Mmoo & (m9)] and the flattened output E; is taken as the
input value of the static variable selection layer.

The static variable selection layer is composed of GRN
blocks, as shown in figure 4. Note that the composition of
the GRN block is shown in figure 2. The GRN block uses the
residual connection and gating layer together to drive the flow
of important information. The GRN is composed of two linear
layers using the initial input a and additional information v as
inputs.

o] = ELU(Wl,wa + WZ,wb + bl,w)
02 = W3,401 + b3

GRN ,(a, v) = LayerNorm(a + GLU ,(02)) 3)

In Equation 3, ELU is the Exponential Linear Unit activation
function [25] and LayerNorm means layer normalization.
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TABLE 1. Augmentation method details.

Jitter A random noise signal with 0 mean and 0.05
standard deviation is added to the data sam-
ples:

x% = x + random noise

Scale Scaling changes the magnitude of the sample
using a randomly selected scalar value p:
xt=x-p

Rotation Rotating the axis randomly using the rotation
matrix R on the 3D axis induces the repre-
sentation learning irrespective of the sensor’s

attachment position:

x*=xx%R

Invert Sample value is multiplied by —1 to obtain
a vertical flip or mirror image of the input
signal:
x4 = —x

Time Flip Sample is flipped along the time axis to cre-

ate a full mirror image of the original signal:
x = flip(x)

A new time series is generated by dividing
the signal into four sub-intervals and subse-
quently permuting them together:

x% = permute(x,# of segments)

Permutation

Warp A random cubic spline with four fixed points
is created and used to set the deviation of the
time flow rate[21]. Subsequently, stretching
and warping are performed according to the
cubic spline:

CS = CubicSplinelnterpolation(x, 4)
x* = Warp(x, CS)

Shuffle Random channel shuffling based on axis di-
mension is performed:

x® = Shuffle(x)

Jitter and Scale A random variable is added to the signal, and
the magnitude is scaled:

x* = (x + random noise) - p

Permutation and Jitter Signal is divided into subsections; subse-
quently, jitter is performed:
x4 = permute(x,# of segments) +
random noise

The intermediate gating layer, i.g., a Gated Linear Unit
(GLU) [26], provides the flexibility to suppress unnecessary
parts. The GLU layer is composed as shown in Equation 4,
which is used to quantify the importance of the original
input a.

GLU(U(V) = Singid(W4,wy + b4,w) O} (WS,a)y + bS,a))
4)

The variable selection layer is shown in Equation 5. Here,
the weight vy € R" of the variable selection layer is
formed by inputting E to the GRN block and passing it
through the softmax layer. We introduce non-linearity by
passing x through each GRN block. The last processed
value is multiplied by a weight, and then all of the data-driven
features are integrated to form the output of the variable
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selection layer.
vy = softmax(GRN , (E))
EG) — - (g0
EV = GRNg, (£

£= Zv@é“’ )
j=1

Finally, the static context variable and static enrichment
variable are extracted by applying two GRN blocks, respec-
tively, to the output of the variable selection layer. Each
GRN block extracts a static context vector, and the extracted
variables perform different roles. The static context variable
is used with the observation values x; ; collected by the sensor
in fyps_enc and is used to extract temporal features. The static
enrichment variable is used to enhance the temporal features
with the extracted latent representation by enhancing the
static features of the sensor wearer.

D. TEMPORAL FUSION CONTRASTIVE LEARNING (TFCL)
The TFCL block consists of two main parts: First, next
step prediction is performed using the shared information
suggested by CPC [14]. Then, using the given latent
representation z, the autoregressive model g, integrates
all latent representations z<;. We create the context latent
representation ¢; = gur(2<f),¢; € R". Here, h represents
the hidden dimension of g,,.. That is, the future observation
value x;4; is not predicted directly using the generative
model pi (x: 4« |ct), but the density ratio is modeled to preserve
the mutual information between x;44 and ¢;. In order to pre-
dict the future time step, the mutual information of x;4; and ¢,
is calculated using the log-bilinear model, and f (x/+«, ¢;) =
exp(thJrk Wic;) is used to preserve it. Here, Wy means a linear
function that maps c; to the same dimension as z.

In our experiment, cross-view prediction is attempted using
¢! and c;?, which are generated through two augmentation
methods, i.e., c?l is used to predict the future timestep of
g%j € [t + 1t + k], and ¢, £',j € [t + 1,1 + k]
is used to predict the future timestep. For the loss function,
we use the InfoNCE loss function [14], which is based
on NCE loss function [27]. Through the loss function,
we attempt to maximize the dot product of values from
different samples while minimizing the dot product of the
predicted representation from the same samples. Equation 6
is applied to each augmentation method, where N ; means
mini-batch. The loss function is expressed as follows:

exp((z )T Wici?)

wo, XD T Wic?)

| X
Lpe=—2 2 log (6)

ORSS

For the autoregressive model, a modified encoder structure

of the transformer is used [9]. The autoregressive model
consists of multiple multi-head attention (MHA) mechanisms
with a multi-layer perceptron (MLP). Unlike the existing
transformer [28], which passes through the MHA and
proceeds with normalization, a pre-norm residual connection
is applied to realize a stable gradient flow [29].
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TABLE 2. Description of datasets used in experiments (A: accelerometer,
G: gyroscope).

Dataset Sensor Type #Class Type of Biometric Information
Person ID Age Gender Height Weight
DLR [31] A, G 5 v v v v
MobiAct [32] A,G 20 v v v v v

The autoregressive model proceeds in the following order.
First, we use Z<; in the linear function to map the feature
to the size of the hidden dimension: ¢ = WryusZ<;. In the
autoregressive model, in addition to the input value ¢, we use
a combination of tokens ¢ € R inspired by the BERT [30]:
Yo = [c; ¢]. Then, ¥ is passed through the L transformer
block. Finally, the 0" value of the final output is set as the
context vector ¢; = I/IB and then used as the input value of
the projection head layer.

Next, we add a non-linear projection head to learn dis-
criminative representations. As suggested by Chen et al. [4]
in SimCLR, we apply non-linear transformation to the
context. Also, using normalized temperature scaled cross
entropy (NT-Xent) loss [33], we attempt to maximize the
similarity of two augmented views from the same sample and
minimize the similarity of augmented views from different
samples.

Two augmentations are performed within a given number
of mini-batches N; thus, each mini-batch has a total of 2\
contexts. For the context vector cf , cﬂ‘+ means a positive
sample for c’,‘. That is, chr is a context vector augmented
differently in the same sample as cX, and (cF, cf+) is a
positive pair. On the other hand, (2N — 2) contexts except
for two positive pairs are considered negative samples.
The combination of ¢~ and ¢ extracted from (2N — 2)
is a negative pair. Equation 7 defines the NT-Xent loss
function [33].

exp(sim(cl,‘, cf+)/r)

N
Lyr = =) log—55 )
i=1 Z

=¥ 1 Limzkjexp(sim(ct, ¢)/7)

where sim(u, v) = u’ v/||ul|||v|| denotes the cosine similarity
between two vectors u and v. 1, € {0, 1} is an indicator
function only for m # k, and t is called the annealing
schedule.
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The overall loss function uses predictive contrastive loss
and NT-Xent loss [33] according to each augmentation and is
defined as follows:

L =MLy + Lpe) + Aa(Lyr) (®)

where A1 and A, are scalar hyper-parameter values that
determine the weight of each error.

IV. EXPERIMENTAL DESIGN

A. USED DATASETS

In this section, we describe the datasets used in the
experiment and the preprocessing method. We used the
publicly available MobiAct [32] and DLR [31] datasets.
Table 2 details the experimental datasets, the sensor used to
collect the data, the number of classes in each dataset, and the
type of biometric information.

1) DLR DATASET

The DLR dataset [31] was collected using inertial mea-
surement unit (IMU) sensors attached to the subject’s belt.
Data were acquired from 19 subjects and included a total of
7 classes. We divided the data by the actions performed by
each subject and included the subject’s personal biometric
information. Each file is labeled with a single subject
performing multiple actions and the actions performed
at each sample point. The sensor data included a three-
axis accelerometer, three-axis gyroscope, and three-axis
magnitude. In terms of personal biometric information, this
dataset includes gender, age, and height information.

Data preprocessing was performed in the following order.
First, the data for 50%, 17%, and 33% of people were
used as training, validation, and testing datasets, respectively.
For the sensor data, the three-axis accelerometer and three-
axis gyroscope data were used. After annotating the data by
behavior for each file, data exceeding the average time of all
sequences(20 s) was cut into subsequences.

2) MOBIACT DATASET

The MobiAct dataset [32] was collected using a smartphone
placed in the pocket of the subjects’ pants. Here, the data
were collected from 67 subjects and included 4 types of
falls and 16 activities of daily living (ADL). The files were
divided according to the actions performed by each subject,
and gender, age, height, and weight are provided as personal
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TABLE 3. Experimental results on downstream tasks with and without biometric information (W/: with, W/0: without, Info.: information).

Dataset | Data Format | Tasks | F1Score Precision Recall Accuracy
Fine Tuning 0.9791 0.9800 0.9892 0.9714
W/ biometric Info. Training a Linear Classifier 0.8726 0.8700 0.7754 0.7341
DLR Supervised Learning 0.9450 0.9300 0.9399 0.9309
Fine Tuning 0.9678 0.9700 0.9842 0.9571
W/O biometric Info. | Training a Linear Classifier 0.8643 0.8700 0.8582 0.8726
Supervised Learning 0.8863 0.8800 0.8875 0.8852
Fine Tuning 0.7433 0.7443 0.7708 0.8627
W/ biometric Info. Training a Linear Classifier 0.6575 0.6603 0.6842 0.8029
MobiAct Supervised Learning 0.6913 0.7754 0.7813 0.6967
Fine Tuning 0.7356 0.7583 0.7533 0.8821
W/O biometric Info. | Training a Linear Classifier 0.5499 0.6149 0.5794 0.6527
Supervised Learning 0.6640 0.7722 0.6966 0.6900

information about the human body. The sensor data included
three-axis accelerometer data, three-axis gyroscope data, and
three-axis orientation sensor data.

To preprocess the MobiAct dataset, we first excluded
subjects’ personal biometric information. We used the data
from 48, 7, and 9 subjects as training, validation, and testing
datasets, respectively. With the MobiAct dataset, the time
length of each file varied; thus, if data exceeded the average
time of all sequences (35 s), the length was trimmed.

B. IMPLEMENTATION

We performed three subtasks in our experiment, i.e., Fine
Tuning, Training a Linear Classifier for downstream
tasks, and Supervised Learning. The Fine Tuning was
performed using a pre-trained encoder by SSL. We retrained
all weights of the encoder in response to the task-specific
gradients computed from the labeled data. The Training
a Linear Classifier involved retraining only the linear
layer as a task-specific layer (except for the last linear
layer in the pre-trained encoder) after freezing all weights.
The Supervised Learning involved training the encoders
from scratch without using pre-trained encoder. In terms
of evaluation metrics, the F1 score, precision, recall, and
accuracy metrics were used. For F1 score, the macro-
averaged F1 score was applied to observe the effect on an
imbalanced dataset.

To compare performance with that of baseline models,
we used three existing contrastive learning methods for
the HAR task. Fine tuning and training a linear classifier
for downstream tasks were carried out using the encoder,
an autoregressive model. Here, all hyperparameters were set
the same as that for the proposed TFCL, and the encoder
and autoregressive models were modified using the common
methods in the previous studies. Detailed hyperparameter
settings are presented in Table 4.

For the SimCLR proposed by Tangetal. [11] to HAR,
three convolutional blocks consisting of a 1D convolutional
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TABLE 4. Hyperparameter settings (Kernel size for 1D CNN).

Dataset ‘Kernel size¢ h dmode k Batchsize Learningrate A1 A2

DLR 50 128 256 20 32 0.0001 1.5 0.7
MobiAct 22 128 256 20 32 0.001 1.5 0.7

layer, ReLLU, and dropout layer were used for the encoder, and
two linear layers were used for the autoregressive model. The
contrastive SSL approach for sensor-based human activity
recognition (CSSHAR), proposed by Khaertdinov et al. [12],
used three convolution blocks consisting of a 1D convolu-
tional layer, 1D batch normalization, ReLLU, and the encoder
part of the transformer [28]. The autoregressive model for
CSSHAR comprises ReLU and a linear layer. For SimCLR-
based HAR and CSSHAR, the results were measured using
only encoders in the fine tuning and training a linear
classifier for downstream tasks. In the case of CPC-based
HAR, which was proposed by Haresamudram et al. [13],
three convolutional blocks consisting of a 1D convolutional
layer, ReLU, and a dropout layer were used as the encoder.
For the autoregressive model, a GRU [34] was used.

V. EXPERIMENTAL RESULTS

To prove the effectiveness of the proposed method, an experi-
ment was conducted according to the presence and absence of
the biometric information of the sensor wearer. Table 3 shows
the results when the subjects’ biometric information was
included and excluded in each dataset. The results in Table 3
are arranged based on the highest performance among the
best combination of time series data augmentations presented
in I1I-A. Here, fine tuning and training a linear classifier for
downstream tasks, and supervised learning task were carried
out, and the cases with the best results are shown in bold.
It can be seen that the DLR and MobiAct datasets show better
performance for all evaluation metrics when the biometric
information was included.
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FIGURE 5. Macro F1 score results for different augmentation combinations on the DLR dataset. Diagonal matrix values refer to values tested using only
one augmentation method. (a) F1 score of fine tune downstream task with biometric information of sensor wearer. (b) F1 score of train linear
downstream task with biometric information of sensor wearer. (c) F1 score of fine tune downstream task without biometric information of sensor wearer.
(d) F1 score of train linear downstream task without biometric information of sensor wearer.

With the DLR dataset, when biometric information was
included, the F1 scores were 0.9791, 0.8726, and 0.9450 for
each task, and these results are better than those obtained
when the biometric information was not included. The high-
est performance difference appeared in supervised learning,
which confirms that biometric information has a significant
effect even with supervised learning. In the experiment with
biometric information as static information, we found that the
training a linear classifier task exhibited the best performance
when the rotation and time flip augmentation methods were
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used, and for fine tuning task, the F1 score obtained with
the jitter and rotation augmentation methods was 0.9791(best
performance). When biometric information was not used in
the fine tuning task, the combination of the rotation and warp
augmentation methods performed the best in the same way as
the train linear.

On the MobiAct dataset, we confirmed that performance
was better when human biometric information was included
in most of all tasks. In the case of the MobiAct dataset, when
the human biometric information was used, the invert and
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FIGURE 6. Macro F1 score results for different augmentation combinations on the MobiAct dataset. Diagonal matrix values refer to values tested using
only one augmentation method. (a) F1 score of fine tune downstream task with biometric information for sensor wearer. (b) F1 score of train linear
downstream task with biometric information for sensor wearer. (c) F1 score of fine tune downstream task without biometric information for sensor
wearer. (d) F1 score of train linear downstream task without biometric information for sensor wearer.

shuffle augmentation methods exhibited the best performance
in the fine tuning task. With training a linear classifier task,
the best performance was obtained with the rotation and warp
augmentation methods. In the case of learning without human
biometric information, it showed the highest performance
when the jitter and scale and rotation augmentation methods
were used in fine tuning task, and when permutation and jitter
augmentation methods were used with the training a linear
classifier task.

Next, we compared the performance of the proposed
method against other models proposed in previous HAR
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tasks using SSL. As existing models, we used SimCLR on
HAR [11], which applies SimCLR to HAR as proposed by
Tang et al., CSSHAR [12], and CPC [14] applied to HAR,
CPC on HAR [13]. Table 5 summarizes the experimental
results. As can be seen from Table 5, the proposed method
outperformed the existing models in terms of all evaluation
metrics on all tasks.

On the DLR dataset, the F1 score obtained by the proposed
TFCL method on the fine tuning task was 0.9791, which
shows the best performance of all methods. The F1 score of
fine tuning task was higher by 15.2 percentage points(p.p)
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TABLE 5. Experimental results on DLR and MobiAct datasets with other SSL based HAR models.

Dataset | Method | Tasks

|F1 Score  Precision Recall Accuracy

Fine Tuning

Supervised Learning

0.9791 0.9800 0.9892 0.9714

TFCL(ours) Training a Linear Classifier 0.8726 0.8700 0.8726 0.8726

0.9450 0.9300 0.9399 0.9309

Fine Tuning

DLR Supervised Learning

0.8752 0.8600 0.8714 0.8840

SimCLR on HAR [11] | Training a Linear Classifier 0.3707 0.3700 0.3966 0.3930

0.7901 0.8000 0.8460 0.7675

Fine Tuning

Supervised Learning

0.8610 0.8600 0.8647 0.8589

CSSHAR [12] Training a Linear Classifier 0.7470 0.7700 0.7958 0.7269

0.8863 0.8800 0.8875 0.8852

Fine Tuning

Supervised Learning

0.7425 0.7000 0.7642 0.7331

CPC on HAR [13] Training a Linear Classifier 0.5812 0.5900 0.6158 0.5946

Fine Tuning

Supervised Learning

0.7433 0.7443 0.7708 0.8627

TFCL(ours) Training a Linear Classifier 0.6575 0.6603 0.6842 0.8029

0.6913 0.7754 0.7813 0.6967

Fine Tuning

MobiAct Supervised Learning

0.4491 0.5250 0.4856 0.4639

SimCLR on HAR [11] | Training a Linear Classifier 0.2121 0.2746 0.2348 0.2311

0.5378 0.6058 0.6061 0.5481

Fine Tuning

Supervised Learning

0.0105 0.0985 0.0299 0.0508

CSSHAR [12] Training a Linear Classifier 0.0234 0.1115 0.0253 0.0642

0.0159 0.1050 0.0093 0.0542

Fine Tuning

Supervised Learning

0.1009 0.2294 0.1162 0.1250

CPC on HAR [13] Training a Linear Classifier 0.0520 0.1454 0.0506 0.0825

than average of existing methods. With training a linear
classifier task, the F1 score obtained by the proposed TFCL
method was 0.8726, which was 30.6 p.p higher on average
than existing methods. Supervised learning task also had the
highest F1 score of TFCL at 0.9450. Among the compared
existing methods, SImCLR on HAR demonstrated the best
performance on fine tuning and supervised learning tasks,
and CSSHAR showed the best performance on the training
a linear classifier task.

On the MobiAct dataset, the proposed method performed
better on all tasks compared to the other existing models.
For fine tuning task, the F1 score of TFCL was 0.7433,
which was 55.46 p.p higher on average than that of the
existing methods. In training a linear classifier and supervised
learning tasks, TFCL performed the best with 0.6575 and
0.6913 compared with other existing models, which was
56.16 p.p and 45.94 p.p higher on average than the existing
models, respectively.

Next, we compared the performance according to the
change in the augmentation method. Figure 5 shows the
experimental results obtained by combining 10 augmentation
methods on the DLR dataset. Here, we found that the
proposed method including the sensor wearer’s biometric
information was superior in 30 out of 55 augmentation
combinations for both the fine tuning and training a linear
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TABLE 6. Computational costs of model size (MB) and average time per
epoch (s); linear indicates training a linear classifier tasks.

Dataset ‘ SSL Fine Tuning Linear

| Size Time | Size Time | Size Time

DLR 17.203(MB) 166s | 11.589(MB) 80s | 11.589(MB) 80s
MobiAct | 16.708(MB) 587s | 11.099(MB) 85s | 11.099(MB) 84s

classifier tasks. For the fine tuning task, the averages F1 score
with and without biometric information were 0.9252 and
0.9232, respectively. When the biometric information was
included, the maximum F1 score was 0.9791 with the
combination of jitter and rotation augmentation methods.
Figure 6 shows the results of an experiment that combined
10 augmentation methods on the MobiAct dataset. The
experimental results show that among 55 augmentation
combinations, 34 combinations exhibited better performance
in fine tuning task when biometric information was included.
The F1 score with and without biometric information in fine
tuning task were 0.6564 and 0.6528, respectively. Perfor-
mance was slightly better when the biometric information
was included. For training a linear classifier task, when the
biometric information was included, the performance was
better in 25 out of 55 combinations. The combination of
augmentation methods that showed the best performance
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FIGURE 7. Performance results of transfer learning and supervised learning according to the ratio of the used DLR and MobiAct dataset.

TABLE 7. Comparative performance analysis with static inputs (s) and
different annealing schedule (7).

\ Age Gender Height \ F1 Score Precision Recall Accuracy
v 0.9510 0.9482 0.9543  0.9500
v 0.9338 0.9544  0.9229  0.9400
S v 0.9528 0.9467 0.9629  0.9500
v v 0.9693 0.9735 0.9657 0.9700
v v 0.9162 0.9230 09114 0.9200
v v 0.9205 0.9478 0.9086  0.9300
v v v 0.9791 0.9800 0.9892 0.9714
0.1 0.9559 0.9795 0.9429  0.9600
0.2 0.9791 0.9800 0.9892 0.9714
0.3 0.9489 0.9526  0.9457  0.9500
0.4 0.9600 0.9600  0.9600  0.9600
0.5 0.9600 0.9600 0.9600  0.9600
T 0.6 0.9118 0.9098 0.9143  0.9100
0.7 0.9510 0.9482  0.9543  0.9500
0.8 0.9678 0.9842 0.9571 0.9700
0.9 0.9600 0.9600 0.9600  0.9600
1.0 0.9693 0.9735 0.9657 0.9700

for fine tuning task was invert and shuffle. rotation and
warp augmentation methods were used in training a linear
classifier task. The computational costs associated with the
best combination of data augmentation for each dataset
and task are presented in Table 6. According to the cost
measurements, despite the DLR dataset having generally
larger model parameters than MobiAct, the great volume
of data in MobiAct resulted in long average times per
epoch.

Table 7 presents the findings of the experiments conducted
on the DLR dataset. These experiments explored perfor-
mance variations based on the composition of static inputs
(s) and different annealing schedules (7). The upper section
of the table illustrates the performance impact of including
static input variables such as age, gender, and height. The
inclusion of all variables yielded the highest F1 score of
0.9791, suggesting a positive effect on performance.

The lower section of the table evaluates the performance
across various annealing schedules (7), indicating fluctu-
ations in F1 scores and other performance metrics with
different 7 settings. Notably, a T value of 0.2 showed the
best performance, with an F1 score of 0.9791, outperforming
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TABLE 8. Result of transfer learning on each dataset.
Train Dataset \ Test Dataset \ F1 Score Precision Recall Accuracy
DLR DLR 0.9791 0.9800 0.9892 0.9714
MobiAct — DLR | DLR 0.8997 0.9024 0.8978  0.8900
MobiAct MobiAct 0.7433 0.7443  0.7708  0.8627
DLR — MobiAct | MobiAct 0.6931 0.7426  0.7208  0.7900

other 7 settings. These results underscore the significant
influence of the composition of static(biometric) information
and adjustment of the annealing schedule on the model’s
performance.

Next, we examine the efficiency of transfer learning
between different dataset domains by using SSL of the
proposed TFCL method. Table 8 shows the results of
fine tuning task using TFCL method on each dataset.
This experiment was conducted to investigate whether
representation learning was possible even if retraining was
attempted after representation learning using another dataset
domain. From experimental results, when representations
learned using the MobiAct dataset were retrained using
the training data of the DLR dataset, the F1 score was
0.8997, which was 7.94 p.p lower than when both the
training and validation sets used the DLR dataset. When
presentations learned using the DLR dataset were transferred
to the MobiAct dataset, the F1 score was 0.6931, which
was 5.02 p.p lower than when both training and validation
sets were performed using the MobiAct dataset. Comparing
the case with and without transfer learning, we found that
the proposed TFCL method guarantee the peformance of
transfer learning between different dataset domains. In the
case transfer learning from MobiAct to DLR datasets, transfer
learning of TFCL from diverse and sufficient source dataset
guarantees better performance.

Finally, the results of the transfer learning and the
supervised learning were compared according to the ratio
of training dataset. After we conducted various experiments
changing the ratio of training dataset, we attempted to
confirm the effect of transfer learning of TFCL.
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Figure 7 shows the differences between the supervised
learning and transfer learning of TFCL according to the
ratio of the DLR and MobiAct datasets, respectively. In both
figures, the horizontal axis indicates the ratio of data used,
and the vertical axis indicates the resulting value. As can be
seen, transfer learning of TFCL exhibited similar or superior
performance on both datasets compared to supervised
learning. With DLR dataset, because the data are small, the
experiment was conducted using only 10%, 50%, and 75% of
the total data. As a result of the experiment, transfer learning
of TFCL showed better performance on most results. With
MobiAct dataset, the experiment was conducted by adjusting
the five dataset ratios, and transfer learning of TFCL
demonstrated better results in all experiments. Through these
experiments, we were able to prove that transfer learning of
TFCL is more effective in learning than supervised learning
even when only a small proportion of the data is used.

VI. CONCLUSION

From the proposed TFCL method, we evaluated the effect on
HAR performance of a sensor wearer’s biometric information
using SSL. The proposed TFCL method uses a sample to
generate two augmented samples and takes each sample
to perform contrastive learning. First, the sensor wearer’s
biometric information is extracted effectively through a
static encoder and used as the input values in the observed
encoder. Then, important static information is extracted
again, with the latent representation from the observed
encoder. We use the extracted context vector to predict future
latent representations to learn temporal features. Finally,
by comparing each augmentation method, we ensure that
learning is performed such that the contextual similarity
of representation is maximized for the same sample. The
experimental results showed that better performance was
obtained on all datasets when the biometric information was
included. Furthermore, the proposed mothod outperformed
other existing models in terms of most evaluation metrics.
We have proven that transfer learning of TFCL can be
performed efficiently with a sensor wearer’s biometric
information, even if the amount of labeled data is small.

Although the experimental results demonstrated that the
biometric information inclusion consistently enhanced the
TFCL performance across all datasets and that the proposed
method surpassed other existing models in most evaluation
metrics, TFCL has a critical limitation. The complex
transformer-based architecture of the TFCL model lacks
transparency, leading to potential issues with trust and
reliability.

Considerably, future research should focus on incorporat-
ing eXplainable Al (xAl) techniques to provide transparency
and enhance interpretability. Developing methods to unravel
the decision-making process of such complex models will
improve their trustworthiness and pave the way for a deeper
understanding of how biometric data influences learning
processes. This direction of research is crucial for advancing
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the field and ensuring that these sophisticated models
can be utilized effectively and responsibly in real-world
applications.
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