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ABSTRACT Sequential pattern mining is a dynamic and thriving research field that aims to extract recurring
sequences of events from complex datasets. Traditionally, focusing solely on the order of events often falls
short of providing precise insights. Consequently, incorporating the temporal intervals between events has
emerged as a vital necessity across various domains, e.g. medicine. Analyzing temporal event sequences
within patients’ clinical histories, drug prescriptions, and monitoring alarms exemplifies this critical need.
This paper presents innovative and efficient methodologies for mining frequent chronicles from temporal
data. The mined graphs offer a significantly more expressive representation than mere event sequences,
capturing intricate details of a series of events in a factual manner. The experimental stage includes a series
of analyses of diverse databases with distinct characteristics. The proposed approaches were also applied
to real-world data comprising information about subjects suffering from sleep disorders. Alluring frequent
complete event graphs were obtained on patients who were under the effect of sleep medication.

INDEX TERMS Frequent event graphs, chronicle mining, sequence mining, temporal data mining, sleep
disorder.

I. INTRODUCTION
Pattern mining techniques aim to discover hidden patterns in
large databases [23], and they are useful not only for data
understanding but also for decision-making processes [21].
Sequence analysis techniques [16] are required when the
sequential order of the items or events is critical, e.g. text
analyses where it is often relevant to consider the word
order. These techniques, also known as sequential pattern
mining [11], focus on extracting frequent event sequences
from data. Although these techniques do not require a
timestamp and primarily focus on the order of events, in many
application domains, like network failure analysis [8], care
pathways [7], and human activities analysis [5], the temporal
distance between events is as critical as their order. Therefore,
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new and effective techniques that consider this aspect are
required.

To fill this gap, Dousson and Duong [8] proposed the
extraction of temporal patterns represented by temporal con-
straint networks. This challenging task, known as chronicle
mining [24], discovers frequently occurring event graphs
where the vertices are events, and the edges represent
intervals denoting the time between the two linked events.
A chronicle offers an organized account of pertinent or his-
torical events in the sequence of their occurrence, facilitating
users’ comprehension of the timeline needed to navigate from
one event to another. Consequently, temporal constraints
establish the order of events relative to each other and the
duration needed for transitions. This duration is represented
as a range since two sequences involving identical events
may occur at varying time intervals, as exemplified in the
field of activity analysis. Two people (person A and person
B) do the same events in a trial but in different time gaps.
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The sequences of events for A and B are the same, but the
resulting time gaps highly differ. It denotes a difference in
the context, maybe because person A has practiced a lot,
or perhaps because person B has disabilities or undiscovered
problems to complete the events in a fast way.

Chronicle mining [13] has recently arisen as an alluring
research agenda in different application domains such as
medicine [2], [6] and predictive maintenance [24], mainly
because graphs model the information in a highly expressive
way [1]. Recent research works [24] have considered
chroniclemining as a promising task for descriptive purposes,
similar to pattern mining but including richer information in
the form of graphs. This is a computationally hard problem
as descriptive analytics requires an accurate description of
the information (adjustment of the temporal constraints).
The first approaches in the frequent chronicle mining field
worked in two phases [24], mining frequent sequences using
the CloSpan algorithm [31], and then adjusting the temporal
constraints. However, a major problem of this methodology
is two sequences may include the same events but they satisfy
different transactions. It implies that the resulting graphs are
the same (in terms of the events), but they include different
temporal constraints. Let us imagine two frequent sequences:
< (A)(B)(C) > and < (B)(C)(A) >. They may satisfy
different data transactions, and subsequently, the final event
graphs (including the temporal constraints) may differ. At this
point, one might wonder if returning two identical graphs in
terms of events, but including different temporal constraints
could confuse the end user. Additionally, existing approaches
extract incomplete chronicles (absence of some links between
pairs of events), and include inconsistencies (the chronicle
does not properly adjust the temporal constraints to the
satisfied sequences). All these problems mainly appear
because frequent chroniclemining approaches were proposed
for predictive purposes, where the information could be
somehow inaccurate. The primary research question we aim
to address is: Can we efficiently extract frequent event
graphs that vary based on their events, maintain all event
linkages, and contain no inconsistencies? To answer this
question, this paper proposes new and efficient approaches
for mining frequent event graphs from temporal data. These
event graphs should be different, complete and without
inconsistencies. The proposed approaches, namely, MEGM-
RTC (Mining Event Graphs through Minimum Ranges of
the Temporal Constraints) and MEGBIA (Mining Event
Graphs through a Bio-Inspired Approach) aim to improve
the final performance by proposing new heuristic-based
methods to find the right temporal constraints. Heuristic-
based approaches have already proven to be effective in
the field of pattern mining [27]. The experimental stage
compares the proposals to CPM [24], which is themost recent
and efficient algorithm for frequent chronicle mining. Our
experiments compare these approaches based on the quality
of chronicles produced, runtime, scalability, and memory
requirements across 12 datasets. Last but not least, a case

study was conducted to analyze and accurately understand
frequent bio-physiological changes that occur during sleep
on 100 subjects with sleep disorders [9]. Real-world data
gathered by the Sleep Medicine Centre of the Hospital of
Coimbra University [17] were considered to demonstrate the
usefulness of frequent event graph mining.

The novelty of this research work is summarized as
follows:
• The problem of chronicle mining for descriptive pur-
poses is defined, paying special attention to complete-
ness (all the events are linked), and data integrity (lack
of inconsistencies in the final graph).

• We present two novel methodologies, MEGMRTC and
MEGBIA, for mining frequent event graphs. In contrast
to existing techniques, these methods do not take into
account the extraction of frequent sequences. This
avoids the extraction of event graphs with the same
events, which hinders the understanding of the resulting
set.

• Heuristic methods are proposed to address the com-
putational hardness of adjusting temporal constraints.
The advantages and disadvantages of these methods are
analyzed on a large number of datasets. Performance is
evaluated in terms of scalability, runtime, and memory
requirements.

• The CPM [24] algorithm has been briefly modified to
avoid sequences with the same events, so its comparison
in terms of the quality of the solutions is fair.

• Acase study is performed on real-world data gathered by
the Sleep Medicine Centre of the Hospital of Coimbra
University [17] to demonstrate the usefulness of using
chronicles for descriptive purposes.

The remainder of this paper has the following structure.
Section II introduces the background and related works
of chronicle mining. Section III describes the chronicle
mining problem with definitions and properties, as well as
the problem statement. Section IV presents the proposed
algorithms. Experimental results are reported in Section V,
and a detailed case study is presented in Section VI. Finally,
some conclusions and future works are in Section VII.

II. RELATED WORK
Since the early 90s, when the market basket problem was
proposed to discover what items were bought together
in a transaction, many studies have contributed to an
improvement of the efficiency [21] and expressiveness [22]
of the proposals. Sequence analysis techniques [11] are some
examples of highly expressive proposals required when the
sequential order of the items is critical. These are called
un-temporal sequence patternmining approaches [18] as only
the item occurrence order is considered. In order to deal
with time-related data, some approaches were proposed to
consider not only the item occurrence order in a sequence
pattern but also the time between successive items in a
sequential pattern [32]. As a result, sequential pattern mining

VOLUME 12, 2024 14581



H. Zmezm et al.: Efficient Frequent Chronicle Mining Algorithms: Application to Sleep Disorder

methods were classified into three categories [30]: 1) pattern
discovery from point-based event sequences; 2) mining
patterns from interval-based event sequences; 3) extraction
of patterns from hybrid event sequences.

Yoshida et al. [32] defined the temporal sequence patterns

of the form A
[0,7]
−−→ B

[3,5]
−−→ C . It means that the sequential

pattern A → B → C frequently appears in the data under
analysis, and the transition times from A to B, and from
B to C are [0, 7] and [3, 5], respectively. Chen et al. [4]
presented a type of temporal sequence pattern by considering
user-defined time intervals in advance. These predefined
time intervals were considered to count the frequency
of the temporal sequence patterns in the data. However,
as they adopted some user-predefined constraints on the time
intervals between successive items, it is difficult for a user
to specify optimal constraints related to item interval [18].
Hu et al. [14] proposed the extraction of sequential patterns
by modelling the temporal arrangements between pairs of
events. Other research works proposed an enhancement of
the temporal information such as Bellazzi et al. [3], which
aimed at detecting trends in time series and providing
descriptions using the temporal algebra: overlaps, finished-
by, before, starts, etc. Additional researchers focused on
time-constrained sequential pattern mining [19]. Times asso-
ciated with the items (events) were used to restrict the mined
sequences (some min-max time spans were predefined).
Hence, in this research work, the temporal information is not
provided as a descriptive feature, and the resulting knowledge
is a row of events as in sequential pattern mining. Some other
researchers focused on time-interval pattern mining [20],
considering times associated with transactions (not events) to
take valid data records. Recent studies [28] have been focused
on a mix of both (time-constrained sequential pattern mining
and time-interval pattern mining), not only considering the
time feature to take valid transactions but also restricting the
extracted sequences by considering min-max time spans.

All the previous sequential pattern mining techniques [11]
were proposed to find frequent patterns in a database
(multiple sequences), but it was frequent episode mining
the one proposed to identify all episodes (subsequences
of events) [15] that frequently appear in a single long
sequence of events. Frequent episode mining works on two
types of input sequences: simple (each event has a unique
timestamp) and complex (simultaneous events are allowed).
This is a computationally expensive task because the search
space can be very large, and it is extremely difficult to
find the proper frequency threshold. In this regard, the
specialized literature includes algorithms for mining the top-
k frequent episodes [12]. However, episode mining does not
work on multiple sequences where it is required to obtain
representative event graphs on all such sequences. Something
similar occurs when working with process mining, where the
aim is to collect a process log with data about the order of the
events [26]. Here, the resulting model is represented through
a net with starting/ending tasks, linked by transitions.

Dousson and Duong [8] innovatively applied temporal
constraint networks to depict temporal patterns, enabling
a user to comprehend the timeline between graph events.
These event graphs encapsulate a concept similar to episode
mining, wherein vertices represent events, and edges, time
intervals between two linked events. The emerging task,
known as chronicle mining [24], aims to generate illustrative
event graphs from sequence sets, subtly escalating the com-
plexity of frequent episode mining. STP formalism, widely
advocated in diverse applications like medicine [2], failure
prediction [24], and activity recognition [5], is the backbone
of chronicle mining. Various algorithms have been proposed,
focusing mainly on predictive [24] and discriminant [6]
goals. Dauxais et al. [6] introduced the DCM algorithm to
extract discriminant chronicle patterns across two classes
or target variables (positive and negative). Sellami et al. [24]
focused their research studies on machine failure prediction.
They aimed to extract a chronicle related to a given failure
with the aim of predicting a breakdown before it happens.
Cram et al. [5] presented a heuristic chronicle discovery
algorithm for activity recognition. For each pair of event
types, a constraint database holds several temporal constraints
in a structure called the constraint graph. Nevertheless, since
the goal of such approaches was not to provide a useful
description of what is happening in the data, the time
constraints were not accurately adjusted and the authors did
not pay attention to the completeness of the results.

III. PRELIMINARIES
A. FREQUENT CHRONICLE MINING
Frequent chronicle mining consists of extracting all temporal
event graphs that appear more than a minimum predefined
number of times in a temporal dataset. This section includes
the basic definitions to understand the meaning of a chronicle
(event graph), the quality measure and the task complexity.
Definition 1 (Event): Let E be a set of things that may

occur (generally important or unusual) in a problem or
activity. An event [8] is formally defined as e ∈ E. Let T
be a temporal domain where T ⊆ R. A temporal event is a
tuple (e, t) such that e ∈ E and t ∈ T. The tuple (e, t) means
that the event e occurs at time t.
Example 1. Considering the sample sequential database

shown in Table 1, it includes five different events: A, B, C,
D and E. A sample temporal event is (A, 1), which appears
in the three first transactions. The time associated with an
event can be a timestamp represented in any format, e.g.
Tues 21-02-2017 21:35. However, for a matter of simplicity,
we denote it as an integer from now on.
Definition 2 (Sequence of events): Let us assume the set

E of events is totally ordered by ≤E. Given a group
of two or more events ⟨(e1, t1), (e2, t2), . . . , (en, tn)⟩, and
an index SID of such a group that may appear or not,
a sequence of events is formally defined as the tuple
⟨SID, ⟨(e1, t1), (e2, t2), . . . , (en, tn)⟩⟩. Additionally, it is sat-
isfied that, for all i, j ∈ [1, n], i < j ⇒ ti ≤ tj. If ti = tj then
ei <E ej.
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TABLE 1. Example of a sequential database.

FIGURE 1. Sequence with SID 1 from the sequential database shown in
Table 1.

Example 2. The sample sequential database shown in
Table 1 includes 6 different sequences of events. A sample
sequence is ⟨1, ⟨(A, 1), (B, 3), (A, 4), (E, 4), (C, 5), (C, 6),
(D, 7)⟩⟩, which includes all the feasible events (A, B, C, D and
E) in data. The meaning of this sequence is the event A occurs
at time 1, B at time 3, A and E at time 4, C at time 5, C at
time 6, and D at time 7. This same information provided by
the first sequence in Table 1 can also be expressed graphically
by a timeline as it is illustrated in Figure 1.
Definition 3 (Subsequence of a sequence of events): A

subsequence of a given sequence is a sequence that can
be derived from the given sequence by deleting some or
no elements without changing the order of the remaining
elements. Given two groups of two or more events Gx =
⟨(ei, ti), . . . , (ej, tj)⟩ and Gy = ⟨(ek , tk ), . . . , (ez, tz)⟩, Gy is a
subsequence of Gx if and only if Gy ⊆ Gx . A subsequence is,
at the same time, a sequence of events
Example 3. Taking the sample sequential database shown

in Table 1, the sequence ⟨(A, 1), (A, 4), (C, 6), (D, 7)⟩ is
a subsequence of the first sequence in Table 1, that is,
⟨1, ⟨(A, 1), (B, 3), (A, 4), (E, 4), (C, 5), (C, 6), (D, 7)⟩⟩.
Definition 4 (Temporal constraint): A temporal constraint

is defined as a 4-tuple (e1, e2, t−, t+) where e1, e2 ∈

E, e1 ≤E e2 and t−, t+ ∈ T, t− ≤ t+. A temporal constraint
can also be presented as e1[t−, t+]e2, and it is satisfied by a
couple of events ((e, t), (e′, t ′)), e ≤E e′, t ≤ t ′ if and only if
e = e1, e′ = e2 and t ′−t ∈ [t−, t+].
Example 4. Considering sample sequential database illus-

trated in Table 1, and considering the sample temporal
constraint tc = (A,B, 3, 5) (also denoted as A[3, 5]B),
it is satisfied by transactions with SID 2 and 3. Focusing
on ⟨2, ⟨(A, 1), (A, 3), (B, 5), (C, 8)⟩⟩, the couple of events
((A, 1), (B, 5)) satisfy tc since 5 − 1 ∈ [3, 5]. Additionally,
tc is satisfied by the couple of events ((A, 1), (B, 4)) ∈ SID =
3 since 4 − 1 ∈ [3, 5], and also ((A, 1), (B, 6)) ∈ SID =
3 since 6−1 ∈ [3, 5]. On the contrary, this temporal constraint
tc = (A,B, 3, 5) is not satisfied by the couple of events
((A, 3), (B, 5)) ∈ SID = 2, since 5 − 3 ̸∈ [3, 5]. It should
be noted that the temporal constraint denotes the path from A
to B, thus is why the couple of events ((B, 3), (A, 4)) ∈ SID =
1 produces a temporal distance of −1.

FIGURE 2. Sample chronicle obtained from the sequential database
shown in Table 1.

Example 5. A temporal constraint may also be defined
in timestamp format. Given the sample temporal constraint
tc = (X ,Y , Tues 21-02-2017 21:35, Tues 21-02-2017
23:50), it is satisfied by the couple of events ((X ,Tues21−
02− 201722 : 00), (Y ,Tues21− 02− 201723 : 35)). Addi-
tionally, it is possible to consider more general timestamps,
e.g. tc = (X ,Y , 21:35, 23:50), which does not consider the
date but just the time.
Definition 5 (Chronicle): A chronicle C or event graph

is defined [8] as a tuple (E, T ), where E = {e1, . . . , en}
satisfying that ∀i, ei ∈ E and ei ≤E ei+1; whereas
T = {tij}1≤i<j≤|E | is a set of temporal constraints on E
such that for all pairs (i, j) satisfying i < j, tij is denoted
by ei[t

−

ij , t
+

ij ]ej. It is important to highlight that since the
constraint ei[t

−

ij , t
+

ij ]ej is equivalent to ej[−t
+

ij ,−t
−

ij ]ei it is
usually considered the order on events, ≤E, to decide which
one is represented in the chronicle. The set E might contain
several occurrences of a same event type.
Example 6. Figure 2 shows a sample chronicle obtained

from the sample database shown in Table 1. This chronicle
C is defined by E = {e1 = A, e2 = B, e3 =

C, e4 = C} and T = {e1[−1, 3]e2, e1[−2, 4]e3, e1[1, 7]e4,
e2[−1, 2]e3, e2[2, 4]e4, e3[1, 3]e4}. Analysing this chronicle,
the edge between A and B denotes the temporal constraint
(A,B,−1, 3) or A[−1, 3]B, representing that the event A
occurs between a temporal unit (hours, days, weeks, etc.)
after B and 3 temporal units before B. The negative value
denotes that B occur before A.
Definition 6 (Incomplete chronicle): A chronicle C or

event graph is defined as an incomplete chronicle if there
is at least one temporal constraint with infinity values, i.e.
tij = ∞. Formally, a chronicle C = (E, T ) is an incomplete
chronicle if and only if ∃tij ∈ T where t− = −∞, t+ = ∞.
In other words, there is at least one temporal constraint
with no restriction, which is represented as ei(−∞,∞)ej.
This type of chronicle is less restrictive than that defined in
Definition 5.
Example 7. Figure 3 shows a sample incomplete chronicle

obtained from the sample database shown in Table 1.
This chronicle C is defined by E = {e1 = A, e2 =
B, e3 = C, e4 = C} and T = {e1[−1, 3]e2, e1[−2, 4]e3,
e1(−∞,∞)e4, e2[−1, 2]e3, e2(−∞,∞)e4, e3[1, 3]e4}. This
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FIGURE 3. Sample incomplete chronicle obtained from the sequential
database shown in Table 1.

FIGURE 4. Sample sub-chronicle of the one shown in Figure 2.

chronicle includes some undefined temporal constraints, e.g.
there is no edge between events B and C. It means that any
value is feasible, and the constraint range is considered as
(−∞,∞).
Definition 7 (Sub-chronicle): A chronicle C1 = (E1, T1) is

defined as a subset of a chronicle C2 = (E2, T2), denoted as
C1 ⊂ C2, if and only if E1 ⊆ E2, and T1 ⊂ T2.
Example 8. Given the sample chronicle C1 (see Figure 2)

defined by E1 = {e1 = A, e2 = B, e3 = C, e4 = C}
and T1 = {e1[−1, 3]e2, e1[−2, 4]e3, e1[1, 7]e4, e2[−1, 2]e3,
e2[2, 4]e4, e3[1, 3]e4}, and the sample chronicle C2 (see
Figure 4) defined by E2 = {e1 = A, e2 = B, e3 = C} and
T2 = {e1[−1, 3]e2, e1[−2, 4]e3, e2[−1, 2]e3}, it is possible
to assert that C2 ⊆ C1. In this example, E2 ⊂ E1, and T1 ⊂ T2.
Definition 8 (Super-chronicle): A chronicle C1 = (E1, T1)

is defined as a superset of chronicle C2 = (E2, T2), denoted
as C1 ⊃ C2, if and only if C2 is a sub-chronicle of C1 (see
Definition 7).
Definition 9 (Restrictive chronicle): A chronicle C1 =

(E1, T1) is denoted as more restrictive than other chronicle
C2 = (E2, T2) if and only if E1 ≡ E2, and at least one temporal
constraint in T1 has a smaller range than T2 for the same pair
of events.
Example 9. Given the sample chronicle C1 defined by

E1 = {e1 = A, e2 = B, e3 = C} and T1 =

{e1[−1, 3]e2, e1[−2, 4]e3, e2[−1, 2]e3}, and the sample
chronicle C2 defined by E2 = {e1 = A, e2 = B, e3 = C}
and T2 = {e1[0, 3]e2, e1[1, 3]e3, e2[−1, 2]e3}, it is possible
to assert that C2 is more restrictive than C1. In this example,
E1 ≡ E2, but some of the temporal restrictions in T2 are more
restrictive than those in T1.
Definition 10 (Quality measure): The quality of a chron-

icle C or event graph is defined by its frequency [24], also
known as the number of sequences the chronicle satisfies
from the database (all the temporal constraints defined by C
are satisfied). Given a database defined as a set of sequences
S, the frequency of a chronicle C in S is mathematically

denoted as |{s ∈ S : C ⊆ s}|. This frequency can be defined
in relative terms as |{s ∈ S : C ⊆ s}|/|S|.
Example 10. Given the sample chronicle C defined by

E = {e1 = A, e2 = B, e3 = C, e4 = C} and
T = {e1[−1, 3]e2, e1[−2, 4]e3, e1[1, 7]e4, e2[−1, 2]e3,
e2[2, 4]e4, e3[1, 3]e4}, its frequency on the sample database
shown in Table 1 is 3 (SIDs 1, 3 and 6). In relative terms, this
frequency is 3/6=50%.
Definition 11 (Chronicle mining): The task of mining fre-

quent chronicles aims to extract any chronicle C (see
Definition 5) with a frequency (see Definition 10) higher than
a minimum predefined value.

Additionally, it is important to highlight that the chronicle
mining task presents a series of properties that should be
considered.
Property 1. A chronicle C may satisfy a sequence more

than once. As chronicles include a set of events that are
subsequences of sequences of events, a subsequence may
appear more than once in a sequence. Similarly, the temporal
constraints of a chronicle may be satisfied more than once in
a sequence.
Example 11. Given the sample chronicle C defined

by E = {e1 = A, e2 = B, e3 = C} and
T = {e1[−1, 3]e2, e1[−2, 4]e3, e2[−1, 2]e3}, it satisfies
the sequence ⟨1, ⟨(A, 1), (B, 3), (A, 4), (E, 4), (C, 5), (C, 6),
(D, 7)⟩⟩ shown in Table 1 twice.More specifically, the chroni-
cle C is satisfied by the subsequences: ⟨(A, 1), (B, 3), (C, 5)⟩,
and ⟨(B, 3), (A, 4), (C, 5)⟩. However, this property does not
affect the final frequency (see Definition 10) as this quality
measure calculates the number of sequences (transactions
in a database) satisfied by the chronicle, not the number of
subsequences.
Property 2. The set of sequences from data satisfied by a

sub-chronicle is equal to or bigger than its super-chronicle.
Similarly, the set of sequences satisfied by a super-chronicle
is always equal to or smaller than its sub-chronicle. For
the same reason, the frequency (see Definition 10) of a
sub-chronicle is equal to or higher than its super-chronicle,
whereas the frequency of a super-chronicle is always equal to
or lower than its sub-chronicle.
Property 3. Given two chronicles C1 and C2, where

C1 is more restrictive than C2 (see Definition 9), the set of
sequences satisfied by C1 is always equal or smaller than C2.
By the same reason, the frequency (see Definition 10) of C1 is
equal or lower than C2.
Property 4. Given two chronicles C1 = (E1, T1) and

C2 = (E2, T2), where E1 ≡ E2, and C1 being an incomplete
chronicle, then the set of sequences from data satisfied by
C1 is equal or bigger than C2. By the same reason, the
frequency (see Definition 10) of C1 is equal or higher than C2.
Property 5. The sum of the temporal constraints of the

linked events cannot be considered for unknown temporal
constraints. In other words, given three events A, B and C,
the time required to move from A to C is not always the time
required to move from A to B plus the time required to move
from B to C.
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FIGURE 5. Sample chronicle where the sum of the temporal constraints
of the linked events is not the same as the direct link.

This last property (see Property 5) is of high interest
and explains why sequential pattern mining with temporal
constraints cannot produce the same information as chronicle
mining does. Let us consider a sample chronicle shown
in Figure 5. In this sample event graph, to go from event
A to event B the user needs between 1 and 2 time units.
Additionally, to go from B to C, they need between -1 and
3 time units. However, to go from A to C the user needs
between 1 and 4 time units. What is happening? Why it is
faster to go from A to C in the worst case (4 time units) than
going through B (2+3=5 time units)? Is there any problem
with the integrity? The answer is no, as the sum of the
paths is not always equal to the direct path (see Property 5).
Let us suppose a database containing the sequences
⟨1, ⟨(A, 1), (B, 2), (C, 5)⟩⟩, ⟨2, ⟨(A, 1), (B, 3), (C, 5)⟩⟩, and
⟨3, ⟨(A, 1), (C, 2), (B, 3)⟩⟩. The chronicle illustrated in
Figure 5 satisfies all these three sequences and the ranges
are properly adjusted. For example, the sequence #1 denotes
1-time unit to move from A to B, 3-time units to move from
B to C, and 4-time units to move from A to C. Sequence #2
denotes 2-time units to move from A to B, 2-time units to
move from B to C, and 4-time units to move from A to C.
Finally, the sequence #3 denotes 1-time unit to move from
A to B, 1-time unit to move from C to B, and 1-time unit to
move from A to C.

At this point, it is interesting to denote that temporal
sequence pattern mining does not satisfy Property 5 as it

provides sequences [32] of the form A
[0,7]
−−→ B

[3,5]
−−→ C. The

temporal constraint among A and C is unknown, and cannot

be inferred fromA
[0,7]
−−→B, and B

[3,5]
−−→C. Additionally, since

this unknown constraint cannot be inferred, the information
provided by an event graph is more powerful. This problem
is larger when the number of events increases as temporal
sequence patterns provide just two links by event (except
for the first and the last one). Some algorithms for mining
temporal sequences are explained in the related work section.
Property 6. A chronicle well-defined should satisfy the

data integrity, and avoid inconsistencies. It means that
the chronicle should adjust the temporal constraints to
the satisfied sequences.

Let us consider a sample chronicle shown in Figure 6,
which was obtained and analyzed in [5]. In this sample
event graph, there is no set of sequences that properly
adjust the temporal constraints, so this chronicle does not

FIGURE 6. Sample chronicle shown in [5].

hold the integrity requirement (see Property 6). Here, the
event E is always before F (between 1 and 2 time units).
It is therefore impossible that F occurs 5 time units before
C, but E in the range [-3, 3]. It is important to remark
that due to the aim of mining frequent event graphs is to
explain what is going on in data, it is crucial to maintain the
correctness of the resulting insights. This was not properly
addressed by existing proposals in chronicle mining, mainly
due to they were not designed for descriptive purposes. It is
therefore easy to find chronicles with some inconsistencies
in the temporal constraints (as the one previously presented),
describing different behaviour depending on the path to
follow.

Last, but not least, it is important to remark that the time
complexity of this task depends on the number of chronicles
in the search space and the cost of the operations for adjusting
the temporal constraints. Let t be the number of sequences in
a database, n the maximum length of the sequences, andm the
number of chronicles, the complexity is equal to (t × n×m).

B. PROBLEM STATEMENT
Chronicle mining has recently emerged as a promising
research area for descriptive purposes [24], providing a
richer graphical representation of information compared to
conventional pattern mining. This depth of detail cannot be
achieved by any sequential pattern mining technique, even
those that mine temporal sequence patterns. Whether they
consider user-defined time intervals in advance or not, these
techniques derive transition times between pairs of events,
with each event serving as the start or end point for only one
transition. Consequently, in a sample sequence like A→ B
within a time range [0,7] and B → C within a time range
[3,5], information about the transition between A and C is
unavailable, thus violating Property 5. Such a sequence is
viewed as an incomplete chronicle (as per Definition 6).
Therefore, methods for mining temporal sequence patterns
can also be used to mine incomplete chronicles.

The data extracted from complete chronicles is more
comprehensive than that of incomplete chronicles, which
is vital for descriptive tasks. So far, specific algorithms
have been proposed that extract frequent chronicles in two
phases [24]: 1) mining frequent sequences with the CloSpan
algorithm [31]; and 2) adjusting the temporal constraints.
However, a significant challenge is that the extraction of
frequent sequences can result in different sequences with
identical events due to variations in order. For instance,
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FIGURE 7. Event-index data representation.

< (A)(B)(C) > and < (B)(C)(A) >. In sequential pattern
mining, these sequences could correspond to different data
transactions, leading to distinct final chronicles. Furthermore,
existing methods often overlook Property 6.

To illustrate, let’s revisit the sample chronicle displayed in
Figure 6, obtained from [5]. Avoiding such inconsistencies is
crucial for accurately describing data behaviour, a key goal of
descriptive tasks. Given the aforementioned considerations,
this research aims to develop efficient algorithms to mine
complete chronicles, free of inconsistencies and containing
distinct events. As this is a formidable task, especially in
adjusting the temporal constraints, the proposed algorithms in
this study should be efficient in terms of runtime and memory
consumption.

IV. PROPOSED APPROACHES
Two different approaches are proposed (MEGMRTC and
MEGBIA) and described in this section. The data representa-
tion for both approaches is the same, which is also explained
in this section. MEGMRTC is an exhaustive search approach
that extracts all the existing chronicles above a predefined
support threshold (quality measure, see Definition 10).
MEGBIA is an evolutionary search approach that extracts
chronicles without needing any frequency threshold, which
is a daunting process when the user has no knowledge about
the data distribution or the application field.

A. DATA REPRESENTATION
A significant feature of the proposed approaches is that they
do not engage with sequential patterns in the first phase. This
strategy allows us to prevent extracting different sequential
patterns that represent the same event graph, for instance,
< (A)(B)(C) > and < (B)(C)(A) >. Furthermore, if the
same event appears more than once in the pattern, it should
be considered as two independent events in the event graphs.
In this respect, we convert the events into indices and extract
sets of indices without considering the order. Consequently,
the set {1, 2, 3} is equivalent to {2, 3, 1}, considering A is
denoted as 1, B as 2, and C as 3.
The original database is therefore transformed to distin-

guish the occurrences of the same event type in a sequence.
An event e that appears ne times on a sequence, being ne the
highest number of occurrences of e in any sequence from

TABLE 2. Transformed database from the input database shown in
Table 1.

the whole database, is encoded by ne items: I1e . . . Inee . The
order of the I ie remains the same. To simplify operations, the
≤E order of the chronicle is replaced by the ≤I order, where
∀e ∈ E,∀i ∈ [1, ne] then I ie ∈ I. Taking the sequence
⟨1, ⟨(A, 1), (B, 3), (A, 4), (E, 4), (C, 5), (C, 6), (D, 7)⟩⟩ as an
example from Table 1, the following ordered events are
extracted: A,A,B,C,C,D,E . These events are transformed
into the following indices: 0, 1, 2, 3, 4, 5, 6. The transforma-
tion information is maintained through a hashing function
that determines the associations between events and indices
(see Figure 7). For a given key k based on the event,
the function maps k to the corresponding bucket that
includes information on associated indices. Simultaneously,
the input sequential database (see Table 1) is modified
according to these event-index associations, resulting in a
new database (see Table 2). Since each event is associated
with one or more indices (see Figure 7), the indices in
the transformed database are obtained in ascending order
from the hashing function. For instance, take the sequence
⟨5, ⟨(A, 2), (B, 4), (C, 7)⟩⟩ from Table 1. Here, event A is
transformed into index 0, B into index 2, and C into
index 3. These indices are the first for each event in
Figure 7. In cases where an item appears more than once, the
indices are taken in ascending order from its bucket. Thus,
the sequence ⟨6, ⟨(C, 4), (B, 5), (A, 6), (C, 7), (D, 10)⟩⟩ is
encoded as ⟨6, ⟨(3, 4), (2, 5), (0, 6), (4, 7), (5, 10)⟩⟩. The first
event C is encoded as 3, whereas the second event C is
encoded as 4 (see Figure 7). Finally, the transformed database
is stored in memory as a list of hashing functions. Given a key
k based on the index of an event in the data, it maps k to the
corresponding bucket including information on the temporal
constraint. This allows for faster access to the sequence
items, thereby accelerating the evaluation process and the
generation of temporal constraints. It is important to note
that the time associated with an event can be represented as
a timestamp in any format, for example, Tues 21-02-2017
21:35. However, for the sake of simplicity in this article,
we denote it as an integer.

B. MEGMRTC
This first approach (see Algorithm 1), known asMEGMRTC,
extracts all frequent chronicles (considering a minimum
frequency threshold) that exist in the data under analysis. This
algorithm works as a two-step procedure: a) extracting the
frequent patterns or itemsets; b) adding temporal constraints
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Algorithm 1MEGMRTC Algorithm
Require: �, sup_threshold , minLen, max, min ▷ Original

dataset � (including timestamps), minimum support
sup_threshold , minimum number of events minLen,
minimum min and maximum max temporal distance
between events

Ensure: C
1: �← remove timestamps from �

2: ω← data transformation �

3: P ← methodology based on
LCM (�, ω, sup_threshold,minLen) ▷ Frequent event
sets

4: C ← ∅
5: for all p ∈ P do
6: supp← support of p
7: S ← subset of sequences from � satisfying p
8: J ← ∅ ▷ Set of subsequences satisfied
9: for all s ∈ S do

10: I ← gets subsequences from s satisfying p, max
and min

11: if I == ∅ then
12: supp = supp− 1
13: if supp < sup_threshold then
14: breaks and continues with next pattern
15: end if
16: end if
17: I ← remove repeated subsequences in I
18: J ← J ∪ I
19: end for
20: J ← remove repeated sets and supersets, and sort by

length
21: J1← J [1] and remove J [1] from J
22: Tbest ← T∞
23: if J is empty then
24: T ← update Tbest using J1[1]
25: C ← C ∪ (p, T )
26: break and continue with next pattern
27: end if
28: for all j ∈ J1 do
29: T ← updates T∞ using j
30: recursiveDraws(J , 1, T ) ▷ See Algorithm 2
31: end for
32: C ← C ∪ (p, Tbest )
33: end for
34: return C

to the mined patterns. The first procedure aims to extract
frequent events from the encoded data (just indices of the
events are considered) by following a similar methodology
to the one of the LCM algorithm [25] in its version for
mining frequent itemsets. LCM has been proven to be one of
the fastest and most efficient algorithms for mining frequent
itemsets [21], and this is why this methodology was taken as
a baseline. The proposed methodology includes a procedure

to form new candidate patterns that consider the order in the
bucket of the event-index data representation described in
the previous section. As a matter of clarification, the itemset
{0, 5} cannot be extended as {0, 5, 7} because of the index
order in the bucket B : [2, 7] (see Figure 7). However, the
same itemset could be extended as {0, 5, 2} as it follows the
index order. This proposed methodology is key to returning
valid sets of events that can be used to form chronicles in the
next procedure.

The second procedure (see lines 9 to 34, Algorithm 1)
analyzes every frequent pattern saved in P (see line 3,
Algorithm 1). The algorithm iterates to analyze every
sequence and subsequence that satisfies the pattern (see
lines 9 to 19, Algorithm 1), and to save not repeated
subsequences which satisfy the minimum and maximum
temporal distances between events given by the user
(parameters min and max). At this point, it is important
to remark that those sequences with no subsequence in
the feasible range of distances are removed, so the final
frequency is reduced, and the pattern p is discarded from
the resulting set if the frequency threshold does not meet
(see lines 13 to 15, Algorithm 1). As an example, let
us consider the pattern p = {0, 2, 3} which is present
in all the transactions so its support or frequency is 6.
Let us now consider the minimum and maximum distance
values of 0 and 7, respectively. In the analysis of the
subsequences (see lines 9 to 19, Algorithm 1), SID #1 is
satisfied because there is at least one subsequence within
these ranges, e.g. ⟨(0, 1), (2, 3), (3, 5)⟩. SID #2 is satisfied
because there is at least one subsequence within these ranges,
e.g. ⟨(0, 3), (2, 5), (3, 8)⟩. SID #3 is also satisfied because
there is at least one subsequence within the valid ranges, e.g.
⟨(0, 1), (2, 4), (3, 5)⟩. SID #4 is not satisfied because there
is no subsequence within the valid ranges. This transaction
produces two invalid subsequences: ⟨(2, 2), (0, 4), (3, 5)⟩ (it
requires -2 time units to move from 0 to 2, which is out of
the range), and ⟨(0, 4), (3, 5), (2, 6)⟩ (it requires -1 time unit
to move from 2 to 3, which is out of the range). SID #5
is satisfied because there is at least one subsequence within
the valid ranges, e.g. ⟨(0, 2), (2, 4), (3, 7)⟩. Finally, SID #6
is not satisfied because there is no subsequence within the
valid ranges. As a result, the frequency of this pattern is
reduced, and it is 4 now (transactions with SIDs #1, #2, #3,
and #5).

Every valid sequence (including at least one valid sub-
sequence) is analyzed to reduce the final set of sequences
(see line 20, Algorithm 1), removing those sequences that
are the same or supersets of others in terms of the distances
between events. In the example under analysis, SID #1
provides two valid subsequences (it should be noted that
index 3 and 4 belong to the same bucket so they are the same):
⟨(0, 1), (2, 3), (3, 5)⟩ and ⟨(0, 1), (2, 3), (4, 6)⟩. It means that
the time constraints are 2 (to move from 0 to 2), 2 (to
move from 2 to 3), and 4 (to move from 0 to 3) for
the first subsequence. As for the second subsequence, the
time constraints are 2 (to move from 0 to 2), 3 (to move
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from 2 to 4), and 5 (to move from 0 to 4). Similarly, SID
#2 provides two valid subsequences: ⟨(0, 1), (2, 5), (3, 8)⟩
and ⟨(1, 3), (2, 5), (3, 8)⟩. Additionally, SID #3 provides
the following valid subsequences: ⟨(0, 1), (2, 4), (3, 5)⟩ and
⟨(0, 1), (2, 4), (4, 8)⟩. Analysing SID #5, it provides a valid
subsequence: ⟨(0, 2), (2, 4), (3, 7)⟩. Here, the time constraints
are 2 (to move from 0 to 2), 3 (to move from 2 to 3),
and 5 (to move from 0 to 3). As a result, SID #5
is a subset of SID #1 because of the time constraints
obtained, that is, {[2, 2, 4], [2, 3, 5]} ⊃ {[2, 3, 5]}, and
SID #1 is removed. The time constraints for SID #2 are
{[4, 3, 7], [2, 3, 5]} ⊃ {[2, 3, 5]}, which denote a superset
of SID #5. Again, SID #2 is removed. Finally, the algorithm
sorts the resulting sequences based on the number of subse-
quences they include (ascending order). The most restrictive
transactions/sequences are considered first. Following the
same example, the two resulting sequences (SIDs #3 and
#5) are sorted. SID #5 is placed in the first position
as it includes just one subsequence ⟨(0, 2), (2, 4), (3, 7)⟩.
SID #3 is placed in second position as it includes three
subsequenes: ⟨(0, 1), (7, 6), (4, 8)⟩, ⟨(0, 1), (2, 4), (3, 5)⟩, and
⟨(0, 1), (2, 4), (4, 8)⟩.

Once the set of valid subsequences is reduced, a chronicle
is formed by considering the pattern p as the set of events,
and updating the time constraints which are first fixed to
the universal constraint (−∞,∞). These bounds are updated
(reduced or extended) iteratively until all the sequences (and
subsequences) are analyzed in order. The sum of ranges is
analyzed, and the procedure expands as a tree graph through
a recursive procedure (see line 30, Algorithm 1) when it
finds two or more subsequences that, if selected to update the
temporal constraints, the sum of ranges for each subsequence
is the same and it is also minimum (there is a draw). Then,
the algorithm calculates the path that minimizes the ranges
of constraints (see Algorithm 2). Back to the example, the
transaction SID #5 is first analyzed and the chronicle is
initialized to the tuple (E, T ), where E = {0, 2, 3}, and T =
{0[2, 2]2, 2[3, 3]3, 0[5, 5]3}. Then, the recursive procedure
updates this chronicle by analysing the three subsequences
given by SID #3, and keeping the one that produces
a smaller sum of ranges. Following with the example,
⟨(0, 1), (7, 6), (4, 8)⟩ updates the time constraints to T =
{0[2, 5]2, 2[2, 3]3, 0[5, 7]3}; ⟨(0, 1), (2, 4), (3, 5)⟩ updates
the time constraints to T = {0[2, 3]2, 2[1, 3]3, 0[4, 5]3};
⟨(0, 1), (2, 4), (4, 8)⟩ updates the time constraints to T =
{0[2, 3]2, 2[3, 4]3, 0[5, 7]3}. The sum of ranges for the first
one is 3+1+2=6. The second one is 1+2+1=4. The third one
is 1+1+2=4. Thus, two different time constraints optimize
the ranges: T = {0[2, 3]2, 2[1, 3]3, 0[4, 5]3} and T =

{0[2, 3]2, 2[3, 4]3, 0[5, 7]3}. Due to there being a draw, both
options should be taken if there are any additional sequences
to be analyzed. Taking the first one as a result, the final
chronicle is (E, T ), where E = {A,B,C}, and T =

{A[2, 3]B,B[1, 3]C,A[4, 5]C}.

Algorithm 2 Recursive Procedure for the Temporal Con-
straints
1: procedure recursiveDraws(J , x, T ) ▷

Set of sets of subsequences J , index x of J for searching
temporal constraints, set of temporal constraint T

2: Tbest ← ∅
3: for y in range [x, size of J ] do
4: I ← J [y]
5: Tmin← T∞
6: K ← ∅
7: for all i ∈ I do
8: Taux ← updates T using i
9: if Taux == T then
10: break and continue with next set I of

subsequences
11: end if
12: if sum(Taux) < sum(Tmin) then
13: K ← ∅; insert Tmin in K
14: Tmin← Taux
15: end if
16: if sum(Taux) == sum(Tmin) then
17: insert Tmin in K
18: end if
19: end for
20: if size(K ) > 1 then
21: for all k ∈ K do
22: recursiveDraws(J , y+ 1, k) ▷ Recursive

procedure
23: end for
24: return
25: end if
26: T ← K [1]
27: end for
28: if sum(T ) < sum(Tbest ) then
29: Tbest ← T
30: end if
31: end procedure

C. MEGBIA ALGORITHM
The methodology we are presenting here is a bio-inspired
algorithm, and to our knowledge, it is the first of its
kind applied in the field of chronicle mining. The goal
of this algorithm is to significantly reduce the substantial
computational resources andmemory neededwhen analyzing
extensive datasets. When dealing with such datasets, where
large sets of frequent patterns are extracted, exhaustive search
algorithms may prove inordinately time-consuming, or may
not even be complete.

An additional challenge in chronicle mining is accu-
rately determining the threshold value. This task is not
straightforward and usually requires deep domain-specific
knowledge. Both novice and expert users find themselves
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Algorithm 3MEGBIA
Require: �, minLen, maxLen, minTemp, maxTemp, pc, pm,

pSize, t , k ▷ Original dataset � (including
timestamps), minimum minLen and maximum maxLen
number of events, minimum minTemp and maximum
maxTemp temporal distance between events, crossover
probability pc, mutation probabilty pm, pSize is the
population size, t is the tournament size, k is the auxiliary
population size

Ensure: L
1: L← ∅ ▷ Best solution set
2: P ← ∅ ▷ Population set
3: I ← available events in �

4: exit ← False
5: P ← creates pSize initial solutions considering I ,
minLen, maxLen

6: P ← evaluates P and adjusts the temporal constraints
using �, and considering minTemp and maxTemp

7: L← gets the best k solutions from P
8: while exit ̸= True do
9: P ′← applies tournament selector of size t to P

10: P ′ ← applies crossover operator to P ′ using pc and
Items

11: P ′ ← applies mutation operator to P ′ using pm and
Items

12: P ′ ← evaluates P ′ and adjusts the temporal
constraints using �, and considering minTemp and
maxTemp

13: P ← updates with elitism using P and P ′
14: L← gets the best k solutions from L ∪ P
15: exit ← True if the stop condition is reached
16: end while
17: return L

having to estimate different threshold values, and then run the
algorithm repeatedly until they achieve satisfactory results.
In the realm of frequent pattern mining at large, it has been
demonstrated by some researchers [29] that a slight alteration
in the threshold value can lead to an extremely small
(sometimes zero) or overwhelmingly large set of solutions.
The latter scenario often necessitates additional filtering,
and can significantly increase execution times. Consequently,
there is a need for algorithms capable of extracting frequent
event graphs without requiring any frequency threshold.

The proposed algorithm (see Algorithm 3), known as
MEGBIA, follows a traditional evolutionary schema with
elitism. MEGBIA is based on the same data representation
as MEGMRTC, which was described in Section IV-A. The
main procedures of this algorithm are described below.

• Enconding criterion. In this approach, each solution
s represents a chronicle C defined as a tuple (E, T ),
following the formal definition given in Definition 5.
The initial set E is randomly chosen from the set of
feasible events I in the data (see line 5, Algorithm 3).

The number of events taken to form E is a value in
the range [minLen,maxLen]. These bounds are given
by the user. It is the evolutionary process responsible
for changing this set by adding and removing events
to adjust the chronicle to form better solutions. The set
T is obtained to accurately adjust the time constraints
for every link between events from E . Given the set
E = {0, 2, 3, 5} with four different events, the set T
will include 6 different time constraints. The relation
between E and T is the size of T is the number
of combinations of the elements in E taken 2 by to.
Formally, it could be expressed as |T | = C|E |,2. Last
but not least, it is important to remark that the number
of solutions (individuals) to be initialized is pSize, which
is a predefined value.

• Evaluation procedure. This procedure is responsible
for assigning a fitness value to each individual or
solution (see line 5 and line 12, Algorithm 3). The fitness
function evaluates how good a given solution is, and
whether one individual or solution is better than another.
This procedure is given by the frequency of the chronicle
F and the sum of differences of ranges of T , sum(T ).
A solution s is said to be better than another one s′ if
Fs > Fs′ or Fs == Fs′ ̸= 0 and sum(T )s < sum(T )s′ .
It is important to keep in mind that chronicles with a
support value of 0 are useless so they are discarded and
no analysis of the ranges is required. In this evaluation
procedure, the ranges of the temporal constraints are
optimized similarly to Algorithm 1.

• Selection operation. The selection operator is a tourna-
ment selector of size t fixed by the user. It takes (with
replacement, i.e. the same individual can be selected
several times) t random individuals from the population,
and the best individual is introduced into the parent set.
This step is repeated pSize times, so the parent set is
formed by a total of pSize individuals.

• Crossover operation. After selecting the parents, each
pair of parents is crossed with a probability value pc (see
line 10, Algorithm 3). This genetic operator chooses a
random item from each E of the pairs of parents and
crosses (swaps) them. If the items to be crossed are the
same event types, or there is no other available event type
value in the pattern, the crossover cannot be performed.
In other cases, it gets the values to be used and performs
the swap.

• Mutation operation. Right after the crossover operator,
the mutation genetic operator takes place. The mutation
of the pattern E is carried out with a probability pm
(see line 11, Algorithm 3) considering three different
options (depending on the length of the pattern and its
restrictions): 1) to add an item; 2) to remove an item;
3) to change the item by another. When adding an item,
a random event is selected and the next available value
of the item is chosen. As a matter of clarification, let
us consider the event-index data representation shown
in Figure 7, and the pattern {0, 2, 3} in which another

VOLUME 12, 2024 14589



H. Zmezm et al.: Efficient Frequent Chronicle Mining Algorithms: Application to Sleep Disorder

TABLE 3. Datasets and their characteristics. The datasets are ordered by increasing number of sequences.

event A should be added. Then, the value 1 is added
since it is the next available value for event A. If this
is not possible, another event is chosen randomly. As for
the item removal, the procedure is quite similar: an item
is randomly chosen to be removed from the pattern E .
In such a situation in which the chosen item (event)
appears more than once in E , then the one with the
highest value is removed. For example, considering
again the event-index data representation shown in
Figure 7, and the item 0 is chosen from the pattern
{0, 1, 3}, then it is the value 1 the one that is removed
since both (0 and 1) represent the event A. Finally, the
third option is to change the value of an item from
pattern E . Again, in such a situation in which the chosen
item (event) appears more than once in E , then the one
with the highest value is changed. Additionally, if the
new event type cannot be introduced due to there is
no additional feasible event type, then the operation
is cancelled. For instance, let us suppose the pattern
{0, 2, 3, 4, 5, 6, 7} and we want to change the value 0
(eventA according to the event-index data representation
shown in Figure 7), the only available value is 1, which
is of the same event type so the change is not performed.

• Elitism.To ensure that good solutions are not lost during
the mining process, the algorithm uses elitism to keep
the best solution found along the evolutionary process
(see line 13, Algorithm 3). In this procedure, if the best
solution belonging to the new population is worse than
the best solution of the previous population, then that
best solution replaces the worst one.

• List of best solutions. The k best solutions found during
the execution of the algorithm are kept in a list or
auxiliary population (see line 14, Algorithm 3).

All these procedures are combined to produce the proposed
genetic algorithm (see Algorithm 3). The algorithm generates
an initial set of pSize solutions from �, and these solutions
are evaluated and their temporal constraints are assigned
based on some minimum and maximum wide ranges (see
lines 1 to 6, Algorithm 3). An evolutionary process (iterative
procedure) is carried out and the best k solutions found

along this process are kept in an auxiliary population L. The
evolutionary process carried out is a generational schema (see
lines 8 to 16, Algorithm 3) with elitism (the best solution
is never lost) and including well-known genetic operators:
tournament selector of size t; crossover genetic operator to
swap values between two solutions; and a mutation genetic
operator to introduce diversity into the population (adding,
removing or changing values). The stopping criterion of this
proposal is based on the improvements done by the algorithm.
Thus, if the algorithm is not able to improve the auxiliary
population after a predefined number of iterations, then it
returns such a population (including the best solutions found
so far). This algorithm also returns the auxiliary population
after a predefined number of iterations, or when the runtime
limit is reached.

V. EXPERIMENTS
This section presents the experimental study. First,
it describes the datasets and the parameters used in this study.
Then, it performs a detailed analysis on the performance of
all the proposed algorithms.

A. EXPERIMENTAL SETUP
The experiments employed twelve datasets, mainly from the
SPMF library [10], along with two synthetically generated
ones, Synthetic5 and Synthetic10. The datasets vary signif-
icantly in size and characteristics, as shown in Table 3. The
number of sequences spans from 730 to nearly 78,000, while
unique events range from 5 to about 15,000. The average
events per sequence vary from 2 to around 52, suggesting
a high possibility of multiple subsequences satisfying a
chronicle. For the parameters, the minimum chronicle
length is set to 3, with temporal constraints predefined as
the universal constraint (−∞, ∞). The genetic algorithm
parameters include a tournament size of 3, an auxiliary
population size of 30, a crossover probability of 0.3, and a
mutation probability of 0.9, as high mutation values promote
solution diversity in pattern mining [27]. The algorithm halts
when 250 iterations pass without improvements or at a total
of 2,500 iterations. Each experiment was repeated five times
for more accurate results.
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TABLE 4. Average of ranges achieved by the approaches under study.
Time out denotes that the algorithm took more than 3,600 seconds.

B. ANALYSIS OF PROPOSED MEGMRTC ALGORITHM
Our goal here is to compare the MEGMRTC algorithm’s
performance with the latest chronicle mining algorithm,
CPM [24]. CPM employs the CloSpan algorithm [31] to
extract frequent patterns and time constraints between these
patterns. However, this can lead to different chronicles,
as explained in Section III-A and associated with Property 6.
Therefore, we have made a minor adjustment to CPM [24] by
incorporating the LCM algorithm [25] in the frequent pattern
generation phase. The comparison involves three aspects:
temporal constraint adjustment, runtime, and memory usage.

Table 4 illustrates that our proposedMEGMRTC algorithm
accurately adjusts temporal constraints, as it returns results
identical to those of CPM, an exhaustive search method.
In cases where CPM could not return any chronicle
within 3,600 seconds, MEGMRTC continued to perform.
Furthermore, Table 5 shows that our MEGMRTC algorithm
obtains chronicles in less time than CPM. The Wilcoxon
signed-rank test revealed significant differences between
the two algorithms (p-value=0.00374), confirming superior
performance by our proposed algorithm at a 99% significance
level. Our proposed method was compared to CPM [24]
in terms of memory requirements, revealing that ours
generally consumes less memory (see Table 6). While no
statistically significant difference was found at a 99% level
(p-value=0.09176), our method performed better at a 90%
level according to the Wilcoxon signed-rank test.

At this point, it is important to analyze the runtime
in situations where CPM did not return any value due
to the time limit. The aim of this analysis is to stress
the algorithms by considering different frequency threshold
values till we come to the limit, particularly in cases where
CPM exceeded the time limit (Synthetic5, LEVIATHAN, and
BIBLE datasets). As shown in Tables 7, 8 and 9, our method
returned results more rapidly, even as frequency thresholds
decreased. Memory usage between the two algorithms
displayed minor differences, with our method typically
requiring less (see Tables 10, 11 and 12). For the BIBLE
dataset, our method performed considerably faster and with
less memory requirement than CPM, even as the frequency

TABLE 5. Average runtime (seconds) after running the algorithms
5 times. The best results are highlighted in bold type-face. Time out
denotes that the algorithm took more than 3,600 seconds.

TABLE 6. Average memory requirements (MB) of 5 different runs. The
best results are highlighted in bold type-face. Time out denotes that the
algorithm took more than 3,600 seconds.

TABLE 7. Average runtime (seconds) after running the algorithms 5 times
on reduced versions of the Synthetic5 dataset (see Table 3) using
different threshold values. Time out denotes that the algorithm took more
than 3,600 seconds.

TABLE 8. Average runtime (seconds) after running the algorithms 5 times
on reduced versions of the LEVIATHAN dataset (see Table 3) using
different threshold values. Time out denotes that the algorithm took more
than 3,600 seconds.

threshold decreased to 0.1 (see Tables 9 and 12). Interestingly,
memory usage by our method showed a significant increase
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TABLE 9. Average runtime (seconds) after running the algorithms 5 times
on reduced versions of the BIBLE dataset (see Table 3) using different
threshold values. Time out denotes that the algorithm took more than
3,600 seconds.

TABLE 10. Average memory requirements (MB) after running the
algorithms 5 times on Synthetic5 dataset (see Table 3) using different
threshold values. Time out denotes that the algorithm took more than
3,600 seconds.

TABLE 11. Average memory requirements (MB) after running the
algorithms 5 times on LEVIATHAN dataset (see Table 3) using different
threshold values. Time out denotes that the algorithm took more than
3,600 seconds.

TABLE 12. Average memory requirements (MB) after running the
algorithms 5 times on BIBLE dataset (see Table 3) using different
threshold values. Time out denotes that the algorithm took more than
3,600 seconds.

when the frequency threshold was reduced from 0.125 to
0.1, highlighting the impact of minor frequency threshold
changes on resource requirements. This phenomenon aligns
with findings reported by Wu et al. [29] in their frequent
itemset mining study.

C. ANALYSIS OF PROPOSED MEGBIA ALGORITHM
In our second study, we evaluate the performance of
MEGBIA, an evolutionary approach that does not require
a frequency threshold. Its key advantage is its abil-
ity to extract frequent chronicles without this threshold,
despite its typically longer runtime compared to exhaustive

search methods. Table 13 outlines results for each dataset,
including the number of chronicles returned, the average
temporal constraints, runtime, and memory requirements.
Unlike exhaustive methods, MEGBIA only returns the top
30 highest-frequency chronicles, making a direct comparison
based on temporal constraints inappropriate due to the
difference in the number of chronicles.

MEGBIA’s solutions were compared to the best solutions
from exhaustive methods. Although MEGBIA’s solutions do
not always rank high compared to exhaustive methods, its
main advantage is its ability to extract frequent event graphs
without a support threshold and without significant runtime
increase. To analyze how good the solutions returned by the
genetic algorithm are, we compare them to the best solutions
found by the exhaustive approaches (the optimal temporal
constraints were obtained as they analyzed all the solutions
in the data). Table 14 shows the percentage of solutions
given by the genetic algorithm that is in the top-30 of best
solutions of the exhaustive search approaches. In general,
except for some datasets, this percentage is not so high.
However, it is important to remark that the main advantage
of this evolutionary approach is its ability to extract frequent
event graphs without needing any support threshold value and
not increasing the runtime so much.

VI. CASE STUDY: SLEEP DISORDER
Sleep has an essential restorative function for physical and
mental health and any sleep disorder has a huge impact on
health life quality. It has brought the necessity of performing
sleep studies where a machine is monitoring and recording
many body activities that occur during sleep, including brain
activity, heart rate, breathing, leg movements, and oxygen
level. The Sleep Medicine Centre of the Hospital of Coimbra
University has recently gathered information [17] from a
sleep study on 100 different patients. The study includes
data on healthy subjects, subjects with sleep disorders, and
subjects under the effect of sleepmedication. For each subject
under study, different events were obtained every 30 seconds
(1 epoch) including the following:

• LOut. Lights turn off.
• LON. Lights turn on.
• MChg. A montage change occurs in the system.
• PLM. This is the acronym for Periodic Leg Movement.
This represents episodes of simple, repetitive muscle
movements.

• CA. Central Apnea, which are pauses in breathing due
to a lack of respiratory effort during sleep.

• LM. A leg movement is recorded.
• MP. Any periodic movement of the body is recored-
• OH. Obstructive Hypopnea, denoting shallow breathing
episodes, called hypopneas, while sleeping.

• OA. Obstructive Apnea, characterizing recurrent
episodes of complete or partial obstruction of the upper
airway leading to reduced or absent breathing during
sleep.
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TABLE 13. Summary of the results returned by the proposed MEGBIA algorithm after running it 5 times. Time out denotes that the algorithm took more
than 3,600 seconds.

TABLE 14. Percentages of best solutions found by the MEGBIA algorithm.

FIGURE 8. Frequent complete event graph satisfying 54% of the subjects
under study.

• REMAw. This event represents the action of awakening
in REM period.

• AR. Arousal is an abrupt change from sleep to
wakefulness.

• MH. Mixed Hypopnea or shallow breathing in which
the airflow in and out of the airway is less than
half of normal. It is usually associated with oxygen
desaturation.

This study aims to elucidate frequent sleep-related bio-
physiological changes via descriptive event graphs. Figure 8

FIGURE 9. Frequent complete event graph satisfying 74% of the subjects
under study.

FIGURE 10. Complete event graph related to Obstructive Hypopnea and
satisfying 20% of the subjects under study.

FIGURE 11. Complete event graph related to Mixed Hypopnea and
satisfying 20% of the subjects under study.

represents a prevalent event graph, observed in 54% of
subjects, depicting frequent transitions from sleep to wake-
fulness. The temporal constraints are denoted in epochs
(30 seconds). Starting from lights-off, three arousals occur
within an hour: the first occurs between 15 and 79 epochs
(between 7 and 40 minutes after lights turn off), followed
by two more within 20 minutes of the preceding one.
A simplified version, Figure 9, is found in 74% of patients.
It details two arousals: the first within 3-40 minutes post-
lights-off, and a second within 1-19 minutes, spanning no
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more than 43 minutes from lights-off to the second arousal.
Event graphs also encompass Hypopnea-related events.
Figure 10, found in 20.8% of subjects, showcases Obstruc-
tive Hypopnea occurring twice: first within 6-45 minutes
post-lights-off, and subsequently within 6 minutes. Figure 11
describes Mixed Hypopnea, observed in 20% of subjects.
Two events occur: initially within 6-48 minutes after lights-
off, followed by a second within 13 minutes. This highlights
that around a quarter of patients experience two Mixed
Hypopnea events within the first 49 minutes post-lights-off.

VII. CONCLUSION
Chronicle mining appears as a promising research area,
and it is our understanding that it should be studied
more in-depth. As it has been described, very few articles
can be found in the literature, and most of them were
proposed for predictive maintenance purposes. None of such
research studies proposes approaches for mining descriptive
information from data (temporal constraint networks). This
descriptive information is more restrictive and requires
extra requirements from the algorithms such as correctness
and completeness. This article has proposed some formal
definitions and properties that were needed to formalize this
research area. This article has also proposed two algorithms
for chronicle mining from a descriptive point of view: an
exhaustive search approach and a bio-inspired algorithm. The
approaches have been compared to the best algorithm so far,
which is the CPM algorithm. The results have shown good
performance in terms of runtime, memory requirement and
scalability. Additionally, this research work has presented the
application of chronicle mining to real-world data related
to sleep disorders. Alluring frequent event graphs were
obtained on patients who were under the effect of sleep
medication.
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