
Received 6 December 2023, accepted 16 January 2024, date of publication 22 January 2024, date of current version 1 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3357352

Design Space Exploration of HW Accelerators and
Network Infrastructure for FPGA-Based MPSoC
BOUTHAINA DAMMAK 1, MOUNA BAKLOUTI 2, AND DEEMA ALSEKAIT1
1Department of Computer Science, Applied College, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
2Computer Embedded Systems Laboratory (CES-Lab), University of Sfax, Sfax 3038, Tunisia

Corresponding author: Deema Alsekait (DMAlSekait@pnu.edu.sa)

This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R435),
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

ABSTRACT Supercomputing systems are increasingly reliant on heterogeneous Multiprocessors System
on-Chip (MPSoCs), merging multiple processors and hardware accelerators (HWAcc) on the same die
to achieve power and performance needs. Due to CPU complication and timing closure challenges of
tightly coupled design approach, the state-of-the art of HWAcc design methodology relies on coupling the
processors with loosely coupled HWAccs. Loosely-coupled HWAccs can be shared or private accelerators
running custom instructions to form a heterogeneous multi-processor system. Some works discussed the
determination of the sharing degree of the HWAcc over the processors, however the impact of the integrated
communication infrastructure is not discussed. Thus, we propose a high-level design exploration tool to
select the accelerators and generate the adequate communication interconnect under performance and area
constraints. Different homogeneous and heterogeneous multi-processor configurations are evaluated and
compared running different signal processing benchmarks. Experimental results show the efficiency of the
proposed exploration tool to rapidly explore and select the adequate architecture.

INDEX TERMS Multi-processor system-on-chip, custom instructions, shared hardware accelerator, network
communication, high-level exploration.

I. INTRODUCTION
New embedded applications demand high-performance
multiprocessor design to meet real time deadlines while
respecting other critical constraints such as low power
consumption and low area [18], [22]. Energy efficient
computing constraint has led to the rapid adoption of
hardware accelerators (HWAccs) [1], [13], [18], [28]. In fact,
large scale multiprocessors SoCs [2] can integrate several
heterogeneous processing elements, or cores, in the same die.
Since hardwired specialized accelerators are inflexible and
cannot be suited to changing requirements, some processor
cores are coupled with HWAccs running custom instructions
that can be easily modified by the user [30].
In this paper, not only the number of HWAccs and the

sharing degree is flexible but also the communication infras-
tructure is chosen in an area and performance aware manner.

The associate editor coordinating the review of this manuscript and

approving it for publication was Harikrishnan Ramiah .

The proposed multi-processor architecture is implemented
in a Field Programmable Gate Array (FPGA) fabric, to take
advantages from its flexibility and reconfigurability.

Our proposed scalable architecture integrates a parametric
number of soft-cores and HWAccs interconnected together
via a configurable interconnection network. The soft-cores
execute the software tasks and the HWAccs execute applica-
tion specific instructions. A HWAcc could be shared between
a group of processor cores. In fact, the purpose of this
resource sharing between cores [3] is to reduce the number
of hardware resources on the FPGA while preserving better
performance by benefiting from similar tasks, commonly
used in signal processing applications [11] or multimedia
applications.

The communication between cores and shared accelerators
is ensured by a configurable interconnection network.
In Multiprocessors System on-Chip (MPSoCs), hierarchical
bus-based network infrastructure are popular because of
simplicity and moderate power and area consumption. The

15280

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4826-6695
https://orcid.org/0000-0001-9862-8506
https://orcid.org/0000-0003-3505-6525


B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

simplicity of the bus-based architecture design, moderate area
usage and predictable access overhead are the selling keys.
However, state-of-the-art demonstrates that beyond a number
of processor cores, the performance of the hierarchical
interconnect degrades notably.

For our shared HW accelerators architecture, bus-based
communication infrastructure is adopted for a convenient
number of cores that share a set of HW accelerators. Beyond
a sharing limit, the bus-based architecture may cause a
communication bottleneck. In this case, our methodology
rely on a more scalable architecture based on crossbar
network.

As mentioned before, the HWAcc sharing degree and
the choice of communication infrastructure have to be
appropriately parametric to find the best trade-offs between
area consumption and execution time, deemed of designers
interest. In this context, Design Space Exploration (DSE) is
a tool by which the optimal parametric configuration for a
given system can be found.

In this paper which is a continuation and refinement of our
earlier works [6], we present the following contributions:

• FlexibleMulti-ProcessorArchitecturewithEnhanced
Communication Infrastructure:We introduce a novel
multi-processor system-on-chip (MPSoC) architecture
that seamlessly integrates an adaptable communication
infrastructure specifically tailored for the required
shared hardware accelerator (HWAcc) configuration.
Unlike previous works, our architecture introduces
innovative communication paradigms, emphasizing the
efficient sharing of HWAcc with a well-suited network
interconnect.

• Enhanced Design Space Exploration (DSE) for
HWAcc Sharing and Interconnection Structure: Our
DSE incorporates new metrics, including the consumed
logic area and the delay of the interconnect, providing
a more comprehensive evaluation of area utilization
and performance delay. This refined approach to DSE
enables accurate predictions and optimizations, setting
our work apart from existing literature.

• Case Study Implementation on Cyclone V 5CEA7
FPGA Board: To validate our proposed architectures,
a case study is conducted implementing multi-processor
architectures based on the NIOS II embedded pro-
cessor on the Cyclone V 5CEA7 FPGA board. This
practical implementation demonstrates the real appli-
cability and effectiveness of our innovative MPSoC
designs.

The paper is structured as follows. Section II reviews
state-of-the-art multi-processor architectures, mainly used
to accelerate signal processing applications. Section III
describes the heterogeneous multi-processor SoC and gives a
brief outlook on its developed high-level design exploration
framework. Experimental results are discussed in Section IV.
Conclusions are drawn in Section V with a brief outlook on
future works.

II. RELATED WORKS
Newer MPSoCs are mainly heterogeneous, with the integra-
tion of application specific instructions also called MPSoCs
customization [14], [21], [23]. MPSoCs customization con-
sists on coupling the processors to Specific Functional Units
(SFU). These SFU are either closely tied to the processor
data path, as custom functional units, or loosely related to the
processor as HWAcc. Many researchers adopted the second
design methodology, where each processor is extended with
Reconfigurable Fabric (RF) [10], [22]. Many works provide
tools that make it simple for system designers to compare
several software and hardware options for executing the
same algorithm [9], [17]. In [28], the authors take into
consideration several HWAccs in an FPGA and their testbeds
as input of the exploration algorithm. The result is a collection
of dominant systems that trade off area and performance.
In [25], the authors propose to help a system designer to
quickly compare several hardware/software configurations
using the Kwok List scheduling heuristic [12]. The heuristic
kwok algorithm uses intelligent search techniques to quickly
find a solution. However, such solution is approximate
while, in comparison, Mixed Integer Linear Programming
(MILP)-based exploration offers an exact one. Moreover,
in our proposed work, two additional metrics are considered,
namely HWAccs sharing between cores and the network
interconnect

To enhance performance and to tackle the problem of
hardware resource usage of heterogeneous architectures,
other works proposed to share RF among the processors
to implement HWAccs. The work in [4] proposed to
share coarse grained custom instruction between processors.
This work defined a metric to evaluate the impact of FU
(Functional Units) sharing between the processors. The
metric checks the fraction of execution time in which
different processors would be competing to access the shared
resource. Thereby, this metric can be used to estimate the
possible speedup with the extension of new HWAccs in dif-
ferent configurations. Despite the use of Shared Accelerator
Concurrency Level (SACL) metric, the authors limited the
number of shared accelerators to symmetric configurations.
For example, for 8-processors, only the configurations with 2,
4 or 8 shared hardware accelerators are considered. In [19],
the authors propose a framework to explore the design of
multiprocessor heterogeneous architecture based on fuzzy
MIP and Graph theory based Traffic Estimator (GTE). The
authors propose to share HWAcc, through the integration
of bridges and a fuzzy-controller capable of solving sharing
problems. Their ILP model is based on previous work [7] and
no improvements have been proposed. In [16], the authors
propose a 3-steps Hardware/software partitioning design flow
for single-processor architecture. The first step consists on
Graph conversion that translates an application program
into an SDF graph. The second step consists on sub-graph
clustering which is based on the hill climbing heuristic
search [24] that identifies candidate nodes for hardware
acceleration. The third step consists on graph scheduling that

VOLUME 12, 2024 15281



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

uses HEFT algorithm [26] for implementing multiple custom
accelerators in a single-core. Their proposed approach has
been evaluation for the NIOS II processor executing neural
networks applications.

The flexible MPSoCs design exploration methodology
presented in this paper is different from the cited ones at
different levels. First, the works in [16] is proposed for
single-core architecture and works in [4] and [25] are not
considering sharing of the same computational task between
the different processors. Second, most cited works focus on a
given fashion (SPMD or MPMD) whereas our methodology
considers both SPMD and MPMD configurations, to cover
the wide variety and needs of different signal processing
applications. Adding to that, the MPSoC architectures
explored are parametric and flexible in terms of the number of
processors, the used interconnection network and the number
and sharing of the integrated HWAcc. Based on our high-level
exploration tool, the most adequate configuration could be
rapidly generated under area and performance constraints.

III. FLEXIBLE MULTI-PROCESSOR SOC
In this work, both SPMD andMPMD paradigms are explored
in a multi-processor system to work with private and shared
HWAccs. As depicted in Figure 1, it is composed of
multiple processor processors, each one is connected to
its memory. The processor can also be connected to local
peripherals such as timer, memory controller for connection
to external memory, etc. The first processor can act as
the controller and synchronizer of the whole system. The
other processors execute the software tasks and a group of
HWAccs is coupled to the ones running application specific
instructions. The HWAcc can be private to a processor,

FIGURE 1. Heterogeneous multi-processor SoC architecture.

this means that is coupled to only one, or shared over two
processors or more. The number of shared HWAcc and the
sharing type of HWAccs are different from one processor to
another. The scope of sharing HWAccs between processors
is to reduce circuit complexity regarding logic elements
usage while reserving the performance and minimizing
the energy consumption [3]. In this work, the sharing
methodology is explored for architecture with SPMD and
MPMD fashions. In SPMD fashion, all processors execute
the same applications so the set of computational tasks to be
explored as HWAcc is the same for all processors. In MPMD
fashion, HW accelerators that can be attached to the different
processors differ from one processor to the other depending
on the applications tasks.

A. MPSoC ARCHITECTURE FOR SPMD PARADIGM
In SPMD paradigm, multiple processors simultaneously
process the same program on different data. For such
embedded systems, the straightforward implementation of
computational tasks as HWAccs is an excessive area-
consuming solution. For this type of architecture, the sharing
methodology will preserve logic resources by implementing
a moderate number of HWAcc. Indeed, different processors
that execute the same task can access the same HWAcc of
a computational task as long as this sharing does not give
rise to a considerable delay. In SPMD fashion, a number
of homogeneous processors share a main memory, used for
data communication. Each processor can be also connected
to peripherals over its local bus. Further, it can have a set of
private and shared HW accelerators. To ensure the symmetric
aspect for the architecture, the number of processors sharing
a HW accelerator is a power of two. An interconnection
network, which will be covered later, connects a shared HW
accelerator to processing cores. Figure 2 is an example of 4-
processor architecture designed to work in SPMD fashion.
In this example, four HWAccs of T1 task are implemented
in private, whereas only two HWAccs of T2 task are shared
between a couple of processors.

FIGURE 2. Example of 4-processors MPSoC architecture for SPMD
paradigm.

B. MPSoC ARCHITECTURE FOR MPMD PARADIGM
In large and complex MPSoC systems, the computation
becomes irregular and the MPMD paradigm is preferred.
In a MPMD system, the processors are executing different
programs and a full implementation of computational tasks
is non-trivial. However, we argue that the different programs
contain similar tasks, in particular for signal processing
applications, and a HWAcc designed and implemented at
low abstraction level can be shared across the different pro-
grams. A given HWAcc implementation, without exploring
the possibility to share it, may bloat hardware resources
with insufficient performance amelioration. Our proposed
architecture for MPMD systems is an MPSoC architecture
where each processor may have private HWAcc and shared
HWAcc. Each processor has a local memory and a local
bus. The peripherals and private HWAcc are connected
to local bus. The HWAcc of a common task that is a
part of two or more programs, can be shared between
the processors. A network infrastructure is implemented to
ensure communication of different processors to a shared
HWAcc. The number of private and shared HWAccs for

15282 VOLUME 12, 2024



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

FIGURE 3. Example of 4-processors MPSoC architecture for MPMD
paradigm.

each processor depends on the performance requirement for
each application. Figure 3 depicts a 4-processor architecture
designed to work in MPMD fashion. Processors 0, 1 and
3 have private HWAccs. Processors 1, 2 and 3 run a similar
task T4, thus, they share its HWAcc. The private HWAcc for
each processor is placed on its local bus; whereas, the shared
one is connected via the network.

C. INTERCONNECTION NETWORK
A critical design part of our proposed architecture is the
communication infrastructure. We adopt hierarchical bus for
architecture with moderate number of processors and shared
HW accelerators. The hierarchical bus is simple to build
and cost-effective. However, the cost of this interconnect
will be high, in terms of interconnect wires and bottleneck,
depending on the number of processors sharing a HW
accelerator. In consequence, to face this limitation, our design
methodology shifts to the use of a crossbar network for the
architecture with high sharing degrees.

1) HIERARCHICAL BUS BASED-ARCHITECTURE
A hierarchical bus interconnect consists of different levels
of buses connecting various components. For our MPSoC
architecture, the simplest way is to rely on two-levels. The
higher level is composed of processors local buses that allow
processors to communicate to their peripherals and private
HWAcc. The second level is composed of shared buses that
communicate the shared HWAcc to the processors sharing
this latter. Between these two levels, bridges are placed
to ensure transactions. The level one buses are considered
as primary buses whereas level two buses are secondary
ones. Figure 4 is a an example of 4-processors MPSoC
architecture with a shared HWAcc connected through a 2-
levels hierarchical bus.

The bridge is a slave on the primary bus and is a master on
the secondary bus. It is responsible to pass signals between
network levels. This bridge is composed of the following
blocks:

• Slave interface: it is a bi-directional slave interface to
primary bus. It decodes address from the bridge registers
and for the HWAcc on the secondary bus.

• Slave buffer interface: it is responsible of the conditional
read/write operations from secondary bus to primary

FIGURE 4. MPSoC architecture with a two-level hierarchical bus
interconnect.

one. It decodes the access-request from the HWAcc and
raises it to the primary bus.

• Write FIFO (First In First Out): it is a FIFOmemory that
stores the data from the Slave buffer interface during a
write transaction.

• Read FIFO: it is a FIFOmemory that stores the data from
the Master buffer during a read transaction.

• Master interface block: it is a bi-directional master
interface to secondary bus. It decodes address from
HWAcc.

When a processor sends a request to the sharedHWAcc, the
slave interface receives the request and the primary interface
decodes it. Then, the secondary interface forwards the signals
to perform the request on the HWAcc.

2) NoC BASED-ARCHITECTURE
In this case, the different processors are interconnected via
a crossbar: a fully connected network. The interconnection
network architecture is sketched in Figure 5. It is composed
of routing elements (RE), where the number is equal to the
number of processors in the system. These routers allow
each processor to communicate with the desired one. Each
RE integrates two main blocks: n input routers and n output
routers, where n is the number of processors in the system.
The input router plays the role of a switch which will route
the request and the data to communicate to the appropriate
output router according to the address decoding. As soon
as the output router detects a data request on its input port,
it stores it in a FIFO (of size 2) and sends it afterwards to
the requested receiver. This router contains a routing and
arbitration unit (based on priority mechanism) that performs
the routing function and handles conflict situations. Although
the increased logic area, compared to the hierarchical bus
(as shown in Tables 3 and 4), the crossbar offers a better
bandwidth and thus a better latency since the different
sender-receiver interconnection paths are separated from each
other.

IV. HIGH-LEVEL EXPLORATION FRAMEWORK
The proposed framework, is based on a high-level modeling
approach to generate the adequate MPSoC architecture
satisfying area and performance constraints, specifically in
term of HWAcc design. In fact, the hardware accelerators
configuration of selected tasks and the network infrastructure

VOLUME 12, 2024 15283



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

FIGURE 5. Network connections.

FIGURE 6. Exploration Tool.

are explored to select the configurations that are good
enough to satisfy design requirements. It is worth to mention
that the proposed DSE tool automatically generates the
MPSoC configuration that is optimal for a given application.
In comparison, existing synthesis tools, like Quartus, does
not automatically generate the suitable MPSoC architecture
for a given application. It just helps the user to simulate and
test a given architecture he has already implemented himself.
In fact, the Quartus tool is a synthesis and simulation tool
that allows the implementation of various architectures to test
and evaluate their performances. Conversely, our proposed
tool utilizes an Integer Linear Programming (ILP) algorithm
based on an objective function and performance constraint (as
detailed in sections IV-B and IV-C). It automatically explores
the space of MPSoC configurations using combinations of
private and/or shared hardware accelerators and a config-
urable interconnect, which can be either a hierarchical bus or
a crossbar. Therefore, prior to implementing the architecture
using tools like Quartus, our tool assists the designer in
automatically generating the optimal MPSoC configuration

for a specified number of cores. That is, our framework helps
the user to easily and rapidly implement the needed MPSoC
architecture that will fit his application needs.

Figure 6 illustrates the proposed framework, which
comprises three main steps: the applications database,
HW database, and the Design Space Exploration (DSE)
process. It begins by profiling C/C++ codes to identify
the most computational tasks, contributing to the appli-
cations database. Subsequently, the computational tasks
from step 1 undergo synthesis as Hardware Accelerators
(HWAcc), forming the HW database. In this step, we employ
the Quartus tool to implement the HWAccs and gather
information regarding their area usage and speed-up. These
details serve as input for the second step (DSE), which
generates the HWAcc sharing configuration and the inter-
connect network. The final step involves the execution
of Design Space Exploration using the ILP algorithm to
meet a well-defined objective function and a performance
constraint (see sections IV-B and IV-C). The ILP yields an
optimal configuration for HWAcc and a suitable network
infrastructure that preserves optimal area utilization while
meeting the required performance criteria. The resulting
architecture is then implemented in Quartus for testing.

In this section, we call a common task, the task that
is executed on two processor cores or more. C =

{C1 . . .Ci . . .Cn} is the set of n homogeneous cores. Let
{T1 . . . Tj . . . Tm} is the sequence of tasks to be executed as
HWAcc, andN = {1, 2, . . . , n} andM = {1, 2, . . . ,m}. Each
common task Tj, (j ∈ M ) has a list of parameters:

• aj : is the number of HW resources consumed by the
HWAcc of Tj task. For each task, the value of aj is
measured with an implementation of Tj as private HW
accelerator.

• AN : represents the Area, in terms of HW resources,
consumed by the crossbar Network.

• AB: is the number of HW resources consumed by a
bridge.

• Eji: is a binary parameter which is equal to 1 if the task
Tj is executed by the processor Ci, otherwise it is equal
to 0.

• tsji and teji: are two parameters respectively for the
start-time and the end-time of Tj on processor Ci. These
parameters are expressed in seconds and are determined
through profiling step.

• Gj: the execution time gain of Tj when implemented as
HWAcc. It is expressed in seconds.

The space exploration solution is based on a Mathematical
MILP (Mixed Integer Linear Programming) formulation.
The formulation section is divided into three sub-sections
dedicated to detail variables, optimisation functions and the
defined constraints.

A. VARIABLES
The decision variables of our MILP are of two types: binary
assignment variables and continuous flow variables:

15284 VOLUME 12, 2024



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

• Accj is a binary variable that denotes whether task Tj is
implemented on Hardware or Software.

∀j ∈ M

Accj =

{
1, if Tj is implemented on HWAcc
0, else

• CShTjik is a binary decision variable to decide whether
the accelerator of task Tj is shared between processors
Pi and Pk or not.

∀j ∈ M , ∀(i, k) ∈ N 2

CShTjik =

{
1, if Acc of Tj is shared between Ci andCk
0, otherwise

• CI : a binary decision variable that denotes weather the
interconnect is a Crossbar interconnect or hierarchical
bus interconnect.

CI =


1, if crossbar interconnect is implemented
0, if hierarchical-bus interconnect
is implemented

B. OBJECTIVE FUNCTION
The considered optimization problem aims to minimise the
area objective function, which depends on software/hardware
implementation, the sharing ofHWAccs between the different
cores and also the type of network to be adopted. Think about
the n-cores architecture that executes applications containing
a set of the same patterns, which can be implemented either
on SW (Software) or HW. Obviously, HW resources are not
used when a pattern is implemented on SW. However, if a
pattern is implemented on HW, the consumed area depends
on whether a private or shared hardware accelerator is used.
Following theHWAccs configuration, the suitable connection
network is decided.

Given the decision variables defined in subsection IV-A,
the resulting objective function is:

MinTotal_Area =

m∑
j=1

n∑
i=1

EjiAccjaj
n∑

k=1
CShTjik

+

m∑
j=1

n∑
i=1

CI ∗ AB ∗ shji + (1 − CI )AN (1)

subject to

CShTjii = 1 for j = 1..m and i = 1..n (2)

Shji: a continuous variable that denotes the sharing degree
of the processor Ci for the task Tj and is calculated as follow:

shji =

n∑
k=i+1

CShTjik for j = 1..m and i = 1..n (3)

CShTjik ≤ Eji
for j = 1..m and i=1..n and k={1..i−1}∩{i+1..n}

(4)

CShTjik − CShTjki = 0 for j = 1..m and (i, k) = 1..n

(5)

rjikh = CShTjik ∗ CShTjih for j = 1..m and (i, k, h) = 1..n
(6)

CShTjih ≥ rjikh for j = 1..m and (i, k, h) = 1..n (7)

CShTjkh ≤ 1 + 2 ∗ rjikh − CShTjik − CShTjih
for j = 1..m and (i, k, h) = 1..n (8)

Equation 2 guarantees that denominator in Equation 1 is
non-zero. Equation 3 calculates the area usage of the bridge
for a hierarchical interconnect. Equation 4 guarantees that the
task Tj will be implemented only for the processor executing
this task. Equation 5 guarantees the symmetry of CShTjik
matrix. In fact, if the HWAcc of Tj is shared between Ci and
Ck , both CShTjik and CShTjki must be equal. Equations 6, 7
and 8 guarantee that a core Ci share a HW Accelerator of Tj
with Ck and Ch then Ci, Ck and Ch share the same HWAcc of
Tj.

C. PERFORMANCE CONSTRAINT
In the proposed DSE, the area consumption must be mini-
mized following a performance constraint that needs to be
satisfied. acci is a variable that calculates the execution-time
gain or acceleration of the core Ci for the generated solution.
This acceleration must be equal or upper the required
acceleration named limiti. For each core, the acceleration acci
In Equation 9 is computed based on the acceleration of

each task Tj executed on this core when implemented on
HWAcc (taccj) and the delay DLji to access the shared
HWAcc of Tj.

acci =

m∑
j=1

EjiAccj(taccj − DLji) ≥ limiti (9)

The continuous variable DLji denotes the delay of t he core i
to access the Tj HWAcc. This variable is a crucial parameter
to consider in the performance constraint and is calculated
through the overlapping delay Ovji, crossbar interconnect
delay DN and Hierarchical-bus delay DH . The overlapping
delay Ovji is the delay of executing task Tj on the core i
competing an other core to access Tj HWAcc.

DLji = Ovji + CI ∗ DN + (1 − CI ) ∗ DH ,

for j = 1..m and (i, k) = 1..n (10)

VOLUME 12, 2024 15285



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

V. SIGNAL PROCESSING BENCHMARKS
The experimental results, reported in this section, are divided
into three parts. In the first part, we present the adopted
methodology as well as some preliminary results.

In the second part, a discussion on the impact of HWAcc
sharing on MPSoC performance is presented. The third
Section presents an investigation of the MILP model. The
results are built on different sets of instances, carefully chosen
and covering various systems.

A. EXPERIMENTAL SET-UP
Weconsider differentMPSoC architectures, each architecture
has a number n ∈ {2, 4, 8, 16, 32, 64} of cores. The
various configurations are evaluated running different SW
benchmarks. Table 1 highlights the hardware environment
settings used in this work: the targeted FPGA, the used tools
and the integrated core. It is to be noted that no synthesis nor
placement and routing optimizations were applied. Quartus
tool, based on default settings, is used to synthesize and
simulate the generated architecture. Thereby, we maintain
transparency and ensure that the obtained results accurately
reflect the inherent capabilities of the chosen architecture
without the influence of additional optimizations.

TABLE 1. Configuration settings.

B. PRELIMINARY RESULTS
Table 2 shows synthesis results for different homogeneous
multi-processor configurations (without accelerators). For
example, the architecture with 16 cores consumes 18% of the
FPGA logic resources. Tables 3 and 4 show simultaneously
the implementation results of hierarchical bus and crossbar
architectures depending on the size of the network. In fact,
synthesis results in terms of the consumed logic resources
on the FPGA as well as the flow rate and delay metrics
are presented. Delay refers to the time, expressed in number
of cycles, required to route a message from a sender core
to a recipient core. Flow rate reflects the network’s traffic
flow capacity in terms of quantity of data per unit of time,
expressed in Mega Bytes per second. The delay and flow rate
metrics are mainly obtained after different simulations via the
Quartus synthesis tool.

These different results are detailed for different number of
cores and will be used in theMILPmodel to generate for each
system the convenient network infrastructure.

TABLE 2. Synthesis results.

TABLE 3. Hierarchical-bus network implementation results on the
cyclone V board.

TABLE 4. Crossbar network implementation results on the cyclone V
board.

C. MPSOC EVALUATION AND MOTIVATION
To investigate the impact of HWAcc integration and sharing
for MPSoC, we tested two applications: ICT (Inverse Cosine
Transform) application and JPEG codec application. In the
first experiment, we executed the integer forward transform
ICT that constitutes a part of the H.264/AVC video encoder.
It uses integer arithmetic and is less complex than the DCT
(Discrete Cosine Transform). The application is implemented
in a MPMD fashion. We evaluated the results for different
number of processor cores (2, 4, 8 and 16). The implemented
integer forward transform is based on the butterflymethod [5]
generally applied on macroblocks of size 4 × 4 pixels [20]
and often on macroblocks of size 8×8 pixels [29] in the high
profiles (like High Definition profiles). Figure 7 presents ICT
execution results on homogeneous multi-core configurations
varying the number of integrated cores as well as the picture
format [CIF (Common Intermediate Format), QCIF (Quarte-
CIF) and HD]. The vertical axis is displayed with logarithmic
scale.

In figure 7, we show the execution time in milliseconds
for the ICT application on different architectures. The

15286 VOLUME 12, 2024



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

results demonstrate that significant speedup over single-core
implementation can be achieved. For example, for 2-cores
and 4-cores implementation, the execution times of a QCIF
picture are respectively 1200 and 900 milliseconds. These
results show that we achieved a speed up to 1.27 for
2 cores and 1.22 for 4-cores architectures. Such results are
in line with similar implementations [8], [27] that achieve
comparable speedup for the same number of cores.

The implementation of a HWAacc for ICT task yields a
slower speedup. This is due to the fact that the butterfly
method is simple and based on arithmetic computations
consisted mainly of addition, subtraction and shift opera-
tions [15].

The second experimentation presents results executing a
JPEG codec application on different multi-processor config-
urations. The application is implemented in a SPMD fashion.
The JPEG profiling results show that the HDCT (Horizontal
discrete cosine transform), VDCT (Vertical discrete cosine
transform) tasks are the most computational tasks. Different
MPSoC architectures are synthesized on Cyclone V board.
In figure 8, we present the synthesis results for different
number of cores, n = 2, 4, 8 and 16, accounting for all cases
from a fully shared configuration to a fully private one (one
HWAcc per core).

For n-cores architecture executing Jpeg application,
we have different configurations based on the number of
implemented HWAccs. For each notation (i, j), i and j are
respectively the number of HDCT and VDCT HWAccs.
The (n, n) configurations mean that n HDCT and n VDCT
HWAccs are implemented, so each core is connected to a
private HWAcc and this configuration is called fully private
configuration.Whereas (1,1) notation means that all the cores
are sharing only one HDCT and one VDCT HWAcc and it is
called a fully shared configuration. The (i, j) configuration,
where 1 < i, j < n, has iHDCTHWAcc and jVDCTHWAcc
shared between the different cores. In figure 8, for n = 4,
we presented the evaluation of three different configurations
namely (1,1), (2,2) and (4,4).

For n = 8, different configurations between the two
extreme configurations have been evaluated. Considering 8-
core MPSoC, the (8, 8) configuration is a fully private one
as each core is connected to one HDCT HWAcc and one
VDCT HWAcc. This configuration is a consuming solution
compared to the others configurations, it consumes almost 4x

FIGURE 7. Execution results for integer encoder forward benchmark.

FIGURE 8. Area usage measured on Cyclone V for different MPSoCs (n =
2, 4, 8, 16) and (HDCTHWAcc ,VDCTHWAcc).

FIGURE 9. Execution time (y-axis) in seconds to encode 20 images
measured for MPSoC with n=4 and different (HDCTHWAcc ,VDCTHWAcc)
configurations.

more logic resources than the fully shared configuration (1,1)
and approximately 2x more than the configuration (4,4).

In Figure 9, we demonstrate the execution time improve-
ment for MPSoC for n = 4 and different HWAccs
configurations. The pure SW execution is represented
by the configuration (0,0) and it spends 1.6s to encode
20 images whereas the fully private configuration (4,4)
takes only 1s. The configurations (1,1) and (2,2) show
a slight increase compared to the fully private configu-
ration due to the overlapping delay to access a shared
resource.

From figures 8 and 9, we conduct that configurations for
n-cores architecture are bounded between the two extreme
solutions: the fully private solution and the fully shared
solution. For 4-cores architecture, the fully private solution,
(4,4) configuration, preserves the best speed-up, reaching
1.6 over the SW solution to execute the jpeg encoder.
However, the intermediate solutions, can also offer the
required speed-up with a less-area consumption such as
configuration (2,2), which consumes the half area resources
and provides roughly the same speed-up. When the number
of cores increases, the space of shared solutions increases
dramatically and the search of the best solution would be
infeasible. Moreover, the selection of the suitable connection
network will thereby enlarge the design space further. This
justifies the need for an automatic exploration tool that
can generate the best configuration under area and time
constraints.

VOLUME 12, 2024 15287



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

D. MILP MODEL EVALUATION
In this part, we validate the efficiency of the proposed DSE
to rapidly explore the design space and generate the best
multi-processor configuration. The MILP model is run for
JPEG codec application. The results for different number of
cores are summarized in figure 10. In this figure, we depict
the logic area usage of the HWAccs and the appropriate
interconnection infrastructure while varying the required
speed-up. Here, an area unit corresponds to 150 slices.

FIGURE 10. Estimated Area consumption (y-axis) of DSE solutions of
different architectures (number of cores n=2, 4, 8 and 16) generated for
different speed-up (x-axis).

For n = 2 and n = 4, the DSE tool generates
hybrid configurations with shared and private HWAccs
implemented with hierarchical bus. For these systems, for
each performance constraint, the area usage is increased due
to additional private HWAccs implemented or an increased
number of shared HWAcc. For example, for n = 4 and
speedup = 1.3, the DSE generates in 7 minutes a hybrid
configuration based on hierarchical bus connected to two
shared HWAccs for HDCT. To reach a speedup equal to 1.4,
the DSE generates a configuration with one additional shared
HWAcc for VDCT.

DSE results are compared to the real results for the
MPSoC with n = 4 already presented in figure 9.
We note for the configuration (2,2) the speedup provided
by the implementation of this MPSoC configuration in the
Cyclone V board is equal to 1.58. The same configuration
is generated by our model for n = 4 and a speedup
greater than 1.4. For speedup=1.6, the generated solution
integrates four private HDCTHWAccs and one shared VDCT
HWAcc. This solution provides approximately the same
speedup measured for the configuration (4,4) in figure 9
with a moderate area usage. For n = 8 and n = 16,
the DSE generates solutions with hierarchical interconnect
for lightened constraint and more consuming-area solutions
integrating a crossbar network for more strict performance
constraints. For example, for n = 16 and speedup = 1.3, the
MILP solver generates in 37 minutes a solution based on a

hierarchical bus that connects one shared HDCT HWAcc and
two shared VDCT HWAccs.

FIGURE 11. MILP resolution time run on CPLEX for different number of
cores for JPEG application.

In figure 11, we report the time the Cplex solver takes to
generate the feasible solution. We note that this time is light
for a small number of cores and it increases substantially
while increasing the number of cores. Even if the DSE
tool consumes more time (in the order of minutes) to
deal with complex MPSoC configurations, it remains fast
and considerably helps the designer to choose the best
configuration targeting a HW implementation.

These aforementioned experimental results clearly prove
the efficiency of the developed high-level DSE framework
to rapidly generate the best MPSoC hybrid configurations,
varying different parameters: number of cores, used inter-
connection network, number and configuration of HWAcc,
which minimizes the area consumption while respecting the
required performance. MILP-based generated solutions have
been also compared to real FPGA-based solutions, which
demonstrate and confirm the validity of the developed DSE
tool.

VI. CONCLUSION AND FUTURE WORK
Coupling the processor with an accelerator has been used
to accelerate many applications and to obtain energy-
efficient solutions. This paper described a heterogeneous
multi-processor SoC architecture that can integrate accelera-
tors according to the application needs. The proposed design
methodology is based on a high-level DSE tool that assesses
the trade-off between the execution time and area cost that
are explored at two levels: HWAcc’s sharing level and
communication infrastructure level. Two real applications
were executed in different systems composed of different
cores number. Thereby, a direct correlation has been shown
between sharing degree, communication infrastructure and
performance/area trade-off.

In future work, we plan to test the system with other types
of benchmarks. The proposed framework can be extended in
a number of ways to take into account other constraints such
as power distribution, energy and other constrained resources.
Exploring the architecture with hard-cores is another interest-
ing future work. We also plan to develop analytical model to
automatically select the optimal architecture.

15288 VOLUME 12, 2024



B. Dammak et al.: Design Space Exploration of HW Accelerators and Network Infrastructure

REFERENCES
[1] An 531: Reducing Power With Hardware Accelerators, ALTERA,

San Jose, CA, USA, 2001.
[2] M. Baklouti, P. Marquet, J. L. Dekeyser, and M. Abid, ‘‘FPGA-based

many-core system-on-chip design,’’ Microprocess. Microsys., vol. 39,
nos. 4–5, pp. 302–312, Jun. 2015.

[3] D. Bouthaina, M. Baklouti, S. Niar, and M. Abid, ‘‘Shared hardware
accelerator architectures for heterogeneous MPSoCs,’’ in Proc. 8th Int.
Workshop Reconfigurable Commun.-Centric Syst.-Chip, 2013, pp. 1–6.

[4] M. Brandalero, T. D. Souto, L. Carro, and A. C. S. Beck, ‘‘Predicting per-
formance in multi-core systems with shared reconfigurable accelerators,’’
J. Syst. Archit., vol. 98, pp. 201–213, Sep. 2019.

[5] V. Britanák, ‘‘On the discrete cosine transform computation,’’ Signal
Process., vol. 40, nos. 2–3, pp. 183–194, Nov. 1994.

[6] B. Dammak, M. Baklouti, R. Benmansour, S. Niar, and M. Abid,
‘‘Framework for a selection of custom instructions for ht-MPSoC in area-
performance aware manner,’’ IEEE Embedded Syst. Lett., vol. 7, no. 4,
pp. 105–108, Dec. 2015.

[7] B. Dammak, M. Baklouti, R. Benmansour, S. Niar, and M. Abid,
‘‘Hardware resource utilization optimization in FPGA-based heteroge-
neous MPSoC architectures,’’ Microprocess. Microsyst., vol. 39, no. 8,
pp. 1108–1118, Nov. 2015.

[8] R. Grubisic and V. Zadrija, ‘‘Design of a system-level pipelined jpeg
coder for a homogeneous multiprocessor platform using replication,’’
Tech. Rep., May 2009.

[9] J. Rettkowski and D. Göhringer, ‘‘SDMPSoC: Software-defined MPSoC
for FPGAs,’’ J. Signal Process. Syst., vol. 92, no. 10, pp. 1187–1196,
Oct. 2020.

[10] L. Jia, Z. Luo, L. Lu, and Y. Liang, ‘‘Tensorlib: A spatial accelerator
generation framework for tensor algebra,’’ 2021, arXiv:2104.12339.

[11] G. G. Kumar, S. K. Sahoo, and P. K. Meher, ‘‘50 years of FFT algorithms
and applications,’’ Circuits, Syst., Signal Process., vol. 38, no. 12,
pp. 5665–5698, Dec. 2019.

[12] Y.-K. Kwok, ‘‘High-performance algorithms for compile-time scheduling
of parallel processors,’’ Ph.D. thesis, HongKongUniv. Sci. Technol., 1997.

[13] J. D. Lopes, M. P. Véstias, R. P. Duarte, H. C. Neto, and J. T. de Sousa,
‘‘Coarse-grained reconfigurable computing with the versat architecture,’’
Electronics, vol. 10, no. 6, p. 669, Mar. 2021.

[14] K. Lubeck and O. Bringmann, ‘‘A heterogeneous and reconfig-
urable embedded architecture for energy-efficient execution of convolu-
tional neural networks,’’ in Architecture of Computing Systems—ARCS,
M. Schoeberl, C. Hochberger, S. Uhrig, J. Brehm, and T. Pionteck, Eds.
Cham, Switzerland: Springer, 2019, pp. 267–280.

[15] S. Lubobya, M. E. Dlodlo, G. Jager, and K. Ferguson, ‘‘Optimization of
4×4 integer DCT in H. 264/AVC encoder,’’ Tech. Rep., Sep. 2011.

[16] E. Manor and S. Greenberg, ‘‘Using HW/SW codesign for deep
neural network hardware accelerator targeting low-resources embedded
processors,’’ IEEE Access, vol. 10, pp. 22274–22287, 2022.

[17] R. S. Molina, V. Gil-Costa, M. L. Crespo, and G. Ramponi, ‘‘High-level
synthesis hardware design for FPGA-based accelerators: Models, method-
ologies, and frameworks,’’ IEEE Access, vol. 10, pp. 90429–90455, 2022.

[18] N. Paulino, J. C. Ferreira, and J. M. P. Cardoso, ‘‘Improving performance
and energy consumption in embedded systems via binary acceleration:
A survey,’’ ACM Comput. Surv., vol. 53, no. 1, pp. 1–36, Jan. 2021.

[19] A. P. Raveendran, J. A. Alzubi, R. Sekaran, andM.Ramachandran, ‘‘A high
performance scalable fuzzy based modified asymmetric heterogene mul-
tiprocessor system on chip (AHt-MPSOC) reconfigurable architecture,’’
J. Intell. Fuzzy Syst., vol. 42, no. 2, pp. 647–658, Jan. 2022.

[20] B. A. Ringnyu, A. Tangel, and E. Karabulut, ‘‘Implementation of different
architectures of forward 4×4 integer DCT for H. 264/AVC encoder,’’ in
Proc. 10th Int. Conf. Electr. Electron. Eng. (ELECO), 2017, pp. 423–427.

[21] D. Rodriguez, D. Gomez, D. Alvarez, and S. Rivera, ‘‘A review of parallel
heterogeneous computing algorithms in power systems,’’ Algorithms,
vol. 14, no. 10, p. 275, Sep. 2021.

[22] I. Skliarova, ‘‘A survey of network-based hardware accelerators,’’ Elec-
tronics, vol. 11, no. 7, p. 1029, Mar. 2022.

[23] E. D. Sozzo, D. Conficconi, A. Zeni, M. Salaris, D. Sciuto, and
M. D. Santambrogio, ‘‘Pushing the level of abstraction of digital system
design: A survey on how to program FPGAs,’’ ACM Comput. Surveys,
vol. 55, no. 5, pp. 1–48, Dec. 2022.

[24] P. Stanicek and R. Farana, ‘‘Chosen optimizationmethods for search data,’’
Tech. Rep., May 2011.

[25] L. Suriano, F. Arrestier, A. Rodríguez, J. Heulot, K. Desnos, M. Pelcat,
and E. D. L. Torre, ‘‘DAMHSE: Programming heterogeneous MPSoCs
with hardware acceleration using dataflow-based design space exploration
and automated rapid prototyping,’’ Microprocess. Microsyst., vol. 71,
Nov. 2019, Art. no. 102882.

[26] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Task scheduling algorithms
for heterogeneous processors,’’ in Proc. 8th Heterogeneous Comput.
Workshop (HCW), 1999, pp. 3–14.

[27] W. Wolf, ‘‘Multimedia applications of multiprocessor systems-on-chips,’’
in Proc. Conf. Design, Autom., Test Eur., vol. 3, 2005, pp. 86–89.

[28] S. Xu, S. Liu, Y. Liu, A. Mahapatra, M. Villaverde, F. Moreno, and
B. C. Schafer, ‘‘Design space exploration of heterogeneous MPSoCs with
variable number of hardware accelerators,’’ Microprocess. Microsyst.,
vol. 65, pp. 169–179, Mar. 2019.

[29] F. Zargari and S. Ghorbani, ‘‘Fast calculation of 8×8 integer DCT in the
software implementation of H.264/AVC,’’ in Proc. 7th Int. Conf. Appl. Inf.
Commun. Technol., Oct. 2013, pp. 1–4.

[30] X. Zhang, H. Ye, and D. Chen, ‘‘Being-ahead: Benchmarking and
exploring accelerators for hardware-efficient ai deployment,’’ 2021,
arXiv:2104.02251.

BOUTHAINA DAMMAK was born in Sfax,
Tunisia, in 1985. She received the engineering
and M.S. degrees from the National Engineering
School of Sfax (ENIS), Tunisia, in 2009, and
the Ph.D. degree in computer science from the
ENIS and the University of Valenciennes and
Hainaut Cambresis, France, in December 2016.
She is currently an Assistant Professor with
the Department of Computer Science, Applied
College, Princess Nourah bint Abdulrahman Uni-

versity. Her research interests includemultiprocessor architecture, embedded
systems, and the IoT applications.

MOUNA BAKLOUTI was born in Sfax, Tunisia,
in 1983. She received the engineering and M.S.
degrees from the Tunisian Polytechnic School,
Tunisia, in 2006 and 2007, respectively, the Ph.D.
degree in computer science from the National
Engineering School of Sfax (ENIS), Sfax, and the
University of Lille 1, France, in December 2010,
and the HDR degree in electrical engineering from
the ENIS, in June 2016. From 2012 to 2020, she
was the Co-Founder and the Coordinator of the

Research Master in Embedded Systems, ENIS, in cooperation with the
University of Chemnitz, Germany. She is currently an Associate Professor
of computer science with the University of Sfax. She is also a Research
Member of the Computer Embedded Systems Laboratory (CES-Lab), ENIS.
Her research interests include smart embedded systems design, the IoT
applications, machine learning, and e-health.

DEEMA ALSEKAIT received the Doctor of Phi-
losophy (Ph.D.) degree in information technology.
She is currently a talented Assistant Professor with
an excellent background in the field of information
technology (IT).With the Ph.D. degree in informa-
tion technology, she has firmly established herself
as a leading figure in academia and research. She
possesses a versatile skill set, excelling in strategic
planning, data analytics, program development,
public speaking, and research. In addition, she is

a leading Advocate for improving access to careers in science, technology,
engineering, andmath (STEM). In the ever-changing IT field, she is a shining
example of an outstanding professional. She perfectly combines her research
expertise, pedagogical knowledge, and uncompromising commitment to
social advancement. Her tireless efforts continue to inspire innovation,
ensuring that the future of information technology remains bright and
inclusive.

VOLUME 12, 2024 15289


