
Received 12 December 2023, accepted 11 January 2024, date of publication 22 January 2024, date of current version 6 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3357097

A New Formula for Faster Computation of
the K-Fold Cross-Validation and Good
Regularisation Parameter Values
in Ridge Regression
KRISTIAN HOVDE LILAND , JOAKIM SKOGHOLT , AND ULF GEIR INDAHL
Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway

Corresponding author: Kristian Hovde Liland (kristian.liland@nmbu.no)

This work was supported by the Research Council of Norway under Project 239070.

ABSTRACT In the present paper, we prove a new theorem, resulting in an update formula for linear
regression model residuals calculating the exact k-fold cross-validation residuals for any choice of cross-
validation strategy without model refitting. The required matrix inversions are limited by the cross-validation
segment sizes and can be executed with high efficiency in parallel. The well-known formula for leave-
one-out cross-validation follows as a special case of the theorem. In situations where the cross-validation
segments consist of small groups of repeated measurements, we suggest a heuristic strategy for fast serial
approximations of the cross-validated residuals and associated Predicted Residual Sum of Squares (PRESS)
statistic. We also suggest strategies for efficient estimation of the minimum PRESS value and full PRESS
function over a selected interval of regularisation values. The computational effectiveness of the parameter
selection for Ridge- and Tikhonov regression modelling resulting from our theoretical findings and heuristic
arguments is demonstrated in several applications with real and highly multivariate datasets.

INDEX TERMS Cross-validation, GCV, PRESS statistic, ridge regression, SVD, Tikhonov regularisation.

I. INTRODUCTION
Model-/parameter selection in statistical modelling is fre-
quently justified from the maximum likelihood (ML) prin-
ciple in combination with some measure of model quality
(such as the Akaike’s Information Criterion (AIC), Bayesian
Information Criterion (BIC), Mallows Cp, the PRESS statis-
tic, etc.) that estimates the expected predictive performance
for some candidate model(s) [1].

According to Hjorth [2] the application of cross-validation
measures as a methodology for model-/parameter selection in
statistical applications was introduced by Stone [3]. Stone’s
ideas motivated the invention of the generalised cross-
validation (GCV ) method by Golub et al. [4] which is a
computationally efficient approximation to the leave-one-out
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cross-validation (LooCV) method. It is invariant under
orthogonal transformations and is considered to be a
computationally efficient method for choosing appropriate
regularisation parameter values in ridge regression (RR)
modelling. Cross-validation is still an active area of research,
see, e.g., [5], [6], and [7] for some recent works regarding
prediction estimates for cross-validation, and [8] for an
analysis of the stability of generalisation bounds for leave-
one-out cross-validation. The focus of the present work is
the selection of an appropriate regularisation parameter value,
primarily by grid search but numerical optimisation is also
discussed.

The RR method was introduced to the statistics com-
munity by Hoerl and Kennard [9], and is perhaps the
most important special case in the Tikhonov regularisation
[10] (TR) framework of linear regression methods. The
TR ideas were originally introduced to the community
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of numerical mathematics for solving linear discrete ill-
posed problems in the context of inverse modelling.
A good elementary introduction to the field is given in
Hansen [11].

The fast and exact calculations of the LooCV based
Predicted Residual Sum of Squares (PRESS) statistic for
the ordinary least squares (OLS) regression have been
demonstrated by Allen [12], [13]. The purpose of the present
paper is to demonstrate that such calculations are also
available for the regularisation parameter selection problem
of TR/RR at essentially no additional computational cost.
In the present paper, we demonstrate this as follows:

i) From the Sherman–Morrison–Woodbury updating for-
mula for matrix inversion, see Householder [14],
we prove a new theorem that gives the general formula
for calculating the segmented cross-validation (SegCV)
residuals of linear least squares regression modelling.
The formula for calculating the LooCV residuals in
Allen’s PRESS statistic [12], [13] follows as a corollary
of this result.

ii) We demonstrate how to obtain simple and fast
LooCV calculations utilising the compact singular
value decomposition (SVD) of a data matrix to quickly
obtain PRESS values associated with any choice
of the regularisation parameter for a TR-problem.
In particular, this enables fast graphing of the PRESS-
values as a function of the regularisation parameter at
any desired level of detail.

iii) For situations where some segmented cross-validation
approach is required for obtaining the relevant PRESS-
statistic values in the regularisation parameter selec-
tion, one may experience that even the segmented
cross-validation formula from our theorem becomes
computationally slow. To handle such situations,
we propose an approximation of the segmented (K -
fold) cross-validation strategy by invoking the compu-
tationally inexpensive LooCV strategy after conducting
an appropriate orthogonal transformation of the data
matrix. The particular orthogonal transformation is
constructed from the left singular vectors of theK local
SVDs associated with each of the K distinct cross-
validation segments.
We demonstrate that the latter alternative provides
practically useful approximations of the PRESS-
statistic at substantial computational savings – in
particular for large datasets with many cross-validation
segments (largeK ) containing either identical or highly
related measurement values.

II. MATHEMATICAL PRELIMINARIES
If not otherwise stated we assume that X is a centred (n ×

p) data matrix (X′ denotes the transpose of X) and that
the corresponding (n × 1) vector y of responses is also
centred. We define the scalar ȳ and row vector x̄ as the
(column) averages of y and X obtained before centring,
respectively.

A. MODEL ESTIMATION IN ORDINARY LEAST SQUARES
AND RIDGE REGRESSION
In ordinary least squares (OLS) regression [1] one minimises
the residual sum of squares

RSS(b) = ∥Xb − y∥2, (1)

to identify the least squares solution(s) of (1) with respect to
the regression coefficients b. A least squares solution bOLS
of (1) corresponds to an exact solution of the associated
normal equations

X′Xb = X′y, (2)

where bOLS is unique when X′X is non-singular. For later
predictions of uncentred data, the associated vector of fitted
values is given by

ŷ = XbOLS + b0, (3)

where the constant term (intercept) b0 = ȳ− x̄bOLS .
For centred vectors/matrices, y and X, this equation

becomes ŷ = XbOLS = Hy. Here, the projection matrix, H,
(a.k.a. the hat matrix) is defined as

H def
= X(X′X)−1X′

= TT′, (4)

where T can be chosen as any orthogonal (n × r)-matrix
spanning the column space of the centred X-data.
For various reasons a minimiser bOLS of RSS(b) in

equation (1) is not always the most attractive choice from
a predictive point of view [1], [11], [15]. For instance
X′X may be singular or poorly conditioned, the solution
of (2) is not unique or inappropriate etc. An alternative
and quite useful solution was independently recognised by
Tikhonov [10], Phillips [16], and Hoerl and Kennard [9].
Instead of directly minimising RSS(b), their alternative
proposal was to minimise the weighted bi-objective least
squares problem

RSSλ(b) = ∥Xb − y∥2+λ∥Ib − 0∥2=∥Xb − y∥2+λ∥b∥
2,

(5)

where the scalar λ > 0 is a fixed regularisation parameter
(of appropriate magnitude), the matrix I is the (p × p)
identity matrix and 0 is a (p × 1) vector of zeros. This
formulation explicitly represents a penalisation with respect
to the Euclidean (L2) norm ∥b∥ of the regression coefficients.
The identity matrix I can also be replaced by an alternative
regularisation matrix L as described in Appendix C. For
a fixed λ, the unique minimiser of (5) is given by bλ of
equation (8) below. The rightmost part of Equation (5) is
sometimes referred to as a TR-problem in standard form [11].
The minimisation of equation (5) with respect to b is

equivalent to solving the OLS problem associated with the
augmented data matrix and response vector:

Xλ =

[
X

√
λI

]
, y0 =

[
y
0

]
. (6)
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Note that linear independence of the Xλ-columns trivially
follows from linear independence of the I-columns. The
matrix product X′

λXλ in the associated normal equations

X′

λXλb = X′

λy0 (7)

is therefore non-singular, and the corresponding least squares
solution

bλ = (X′

λXλ)
−1X′

λy0 (8)

of the augmented problem (6) becomes unique. Straight
forward algebraic simplifications of (7) result in the the
familiar normal equations associated with the RR-problem

(X′X + λI)b = X′y, (9)

and the solution in (8) simplifies to

bλ = (X′X + λI)−1X′y. (10)

For subsequent applications of the λ-regularised model
to uncentred X-data, the appropriate constant term in the
resulting regression model is

b0,λ = ȳ− x̄bλ, (11)

and the associated vector of fitted values ŷλ is given by

ŷλ = Xbλ + b0,λ. (12)

The full SVD of X = USV′ yields VV′
= Ip and

X′X = VS′SV′. Assuming that X has full rank it is shown
in Appendix A that the regression coefficients are given by
bλ = Vrcλ, where Vr are the right singular vectors of the
compact SVD and the coordinate vector cλ has the scalar
entries

cλ,j =
u′
jy

sj + λ/sj
, for 1 ≤ j ≤ r . (13)

Compared to the relatively large computational costs associ-
ated with calculating the (compact) SVD of X, calculation
of the regression coefficient candidates (even for a large
number of different λ-values) only requires computing the
vectors cλ according to Equation (37) and the matrix-vector
multiplications bλ = Vrcλ as derived in Equation (36).
For the regularised multivariate regression with several (q)

responses, Y ∈ Rn×q, the associated matrix of regression
coefficients is

[b1,λ . . . bq,λ] = Vr (Sr + λS−1
r )−1U′

rY = VrCλ, (14)

where Cλ = (Sr + λS−1
r )−1U′

rY is the obvious multivariate
generalisation of the vector cλ introduced above.

B. OBTAINING CROSS-VALIDATION SEGMENTS BY
PROJECTION MATRIX CORRECTION
When the columns of the data matrix X are linearly
independent, the associated OLS-solution bOLS of the normal
equations (2) is unique, and cross-validation residuals can
be derived from the Sherman–Morrison–Woodbury formula
for updating matrix inverses [14]. From Theorem B in the

Appendix, we obtain the general segmented CV (SegCV)
residuals

r({k}) = [Ink − H{k}]−1r{k}, (15)

where {k} refers to the samples of the k-th CV segment,
r({k}) refers to the vector of predicted residuals when the
segment samples are not included in the modelling, nk is the
number of samples in the segment and,H{k} is the sub-matrix
of the projection matrix H (defined in Equation (4) above)
associated with the samples of the k-th CV segment. This
means that updating residuals for a given segment entails the
inversion of a matrix involving the entries ofH corresponding
to all pairs of sample indices of the k-th CV segment. The
computational cost of the inversions obviously depends on the
number of segments and the number of samples belonging to
each segment.

Allen [12], [13] suggested the PRESS (Prediction Sum-Of-
Squares) statistic

PRESS =

n∑
i=1

(yi − ŷi,(i))2 =

n∑
i=1

r′

(i)r(i). (16)

where ŷi,(i) denotes the OLS prediction of the i-th sample
when the sample has been deleted from the regression
estimation, and r(i) is the corresponding residual. With ŷi,({k})
denoting the predictions of the i-th sample after deleting the
corresponding k-th CV segment samples from the regression
problem in (1), the SegCV equivalent of the PRESS-statistic
becomes:

PRESS =

n∑
i=1

(yi − ŷi,({k}))2 =

K∑
k=1

r′

({k})r({k})

=

K∑
k=1

nk∑
i=1

r2i,{k}. (17)

Here ri,{k} are the elements of the residual vectors defined in
Equation 15.

1) THE LEAVE-ONE-OUT CROSS-VALIDATION
Corollary B of Theorem B covers the special case of LooCV
where Equation (15) simplifies to a computationally efficient
scalar formula for updating the individual residuals

r(i) = ri/(1 − hi). (18)

hi is often referred to as the leverage value associated with
the i-th sample (row) inX. For ŷi,(i) denoting the prediction of
the i-th sample after deleting it from the regression modelling
problem in (1), the LooCV PRESS-statistic, is given by

PRESS =

n∑
i=1

(yi − ŷi,(i))2 =

n∑
i=1

(
yi − ŷi

1 − hi − 1/n

)2

. (19)

In (19) ŷi is the i-th entry in the vector of fitted values ŷ =

XbOLS + b0, and hi denotes the i-th diagonal element of the
projection matrix H defined in (4) above. The denominator
(1−hi−1/n) scales the i-th model residual (yi− ŷi) to obtain
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the exact LooCV prediction residual (yi − ŷi,(i)). The term
1/n in this denominator accounts for the centring of the X-
columns and the associated inclusion of a constant term (b0)
in the regression model (3).

From the last identity in Equation (4) it is clear that the
entries of the n-vector h = [h1 h2 . . . hn]′, corresponding to
the diagonal elements of H, are identical to the square of the
norms of the T-rows, i.e.

h = (T ⊙ T)1. (20)

Here,T⊙T denotes the Hadamard (element-wise) product of
T with itself and 1 ∈ Rr is the constant vector with 1’s in all
entries. Appropriate choices of the matrix T can be obtained
in various ways including both the QR-factorisation and the
SVD of X.

It should be noted that calculating the matrix inverse
(X′X)−1 in the process for finding the diagonal h of H
in (4) is neither required nor recommended in practice.
In general, the explicit calculation ofmatrix inverses (for non-
diagonal matrices) should be avoided whenever possible due
to various unfavourable computational aspects, see Björck
[17, Section 1.2.6].

2) THE GENERALISED CROSS-VALIDATION
The GCV (λ) was proposed by Golub et al. [4] as a fast
method for choosing good regularisation parameter (λ) values
in RR. Here, we consider the definition

GCV (λ) def
==

n∑
i=1

(
yi − ŷλ,i

1 − h̄λ − 1/n

)2

= (1 − df (λ)/n)−2
∥y − Xbλ∥

2, (21)

where (yi − ŷλ,i) is the i-th entry of the residual vector rλ =

y − ŷλ, h̄λ
def
=

1
n

∑r
j=1

sj
sj+λ/sj

and the effective degrees of

freedom df (λ) def
== nh̄λ + 1. This definition of GCV (λ) is

proportional (by the sample size n) to the definition given in
[4, page 216]. TheGCV (λ) is explained as a rotation invariant
alternative to the LooCV that provides an approximation of
the PRESS(λ)-statistic defined below.

From the elementary matrix-vector multiplication for-
mula (36) for computing the regression coefficients bλ, it is
clear that GCV (λ) can be calculated very efficiently for a
large number of different λ-values once the non-zero singular
values of X are available.
In their justification of GCV (λ) as the preferable choice

over the exact LooCV-based PRESS(λ), Golub and co-
workers stressed the unsatisfactory properties of the PRESS-
function when the rows of X are exactly or approximately
orthogonal. In this case, the estimated regression coefficient
b(i)λ (obtained by excluding the i-th row xi of X) must be
correspondingly orthogonal (or nearly orthogonal) to the
excluded sample xi. Consequently, the associated leave-one-
out prediction ŷi,(i)(= xib

(i)
λ ) becomes a poor estimate of the

corresponding i-th response value yi.

NOTE: In situations such as the one just described,
it makes little sense to think of the X-data as a collection of
independent random samples, and the statistical motivation
for considering the LooCV idea becomes correspondingly
inferior. In [4] it is claimed that any parameter selection
procedure should be invariant under orthogonal transforma-
tions of the (X, y)-data. We are sceptical of this requirement
as an inexpedient restriction. This relates to the context of
approximating the PRESS-statistic for situations where a
segmented/folded cross-validation approach is appropriate.

III. CALCULATION OF THE CROSS-VALIDATION BASED
PRESS(λ)-FUNCTIONS
From Equations (17, 19) and the matrix- and vector augmen-
tations in Equation (6), it is clear that the computationally
fast versions of the SegCV and LooCV with the associated
PRESS-statistic are also valid for TR-problems when the
regularisation parameter λ is treated as a fixed quantity.
Below we will first handle the general case of segmented

cross-validation. Thereafter we derive an equation assuring
fast calculations of the regularised leverages in the vectors
hλ necessary for the LooCV situation. The required calcu-
lations are remarkably similar to a computationally efficient
calculation of the fitted values ŷλ and closely related to the
corresponding regularised regression coefficients bλ in (36).
Both hλ, ŷλ (and bλ) can be obtained from the SVD of the
original centred data matrix X. This makes the computations
of the exact LooCV-based PRESS(λ)-function defined in (26)
below about as efficient as the approximation obtained by the
GCV (λ) in (21).

A. EXACT PRESS(λ)-FUNCTIONS FROM THE SVD OF THE
AUGMENTED MATRIX Xλ

Again, we assume that the centred X has full rank r and that
X = UrSrV′

r is the associated compact SVD. By defining
Sλ,r to be the diagonal r × r matrix with non-zero diagonal

entries
√
s2j + λ, j = 1, . . . , r , the r most dominant singular

values of the augmented matrix Xλ in (6) are given by the
diagonal elements of Sλ,r . From equation (34) in Section II,
the right singular vectors Vr of X are also the right singular
vectors of Xλ, and the associated r left singular vectors are
given by

Tλ,r = XλVrS−1
λ,r =

[
XVrS−1

λ,r√
λIVrS−1

λ,r

]

=

[
UrSrS−1

λ,r√
λVrS−1

λ,r

]
=

[
Uλ,r√

λVrS−1
λ,r

]
, (22)

where the matrix Uλ,r
def
= UrSrS−1

λ,r denoting the upper n
rows of Tλ,r is the part of actual interest (the additional
left singular vectors not included in (22) are all zeros in the
upper n entries). Because SrS−1

λ,r is (r × r) diagonal, Uλ,r is
obtained by scaling the j-th column (1 ≤ j ≤ r) of Ur with√
sj/(sj + λ/sj).
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From the above definition of Uλ,r , calculation of the
PRESS-residuals associated with the n original (X, y)
data points in the augmented least squares problem
Xλb = y0 is straight forward. According to Equations (4,
22), the regularised hat matrix Hλ is given by

Hλ = Uλ,rU
′

λ,r . (23)

For each choice of the regularisation parameter λ > 0 and
the corresponding expression for the regression coefficients
bλ in Equation (36), the fitted values are

ŷλ = Xbλ + b0,λ = (UrSr )cλ + b0,λ
= Hλy + b0,λ. (24)

Hence,

PRESS(λ) def
==

K∑
k=1

∥[Ink − Hλ,{k} − 1/n]−1(y{k} − ŷλ,{k})∥
2,

(25)

where y{k} − ŷλ,{k} is the sub-vector of the residual vector
rλ = y−ŷλ corresponding to the k-th CV segment andHλ,{k}
is the associated sub-matrix of Hλ. While Equation (25)
defines the general, segmented cross-validation case, the
special case of LooCV simplifies considerably. Only the
diagonal entries of Hλ (the sample leverages) are required,
i.e., Equation (25) simplifies to

PRESS(λ) def
==

n∑
i=1

(
yi − ŷλ,i

1 − hλ,i − 1/n

)2

. (26)

Note that h̄λ in the denominator of Equation (21) defining
GCV (λ) is identical to the mean of the hλ-entries, i.e. h̄λ =

(1/n)
∑n

i=1 hλ,i, due to the fact that Ur is an orthogonal
matrix. Also note that the diagonal entries of Hλ can be
calculated directly by

hλ = (Uλ,r ⊙ Uλ,r )1 = (Ur ⊙ Ur )dλ, (27)

where the coefficient vector dλ = [d1,λ . . . dr,λ]′ =

(SrS−1
λ,r )

21 ∈ Rr has the entries

di,λ =
s2j

s2j + λ
=

sj
sj + λ/sj

, for 1 ≤ j ≤ r . (28)

Consequently, the evaluation of the PRESS(λ)-function
defined in (26) is essentially available at the additional
computational cost of two matrix-vector multiplications
(Equations (24,27)) where the matrices (UrSr and Ur ⊙ Ur )
are fixed and the associated coefficient vectors cλ and dλ are
obtained by elementary arithmetic operations for each choice
of λ > 0. A note on the number of floating point operations
(flops) required for the fast calculation of the LooCV-based
PRESS(λ)-function is included in Appendix H.

B. ALTERNATIVE STRATEGIES FOR ESTIMATING THE
SEGCV-BASED PRESS(λ)-FUNCTION
The LooCV calculations in the previous section can be
implemented at low computational costs dominated by the
SVD of X. The SegCV version, however, also involves the
inversion of several matrices associated with each combina-
tion of the regularisation parameter value of λ and cross-
validation segment. In situations with many CV segments,
e.g., defined by relatively small groups of replicates, the
additional computational costs may be acceptable as the
matrices to be inverted are small. However, for large datasets
with few segments, e.g., 5-10, the required amount of
computations may be rather large (comparable to explicitly
holding out samples and recalculating a full TR model from
scratch for each CV segment).

We therefore describe two alternative strategies for speed-
ing up calculations. The first one is based on approximating
the PRESS-values, while the second strategy involves clever
usage of a small subset of exact PRESS(λ)-values to estimate
the minimum of the PRESS(λ)-value and/or the complete
PRESS(λ) curve within some range of the regularisation
parameter value.

1) PRESS(λ) APPROXIMATED BY SEGMENTED VIRTUAL
CROSS-VALIDATION – VIRCV
We will consider a faster alternative for approximating the
SegCV approach for the type of situations just described.
In the following, we assume (without loss of generality) that
the uncentred data matrix

X =


X1
X2
:

XK

 together with the uncentred response vector

y =


y1
y2
:

yK

 (K ≥ 2) (29)

is composed by K distinct sample segments. For 1 ≤ k ≤ K ,
we assume that UkSkV′

k = Xk denotes the compact SVD of
segment number k , and that nk is the number of rows in Xk
so that the total number of samples is n =

∑K
k=1 nk .

From the SVD of the k-th segment, we obtain the identity
U′
kXk = SkVk . Consequently, the orthogonal transformation

performed by left multiplication with the (nk ×nk ) matrixU′
k

transforms the samples segment Xk into a matrix of strictly
orthogonal rows. Now we define the two block diagonal
matrices

T =


U1

U2
. . .

UK

 and T̃ =

[
T 0
0 I

]
, (30)

with the properties T′T = TT′
= I and T̃′T̃ = T̃T̃′

= I, i.e.,
both T and T̃ are orthogonal.
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The formulation of TR-modelling for uncentred X and
explicit inclusion of the constant term corresponds to finding
the least squares solution of the linear system[

1 X
0

√
λI

]
·

[
b0
b

]
=

[
y
0

]
, (31)

and left multiplication of (31) by the orthogonal matrix T̃′

yields the system[
T′1 T′X
0

√
λI

]
·

[
b0
b

]
=

[
T′y
0

]
. (32)

Note that the associated normal equations of the systems
in (31) and (32) are identical. Hence, their least squares
solutions are also identical.

Definition of the segmented virtual cross-validation
We define the segmented virtual cross-validation (VirCV)
strategy as the process of applying the LooCV strategy to
the transformed system in equation (32). As is noted above,
multiplication byT′ has the effect of orthogonalising the rows
within each of the K segments in the X matrix.

The heuristic argument for justifying the VirCV approach
as an approximation of a SegCV approach is that the rows
within each transformed data segment are unsupportive of
each other under the LooCV strategy (due to the internal
‘‘decoupling’’ of each segment into a set of mutually
orthogonal row vectors). However, from practical cases, it can
be observed that the accuracy of this approximation depends
on the level of similarity between the original samples within
each segment of data points.

Note that contrary to the LooCV, the GCV is not useful in
combination with the VirCV strategy. The reason for this is
that the singular values of X are invariant under orthogonal
transformations. From equation (21) and the definition of h̄λ

it follows that GCV (λ) is also invariant under orthogonal
transformations, i.e., the systems in (31) and (32) lead to the
same GCV (λ)-function.
With the VirCV we are clearly cross-validating on the

orthogonal phenomena caused by the samples within each
segment. As all the samples in a segment contribute to
identifying these directions, the VirCV cannot be expected
to provide exactly the same results as the SegCV. One
may, however, expect that when the different segments are
carefully arranged to contain highly similar samples only
(which is a reasonable assumption tomake for most organised
studies with such data segments), then the VirCV should
provide a useful approximation to the SegCV. This will be
demonstrated in the application section below. For special
situations deviating from highly similar samples in the
segments, see Appendix D.

Computational aspects in the leverage corrections for
the VirCV As is noted in association with (29), the VirCV
procedure requires an initial calculation of the transformation
T from the segments of the uncentred X-data. For a correct
implementation of the computational shortcuts similar to
those of the LooCV, it is necessary to mean centre the
data matrix X prior to executing the T-transformation and

the least squares modelling. In practice, one must therefore
mean centre the data prior to the multiplication with T′

(or, equivalently, one can multiply by T′ and subtract the
projection of the transformed data onto the transformed
vector T′1 of ones). As T is an orthogonal transformation
the angles and in particular the orthogonality between vectors
will be preserved. For the transformed data, modelling by
including a constant term is therefore associated with the
transformed vector T′1 of ones. With Xc and yc denoting
the centred data matrix and the associated centred response
vector, respectively, the vector T′1 is orthogonal to the
columns of the transformed centred data T′Xc and ∥T′1∥ =

∥1∥ =
√
n. The justification for the leverage correction

described earlier therefore still holds, but the particular
correction terms (1/n) changes.

With the transformed centred predictors X̃ = T′Xc and
responses ỹ = T′yc in (32), the associated fitted values as
ˆ̃yλ = X̃bλ, the PRESS-function for the VirCV is given by

PRESSVirCV (λ) =

n∑
i=1

(ỹi − ˆ̃yλ,i,−1)
2

=

n∑
i=1

(
ỹi − ˆ̃yλ,i

1 − hλ,i − mi/n

)2

. (33)

Here the leverages hλ,i are calculated as in (27) based on the
transformed version X̃ of the centred data, and the enumerator
of the correction terms are the entries of the vectorm = T′1⊙

T′1 ∈ Rn. This means that the correction term 1/n in the
denominator of (26) must be replaced by mi/n in (33), where
mi denotes the i-th entry of the vectorm (to be consistent with
the orthogonal transformation of the regularised least squares
problem).

A comparison of the number of flops required for the
VirCV compared to the SegCV is included in Appendix I.

2) APPROXIMATED PRESS-FUNCTION USING SUBSETS OF λ

Minimum PRESS-value estimation
If TR is used in an automated system (without subjective

assessment) or only the optimal PRESS(λ) is needed, we can
avoid redundant calculations by searching for the λ value
that minimises (25) instead of calculating a large range of
solutions. A possible approach for such a search can be based
on the golden section searchwith parabolic interpolation [18].
This method performs a search for theminimal function value
over a bounded interval of a single parameter. To leverage the
previously described efficient computations of fitted values,
ŷλ, coefficient vectors, dλ, etc. the search for minimum
PRESS(λ) is then performed over a fixed set of λ-values. The
grid of λ-values can have high resolution while still achieving
a considerable advantage in computational speed compared to
the exhaustive PRESS-function calculations. It is well-known
that this type of function minimisation cannot guarantee the
optimal value to be found, however, the PRESS-functions
of interest often have relatively smooth and simple graphs,
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where a global minimum over the λ-interval of interest can
be found with high accuracy.
PRESS(λ)-function estimation by spline interpolation
In cases where estimating the detailed PRESS(λ)-function

is beneficial, e.g., for plotting and inspection, it may be
possible to reduce the number of accurate PRESS(λ)-
evaluations to be calculated quite substantively without
sacrificing much precision in the estimation.

We propose a cubic spline strategy, where the PRESS(λ)-
function is estimated from a small set of distinct λ-values,
and new values are added to the set iteratively until the
difference between estimation and true PRESS-value falls
below a chosen threshold for all λ-values in the extended
set. The latter is determined by cross-validation of the cubic
spline interpolation, i.e., a low-cost operation.

As with the PRESS-minimisation procedure, we consider
a fixed set of λ-values from which we choose starting points
and select subsequent values. The λ-values extending the
set in each iteration are the ones halfway to neighbours
of the chosen λ-values on both sides, effectively doubling
the local density of λ-values where needed (low accuracy
of spline approximation). Starting values for the initial set
of λs can be chosen equidistant (on a log10 scale) or the
sequence obtained using the above ‘‘Minimum PRESS-value
estimation’’ strategy. Experience with real datasets indicates
that the latter is an efficient strategy that may provide close
to exact estimation of the minimum PRESS-value.

C. A SHORT NOTE ON MODEL SELECTION HEURISTICS
With the key formulas derived above we obtain efficient
model selection procedures from minimising the PRESS(λ)-
or the GCV (λ)-functions with respect to the regularisation
parameter λ. However, the minima of these functions will not
necessarily assure the selection of the best model in terms
of future predictions. This is particularly the case when the
PRESS- and GCV functions are relatively flat for a relatively
large interval of λs containing the minimum value. In such
situations it is often useful to invoke heuristic principles such
asOccam’s razor for identifying a simpler model (in terms of
the norm of the regression coefficients) at a small additional
cost in terms of the PRESS (or the GCV ):
The ‘1 standard error rule’ described in [1] obtains a

simpler (more regularised) alternative by selecting a model
where the PRESS-statistic is within one standard error
of the PRESS-minimal model. More precisely, we first
identify theminimumPRESS value and calculate the standard
error of the squared cross-validation errors associated with
this model. Then the largest regularisation parameter value
where the associated model has a PRESS-statistic within one
standard error of the PRESS-minimum is selected.
The ‘χ2 model selection rule’ to determine the regulari-

sation parameter was originally introduced for model selec-
tion with Partial Least Squares regression modelling [19].
By assuming that the residuals associated with the minimum
value PRESSmin of PRESS(λ) are randomly drawn from a

normal distribution, the statistic given by n · PRESSmin/σ 2,
where σ 2 is the associated (unknown) variance, follows
a χ2

n distribution (where n is the degrees of freedom).
By fixing a particular significance level α, the selection
rule says: Choose the largest possible value of λ so that
n · PRESSmin/PRESS(λ) ≥ χ2

n,α . Here, χ2
n,α is the lower α-

quantile of the χ2
n distribution and PRESS(λ) is a substitute

for σ 2.
Based on the efficient formulas for calculating the

PRESS(λ) function, both these model selection alternatives
can be implemented without affecting the total computational
costs significantly.

FIGURE 1. Flow chart illustrating the LooCV, segmented CV, and VirCV.
Most of the steps are common to all the algorithms. For the virtual CV we
calculate local SVDs for each segment and left multiply by the transposed
left-singular vectors of the segments prior to applying the regularisation
matrix (if any). Detailed calculations and minor differences between the
algorithms such as the modified leverage correction for VirCV are not
shown.

IV. APPLICATIONS
In the following, we demonstrate some applications of our
fast cross-validation approaches for model selection within
the TR framework for several real-world datasets. We con-
sider situations where both leave-one-out and segmented
cross-validation are appropriate. The required algorithms
were implemented and executed in MATLAB, and prototype
code is given in Appendices E-G. A corresponding imple-
mentation in R-code will be made available upon publication
at https://CRAN.R-project.org/package=TR. We used a com-
puter runningMacOSVentura 13.0.1 andMATLABR2022a,
with 16GB RAM, and an M1 Pro 10-core processor. For the
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TABLE 1. Octane data. MSE (from test data) using various regularisation types and parameter selection methods.

TABLE 2. Pork fat data. MSE (from test data) for the SFA response using various regularisation types and parameter selection methods.

derivative regularisation, we use the full rank approximations
described in Section C with the scaling coefficient set to
ϵ = 10−10 in the appended rows in the discrete regularisation
matrices. This is done to mitigate the numerical impact from
these rows in the resulting regression coefficients.

A. THE FAST LEAVE-ONE-OUT CROSS-VALIDATION
1) DATASETS
The following datasets will be considered in the examples
presented below:

1) Octane data [20]. This dataset consists of near-infrared
(NIR) spectra of gasoline. There are 60 samples and
401 features (wavelengths in the range 900 nm −

1700 nm). The response value is the octane number
measured for each sample.

2) Pork fat data [21]. This dataset consists of Raman
spectra measured on pork fat tissue. There are
105 samples, 5567 features (wavenumbers in the
range 1889.9 cm−1

− 200.1 cm−1), and 19 different
responses. For modelling and prediction, we only
consider the response consisting of saturated fatty acids
as a percentage of total fatty acids, hereafter referred to
as SFA.

3) Prostate gene data [22]. The dataset is a microarray
gene expression dataset. There are 102 samples, and
the gene expression of 12600 different genes were
measured. The response is binary (cancer/not cancer),
and we consider the dummy-regression approach to
the underlying classification problem. For this dataset,
we standardise the data prior to modelling. The
standardisation will introduce a small bias in the model
selection that will be discussed later.

For all datasets, we have used approximately 2/3 of the avail-
able samples for model building and -selection. The remain-
ing 1/3 of the samples were used for testing the selected
models. (Note that our choice of data splitting is somewhat
arbitrary, just to serve the purpose of illustrating the ideas
with an appropriate number of samples for both training

and testing.) We considered the following model selection
alternatives identifying good regularisation parameter can-
didates: (i) PRESSmin – the minimum PRESS(λ)-value, (ii)
GCVmin – the minimum GCV (λ)-value, (iii) the 1 standard
error rule for PRESS(λ), (iv) the χ2-rule for PRESS(λ) using
the significance level α = 0.2.

2) MODEL SELECTION AND PREDICTION
For each dataset, the modelling was based on a grid search
of 1000 regularisation parameter candidate values spaced
uniformly on a log-scale. For the octane data, the displayed
values were in the range 10−4 to 105, for the Pork fat data
in the range 102 to 1025, and for the Prostate data in the
range 10−1 to 108. Different ranges were chosen for each
dataset to avoid irrelevant levels of regularisation, and to
obtain a good visualisation of the PRESS- and GCV curves
including the located minima. In Figures 2–4 the PRESS/n
and GCV/n are plotted as functions of the regularisation
parameter for the different datasets and the different choices
of the regularisation matrix. Such plots are useful for model
selection as they allow for a direct comparison of the model
quality for different values of the regularisation parameter.
Division of the PRESS- and GCV values by the sample size
n makes the model selection statistics directly comparable to
the prediction results obtained by the test sets. The test set
results are shown in the Tables 1–3.
For the prostate data, the percentage correctly classified

on the training set using cross-validation (classifying each
sample to the largest of the fitted target values when using
0/1 dummy-coding for the group memberships) is 91.2% for
all the parameter selection methods (it should be noted that
this number happens to be identical to the test set result for
most of the parameter selection methods).

It should be noted that most of the displayed PRESS-
(and GCV -) curves are relatively flat without a very distinct
minimum point. Therefore it may be advantageous to employ
either the 1 S.E. rule or the χ2-rule to assure the selection of
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a simpler model. For the Prostate data, in particular, we note
that the smallest available candidate regularisation parameter
value provides the minimum PRESS-value. The effect in
terms of prediction when using the 1 S.E. rule or the χ2-rule
to obtain a simpler model varies between the datasets. For the
Pork fat data, theχ2-rule gives better prediction than the other
parameter selection methods for the SFA response, while
the χ2-rule selects a poorer model than the other parameter
selection methods on the Prostate data.

For the most precise identification of the PRESS- and
GCV -minima a numerical optimiser should be used. How-
ever, in most practical situations the suggested strategy
of considering just a subset of candidate regularisation
parameter values is usually good enough for approximating
the minima before doing the subsequent identification of
parsimonious models (based on the principle of Occam’s
razor) that predict well.

FIGURE 2. Octane data. PRESS/n and GCV /n for a range of regularisation
parameter values and different regularisation matrices. Top:
L2 regularisation. Middle: 1st derivative regularisation. Bottom: 2nd
derivative regularisation. The minimum PRESS and GCV values have been
marked, as well as the regularisation parameter values selected by the 1
S.E. rule and the χ2-rule.

FIGURE 3. Pork fat data and SFA response. PRESS/n and GCV /n for a
range of regularisation parameter values and different regularisation
matrices. Top: L2 regularisation. Middle: 1st derivative regularisation.
Bottom: 2nd derivative regularisation. The minimum PRESS and GCV
values have been marked, as well as the regularisation parameter values
selected by the 1 S.E. rule and the χ2-rule.

3) REGRESSION COEFFICIENTS
Figure 5 shows the octane data together with the PRESS-
minimal regression coefficients using the L2-, the first
derivative-, and the second derivative regularisations. Note
that the choice of regularisation matrix heavily influences
the appearance of the regression coefficients without the

FIGURE 4. Prostate data. PRESS/n and GCV /n for a range of
regularisation parameter values using L2 regularisation. The minimum
PRESS and GCV values have been marked, as well as the regularisation
parameter values selected by the 1 S.E. rule and the χ2-rule.

TABLE 3. Prostate data. Percentage of correctly classified (PCC) samples
using the test set predictions of the selected 0 − 1 dummy regression
model based on L2 regularisation.

minimum PRESS- or GCV values changing much. Table 1
confirms that the predictive powers are relatively similar
for all these models. Doing consistent model interpretations
solely based on the regression coefficients in Figure 5 is
obviously a challenging (if not impossible) task, see also [23].

FIGURE 5. Octane data. Top: Plot of the NIR spectra of octane. Bottom:
PRESS-minimal regression coefficients based on different regularisation
matrices.

4) COMPUTATIONAL SPEED
Table 4 shows the computation times for model selection
with the different datasets and different types of regularisa-
tion when varying the number of regularisation parameter
candidate values (varying the number of points in the search
grid). The times in Table 4 also include the computation of the
regression coefficients corresponding to the minimal GCV
and PRESS values for all responses. The main differences
in computational time between finding the SVD in the case
of L2 regularisation and in the cases of first- and second-
derivative regularisation are due to the initial calculations of
X̃, see Section C. Similarly, the required transformation of
the regression coefficients (see (50)) explains the increase
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in computational time from calculating the SVD only to
finding PRESS, GCV and regression coefficients for a
single regularisation parameter value for the first and second
derivative regularisation.

B. SEGMENTED CROSS-VALIDATION
1) DATASETS
In the following we will demonstrate the use of segmented
cross-validation with L2 regularisation for three datasets:
1) Raman spectra of fish oil [24]. The dataset consists

of 42 sample segments including 3 replicate spectra
of each unique sample giving a total of 126 rows
and 2801 wavenumbers in the range 3200 cm−1 to
400 cm−1. The response variable was the iodine
value (the response values were identical across each
segment), which is frequently used as an indica-
tor of the degree of unsaturation of fat [24]. The
spectra of this dataset are plotted in Figure 6 after
applying Extended Multiplicative Signal Correction
(EMSC) [25] with 6th-order polynomial baseline
correction.

2) Fourier transform infrared (FTIR) spectra of
hydrolysates from various mixtures of rest raw
materials and enzymes [26]. The dataset consists
of 332 samples including 1 to 12 replicates of
each unique sample giving a total of 885 rows and
571 wavenumbers in the range 1800 cm−1 to 700 cm−1.
The response variable was average molecular weight
(AMW) (identical across each replicate set), which can
be used as a proxy for the degree of hydrolysation. The
spectra of this dataset are plotted in Figure 7.

3) Raman milk spectra [27], [28], [29]. The dataset con-
sists of 232 unique sample segments including between
6 and 12 replicate measurements of each unique sample
giving a total of 2682 rows and 2981 wavenumbers
in the range 3100 cm−1 to 120 cm−1. The response
variables were the iodine value and the concentration
of conjugated linoleic acid (CLA). Also for this dataset,
the response values were identical across each segment.
The spectra of this dataset are plotted in Figure 8 after
applying EMSC with 6th-order polynomial baseline
correction.

For all datasets, we have excluded the endpoint regions of
the original spectra due to noise and the poor quality of
the measurements. The wave numbers reported above are
those included after this truncation. Approximately 2/3 of
the replicate segments were used for model building and -
selection, and the remaining 1/3 of the segments were used
as a test set.

The following four model selection strategies were con-
sidered: (i) PRESSmin – the minimum PRESS(λ)-value from
LooCV (ignoring the presence of sample segments), (ii)
GCVmin – the minimum GCV (λ)-value, (iii) the PRESSmin
from the SegCV (successively holding out the entire sam-
ple segments), and (iv) the PRESSmin from the VirCV.
We have chosen to focus only on the parameter selections

associated with the minima of the various error curves
in this part of our study (neither the χ2-rule nor the 1
S.E. rule turned out to affect the model selections much).
Neither of the two strategies for quicker estimation of
PRESS-values is shown in the plots as the minimum
PRESS-value (from searching) coincides with the minimum-
PRESS value from the 1000 sampled λ-values and the
cubic spline interpolation is visually indistinguishable from
the full PRESS curve obtained from explicit segment
removal.

2) FISH DATA – EFFECT OF PRE-PROCESSING
Spectroscopic measurements may be corrupted by both
additive and multiplicative types of noise. Pre-processing of
such data prior to modelling is therefore usually required.
It is therefore of particular interest also to investigate how the
model selection strategies considered above compare for pre-
processed data. In particular, we will consider the Extended
Multiplicative Signal Correction (EMSC) [25] with replicate
corrections [30].

In general, the goal of the EMSC pre-processing is to
adjust all the measured spectra to a common scale and to
eliminate the possible effects of additive noise. This includes
the estimation of an individual scaling constant for each
spectrum and an orthogonalisation step that de-trends the
spectra with respect to some set of lower-order polynomial
trends (the reader is referred to the provided references for
the technical details). In the present examples with Raman
spectra, the samples were orthogonalised with respect to
the subspace including all polynomial trends up to the 6-th
degree.

The Raman spectra of fish samples were subjected to
EMSC pre-processing to compensate for different scaling
and competing phenomena such as fluorescence and opti-
cal/scattering effects in the equipment and samples. For
the milk data, the spectrum having the least fluorescence
background was chosen as a reference, though the effect of
choice of reference spectrum is minimal.

For datasets including segments of replicated mea-
surements, a replicate correction step is often consid-
ered to alleviate the presence of inter-replicate variance.
Such correction can be done by an initial EMSC-based
pre-processing of the spectra in each sample segment.
Thereafter, the corrected sample segments can be indi-
vidually mean-centred and organised into a full data
matrix.

As we expect the dominant right singular vectors of
the full matrix to account for the most dominant inter-
replicate variance, orthogonalisation of the data with respect
to one or more of the associated dimensions contributes
to making the replicates more similar, see [30] for details.
Because every sample in the training dataset is included
in the pre-processing, some bias affecting the subse-
quent PRESS-calculations and model selection must be
expected.
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TABLE 4. Computing time (in seconds) for model selection including finding the PRESS- and GCV -minimal regression coefficients when varying the
number of candidate regularisation parameter values. The times are the averages of 50 repeated runs rounded to the two most significant digits.

FIGURE 6. Plot of the fish oil spectra after pre-processing with EMSC with 6th order polynomial baseline (top) and
additional replicate correction (bottom).

FIGURE 7. Plot of the hydrolysis spectra after pre-processing with EMSC
with 2nd order polynomial baseline.

FIGURE 8. Plot of the milk spectra after pre-processing with EMSC with
6th order polynomial baseline. Noise in some replicates is clearly visible
as spikes around the main variation.

Figure 9 shows the model selection for pre-processed fish
oil data based on the pure EMSC and for the EMSC where

30% of the inter-replicate variance is removed. It is evident
that the SegCV and the VirCV become considerably more
similar in the latter case. As one should expect, the GCV -
and PRESS curves based on the LooCV seem to provide
unrealistically low error values and the selection of lesser
regularised models. This phenomenon does not occur with
the SegCV where an entire segment of replicates is held out
in each cross-validation step. The VirCV seems quite robust
against the inter-replicate variance.

The prediction results for the test set of the fish oil data
with the various pre-processing alternatives are presented in
Table 5, and shows that the best results are obtained with the
ordinary EMSC pre-processing and model selection based on
the SegCV. By simultaneously considering Figure 9, it is clear
that the more heavily regularised among the selected models
(those based on the largest regularisation parameter values)
perform better on the test set. With standard EMSC pre-
processing the minima of the VirCV is located at a smaller
regularisation parameter value than for the SegCV, suggesting
an explanation of the difference in predictive performance.
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TABLE 5. Fish oil data. MSE (from test data) for different model selection strategies and different pre-processing alternatives.

FIGURE 9. Fish oil data. Model selection for data pre-processed with the
EMSC both with and without replicate correction. Top: Standard EMSC
pre-processing. Bottom: EMSC with 30% of the inter-replicate variance
removed.

For the milk data, the prediction error estimates obtained
after pre-processing the data are similar for all the parameter
selection methods (table omitted), as was also the case with
the raw data.

3) HYDROLYSIS DATA – HETEROGENEOUS SEGMENTS
The hydrolysis data is used as an example of a model
comparison which is often performed using 5-fold or 10-
fold segmented cross-validation. For the FTIR data, we have
chosen a 5-fold strategy where replicates are kept together
inside each fold to prevent information bleeding by replicates
of the same sample appearing in both training and test
data. The resulting cross-validation segments vary in size
from 103 to 117 samples, each, due to the present replicate
sets. We have chosen to combine this with a 2nd derivative
regularisation.

In Figure 10, we have plotted the PRESS-curves for
SegCV, VirCV, LooCV and GCV. For these highly heteroge-
neous cross-validation segments, the virtual cross-validation
strategy coincides with GCV , both underestimating the
prediction errors. Also, LooCV underestimates the errors, but
less so. Since the general forms of the PRESS-curves are
quite similar, the minimum PRESS-values are located quite
close together, suggesting that for the FTIR dataset, any of
the strategies will give a reasonable estimate of the optimal λ-
value. As Table 6 suggests, performance when applying the
regressions corresponding to minimal PRESS-values on the
test data are also similar with a slight advantage to the more
regularised LooCV solution.

4) MILK DATA – EFFICIENCY WITH MANY SEGMENTS
The milk data is an example of relatively many samples
(2682) and replicate groups (232), which can be challenging

FIGURE 10. Hydrolysis data. Different model selection strategies for a
range of regularisation parameter values using 2nd derivative
regularisation.

TABLE 6. Hydrolysis data. MSE (from test data) using EMSC for
pre-processing.

with regard to computational resources when cross-validating
over a large range of λ-values. As can be observed from
Figure 11, the differences between SegCV, VirCV, LooCV
and GCV are small both with regard to the shape of the
curves and location of respective minimum values. This
is due to the low variation between samples within each
replicate group, in sharp contrast to the FTIR dataset with
its highly heterogeneous cross-validation segments. Of more
interest, is the time usage for the various strategies, which is
summarised in Section IV-B5 below.

FIGURE 11. Milk data. Different model selection strategies for a range of
regularisation parameter values using L2 regularisation. Top: CLA.
Bottom: Iodine value.

5) APPROXIMATIONS OF PRESS-VALUES - COMPUTATIONAL
SPEED
Table 7 shows the computational times for the different model
selection strategies. Both the PRESS- and theGCV values are
included as computing only one of them takes approximately
the same time as computing both. Because the size of the
replicate segments are relatively small for the Raman datasets
(3 replicate measurements for the fish oil data and 6 to
12 replicate measurements for the milk data), the SVDs
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TABLE 7. Computational time for different model selection strategies for the fish oil data, hydrolysis data and milk data when considering 500 candidate
regularisation parameter values. The times are given in seconds, rounded to two significant digits, and is the average of 50 repeated runs. The speedup
relative to SegCV is shown in parenthesis.

required for the internal orthogonalisations of the segments
contribute insignificantly to the total computational load. The
amount of computations required for model selection based
on the VirCV is therefore quite comparable to the computa-
tions required for the LooCV version of PRESS (and for the
GCV ). The strategy of searching for the minimum PRESS-
value by golden section search and parabolic interpolation
(MinSearch), is remarkably similar to VirCV in time usage.
However, there is a trade-off between obtaining an estimate
of the exact minimum value (MinSearch) and a full PRESS-
curve (VirCV). Approximation of the SegCV using spline
interpolation is slower than VirCV and MinSearch, but still
sufficiently fast for practical use in all tested cases and with
the advantage of giving a PRESS-curve highly similar to the
one obtained by the SegCV. The implicit segmented cross-
validation (ImpCV) using Theorem B, is faster than SegCV
for small segments and a bit slower for large segments, though
still fast enough to provide exact results for all λ values.
In general, the initial calculation of the SVD seems to be
the main limiting factor in computational speed when the
datasets grow in size. This is especially prominent for the
milk data where SegCV performs this initial SVD 232 times.
Here, a strategy avoiding SVD or using a randomised SVD
algorithm [31] might be favourable, however, the other
presented strategies are still usable.

V. DISCUSSION AND CONCLUSION
The essence of the TR-framework described in the present
work is that just a single SVD-calculation (of either the
original data matrixX or a transformed version X̃) is required
to explore some particular regularised regression problem
of interest. We have pointed out that the PRESS- and GCV
values required for model selection(s) based on the LooCV
or the GCV can be obtained at the computational cost of
two matrix-vector multiplications for each choice of the
regularisation parameter value λ. In the applications section,
it is demonstrated that our framework scales well when
increasing the number of candidate regularisation parameter
values in the case of ‘small n with large p’ problems.
This scaling will also work well for problems involving
multiple responses as most of the computations will be shared
among responses. For smaller and medium-sized data as
well as for other situations where the required SVD can be
calculated (or approximated) reasonably fast, the acquired
computational efficiency allows for the exploration of a
large number of candidate models in a very short amount
of time.

For situations where leave-one-out cross-validation under-
estimates validation error because of sample replicates or
another grouping of samples, segmented cross-validation is
the appropriate choice. We have proved a theorem saying
that explicit remodelling for computation of cross-validated
PRESS-values can be avoided, while still giving exact results,
at the computational cost of inverting one matrix per sample
segment per λ-value. For cases where the cost outweighs the
benefits, we have proposed alternative strategies for reducing
the number of inversions through careful selections of
λ-values as well as an approximate virtual cross-validation
(VirCV) strategy. The VirCV is a computationally efficient
approximation of the traditional SegCV. In the applications
(Section IV) we observed that the VirCV approximation of
the SegCV appears to be quite accurate for model selection in
the case of highly similar samples within each segment while
using the LooCV or GCV in such situations is more likely
to propose insufficient regularisation and models that predict
poorer.

It is important to note that when the dataset is pre-
processed and/or transformed by a data-dependent method,
some bias both in the LooCV- and VirCV-based PRESS
values must be expected. The data variable standardisation
commonly used in RR is a typical example. The EMSC pre-
processing that was used with or without replicate corrections
is another. However, the main purpose of the LooCV-
and VirCV-based PRESS values in the proposed framework
is model selection rather than error estimation. The bias
introduced by such pre-processing methods is therefore not
likely to be very harmful as long as the (training) data does
not contain serious outliers.

Although leverage correction of the model residuals
for fast calculation of the LooCV in linear least squares
regression problems is well known, there are somemisleading
assertions in the literature regarding both the properties
and accuracy of PRESS-values that require clarification: i)
Hansen [11, page 96] claims that the leverage values are
not invariant under row permutations of the X-data making
the PRESS-values dependent on the ordering of the data.
However, when the rows of the data matrix are permuted
it can be verified that the leverage values are unchanged
and undergo precisely the same permutation. Consequently,
the correct leverage values will match up perfectly with
the corresponding model residuals in the calculation of the
PRESS(λ) calculations assuring its invariance under any row
permutation of the (X, y)-data. ii) Myers [32, page 399]
claims that the expression for fast calculation of PRESS(λ) is
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only an approximation when performing centring and scaling
of the data. This is, however, only true when the scaling
factors are calculated from the data to be used in the model
building. The data centring, as such, does not corrupt the
leverage- and PRESS(λ)-values as long as the 1/n terms are
included in the associated leverage corrections of the model
residuals. iii) The version of Ridge regression implemented
in the MASS package [33] for the R programming language
includes a fast calculation of theGCV (λ)-values for a desired
vector of corresponding λ-values. The 1/n term is, however,
ignored when correcting the model residuals by the required
averaged leverage value. Consequently, the resulting GCV -
values are misleading when the centring of the data is
included as a part of the Ridge Regression modelling.

We believe that future statistical texts and software dealing
with Ridge Regression (and Tikhonov Regularisation) will
find value in including the necessary pieces of linear
algebra (in particular the simplematrix-vectormultiplications
of Equation (27) to establish the fast calculation of the
PRESS(λ) in Equation (26). In our opinion, these relatively
simple but still powerful results demonstrate yet another
remarkable consequence of the SVD at the core of applied
multivariate data analysis.

Finally, we have established a theorem describing how
to compute the cross-validated residuals for (regularised)
linear regression models from the fitted value residuals.
The computation can be seen as a multi-sample kind of
leverage correction that applies to any type of segmented
cross-validation strategy. In many cases, it represents a
computationally efficient alternative to the computationally
slower ‘‘hold out/remodelling approach’’ most common
within statistics and machine learning. For the special case
of LooCV, our theorem simplifies to the well-known scalar
leverage correction calculations of the LooCV errors.

APPENDIX A
CALCULATING THE Bλ-SOLUTIONS FROM THE SVD
The full SVD of X = USV′ yields VV′

= Ip and X′X =

VS′SV′. The right singular vectors V of X are obviously
eigenvectors for both X′X and

X′

λXλ = (X′X + λIp) = V(S′S + λIp)V′, (34)

and their corresponding eigenvalues are given by the diago-
nals of S′S and S′S + λIp, respectively. The inverse matrix
(X′X+λIp)−1

= V(S′S+λIp)−1V′, and the expression (10)
for the TR-regression coefficients of a problem on standard
form therefore simplifies [1] to

bλ = V(S′S + λIp)−1V′VSU′y

= V(S′S + λIp)−1SU′y. (35)

In the following, we assume that X has full rank, i.e., r =

rank(X) = min(n, p). Then there are exactly r non-zero rows
in the S-factor of bλ, and the zero rows of S cancel both the
associated columns in V(S′S + λIp)−1 and rows in U′. By
considering the compact SVD ofX = UrSrV′

r (the vanishing

dimensions associated with the singular value 0 are omitted
from the factorisation), the expression (35) for the regression
coefficients bλ simplifies to

bλ = Vr (S2r + λIr )−1SrU′
ry

= Vr (Sr + λS−1
r )−1U′

ry = Vrcλ, (36)

where the coordinate vectors cλ = (Sr + λS−1
r )−1U′

ry =

[cλ,1 . . . cλ,r ]′ ∈ Rr has the scalar entries

cλ,j =
u′
jy

sj + λ/sj
, for 1 ≤ j ≤ r . (37)

APPENDIX B
A FORMULA FOR THE SEGMENTED CROSS-VALIDATION
RESIDUALS IN LINEAR LEAST SQUARES REGRESSION
The Sherman–Morrison–Woodbury updating formula for
matrix inversion [14] says that

(A + UCV )−1
= A−1

− A−1U(C−1
+ VA−1U)−1VA−1,

(38)

whereA,U,C andV are conformable matrices (A is p×p,C
is k × k , U is p× k , and V is k × p). The matrix identity (38)
means that the inverse of the rank-k modification of A on the
left-hand side can be obtained from a rank-k modification of
A−1 that includes inversion of two rank k matrices.

In the following we will use the notation

A = X′X, U = X′
cv, V = Xcv,

C = −Ik (the negative k × k identity matrix), (39)

where the matrix Xcv denotes a cross-validation sample
segment obtained by selecting some k rows from the full
rank data matrix X. Moreover, the vector ycv denotes the
corresponding selection of entries from the response vector y.
Finally, let (X(cv), y(cv)) denote the remaining rows of the full
dataset (X, y) that are not contained in the sample segment
(Xcv, ycv), where we assume that also X(cv) has full rank.

Lemma
Let M = Xcv(X′X)−1 and Hcv = MX′

cv =

Xcv(X′X)−1X′
cv. In the above notation, the following identity

holds:

Xcv(X′

(cv)X(cv))−1
= [Ik − Hcv]−1M. (40)

Proof:
By substitutions according to the identities from (39)

into (38), we have:

(X′

(cv)X(cv))−1

= (X′X − X′
cvXcv)−1

= (X′X − X′
cvIkXcv)−1

= (X′X)−1
+ (X′X)−1X′

cv[Ik − Xcv(X′X)−1X′
cv]

−1

× Xcv(X′X)−1
= (X′X)−1

+ M′[Ik − Hcv]−1M. (41)

Multiplication of Equation (41) from the left by Xcv yields:

Xcv(X′

(cv)X(cv))−1

= M + Hcv[Ik − Hcv]−1M
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= [Ik − Hcv][Ik − Hcv]−1M + Hcv[Ik − Hcv]−1M

= [Ik − Hcv]−1M. (42)

■
By noting that

X′

(cv)y(cv) = (X′y − X′
cvycv), (43)

we are in the position to prove the following result for the
prediction residuals of segmented cross-validation (SegCV):
Theorem (SegCV):
The prediction residuals r(cv) = ycv − Xcvβ̂(cv) of the

cross-validation sample segment (Xcv, ycv) where β̂(cv) =

(X′

(cv)X(cv))−1X′

(cv)y(cv), can alternatively be obtained by a
linear transformation of the associated fitted residuals rcv =

(ycv−Xcvβ̂) from the full model β̂ = (X′X)−1X′y as follows:

r(cv) = [Ik − Hcv]−1rcv. (44)

Proof:

r(cv)

= ycv − Xcvβ̂(cv)

= ycv − Xcv(X′

(cv)X(cv))−1︸ ︷︷ ︸
(42)

X′

(cv)y(cv)︸ ︷︷ ︸
(43)

= [Ik − Hcv]−1[Ik − Hcv]ycv
− [Ik − Hcv]−1M[X′y − X′

cvycv]

= [Ik − Hcv]−1[ycv − Hcvycv − MX′y + MX′
cvycv]

= [Ik − Hcv]−1[ycv − Hcvycv
− Xcv (X′X)−1X′y︸ ︷︷ ︸

β̂

+ Hcvycv]

= [Ik − Hcv]−1(ycv − Xcvβ̂)

= [Ik − Hcv]−1rcv. (45)

■
Equation (44) shows that we can calculate the prediction

residuals for a cross-validation sample segment of size k at
the cost of inverting the k × k matrix [Ik −Hcv] followed by
a matrix-vector multiplication with the fitted residuals rcv.
The case of k = 1 corresponds to leave-one-out

cross-validation (LooCV) where the prediction residual
calculations reduce to scalar operations:
Corollary (LooCV):

The prediction residual r(i) when holding out the i-th sample
(xi, yi) from the modelling is

r(i) = ri/(1 − hi), (46)

where ri = yi − xiβ̂ is the fitted residual and hi =

xi(X′X)−1x′
i. ■

Here, hi is the i-th diagonal element of the projection
matrix H = X(X′X)−1X′ (projection onto the column space
of X).

APPENDIX C
THE TIKHONOV L2-REGULARISATION FRAMEWORK
Tikhonov [10] noted that it is straightforward to generalise
the above L2 regularisation of b to more specialised types of
regularisation through a corresponding regularisation matrix
L. These cases are expressed in terms of identifying the
minimising solution of the bi-objective least squares problem

RSSL,λ(b) = ∥Xb − y∥2 + λ∥Lb − 0∥2

= ∥Xb − y∥2 + λ∥Lb∥
2, (47)

for somefixedλ > 0. Theminimisation of Equation (47)with
respect to b can be obtained by considering the augmented

data XL,λ =

[
X

√
λL

]
and y0 =

[
y
0

]
, and solving the

normal equations

X′

L,λXL,λb = X′

L,λy0 ⇒ (X′X + λL′L)b = X′y (48)

associated with the OLS problem XL,λb = y0.
To avoid technical distractions we will in the following

restrict our attention to the cases of square and non-
singular regularisation matrices L (even for situations where
a non-square regularisation matrix is the immediate choice,
a non-singular (p × p)-alternative that provides a good
approximation is often available). By defining X̃ = XL−1,
the solution of the OLS problem in (48) is equivalent to
finding the unique OLS-solution βλ of the transformed

problem X̃λβ = y0, where X̃λ = XL,λL−1
=

[
X̃

√
λI

]
and β = Lb. The associated expression minimised
by βλ is

∥X̃β − y∥2 + λ∥β∥
2, (49)

i.e., in the standard form (5), and the minimising solution bλ

of the original problem (47) is obtained by

bλ = L−1βλ. (50)

Among the many useful choices for the regularisation matrix
L are the following:
1) diagonal scaling (e.g., the standardisation of variables

often advised for RR applications):

Lstd =


σ̂1

σ̂2
. . .

σ̂p

 ,

where σ̂i approximates the standard deviation of the i-th
variable (1 ≤ i ≤ p).

2) a (full) rank p discrete 1. derivative approximation:

L1 =


1 −1

1 −1
. . .

. . .

1 −1
√

ϵc1
√

ϵc1 . . .
√

ϵc1
√

ϵc1

 .
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3) a (full) rank p discrete 2. derivative approximation,
as shown in the equation at the bottom of the
page.

The alternatives L1 and L2 are relevant for problems where
theX-data are associated with discretised (uniform) sampling
of continuous signals so that some smoothness in the solution
candidates bλ is reasonable. The two last rows in L2 (and the
last row in L1) above are scaled versions of the discretised
and normalised Legendre polynomials [34] of order 0 and 1,
respectively (c1 and c2 represent the normalisation constants,
and ϵ > 0 is a scaling factor to be commented on below).
It should be noted that both these row vectors are orthogonal
to all the above rows in the derivative matrices where they
appear.

The main purpose of the included Legendre vectors in
these regularisation matrices is to ensure full rank of the
regularisation matrices. Appropriate regularisation of the
solutions bλ may be obtained by choosing the fixed scaling
factor ϵ > 0 to be

• either sufficiently large to make bλ practically orthog-
onal to the subspace spanned by the Legendre vectors,
or

• sufficiently small to inhibit any notable penalisation
with respect to the same Legendre vectors.

The choice of ϵ in the last case can therefore not be made
arbitrarily small in practice. It must be chosen large enough
to avoid numerical difficulties in the computations of X̃
and bλ. Alternative (non-invertible) differentiation matrix
candidates taking various boundary conditions into account
are described in [11].

APPENDIX D
SPECIAL SITUATION FOR SEGMENT DECOMPOSITION IN
VIRCV
In the following we will examine the proposed VirCV
strategy more closely for three different situations:

a) Segments of identical rows.
b) Segments of collinear rows.
c) The general case (segments with no particular structure

in the rows).
Identical Rows:

Let us assume that all the rows of a segment Xi, (1 ≤ i ≤

K ) are identical. In this particular case, the PRESS-function
associated with the VirCV is identical to the PRESS-function
obtained by the SegCV.

The identity can be derived by noting that the left-
multiplication of the left- and right-hand sides of a linear

system by an orthogonal matrix affects neither the least
squares solution nor the norm of the associated residual
vector. Consequently, the SegCV strategy applied to the
two systems (31) and (32) will result in identical PRESS-
functions. With all rows within each segment Xk ∈ Rnk×p

being identical to its first row (denoted xk,1) of the segment,
it is straightforward to verify that Xk has only one non-zero
singular value sk,1 =

√
xk,1x′

k,1nk and the corresponding left-
and right singular vectors are

uk,1 =
1

√
nk


1
1
:

1

 ∈ Rnk and vk,1 =
1√

xk,1x′

k,1

x′

k,1 ∈ Rp.

(51)

By the orthogonality requirements of the SVD, any
other left singular vector u must satisfy u′uk,1 = 0.
Consequently

U′
kXk =


√
nkxk,1
0
:

0

 and U′
k1 =


√
nk
0
:

0

 , (52)

meaning that there will be only one non-zero row in
each segment on the left-hand side of the T̃-transformed
system (32). It is therefore sufficient to demonstrate that the
PRESS-functions obtained from applying the SegCV and the
LooCV to the system in (32) are equal: Clearly, for any
row containing just zeros in the left-hand side of (32) the
prediction based on it is trivially identical to 0 (zero) for either
of the cross-validation strategies (regardless of the regression
coefficients). Because such zero rows do not contribute to the
calculation of the regression coefficients, we are forced to
conclude that the regression coefficients obtained by holding
out the (only) non-zero row of a segment must be equal to the
regression coefficients obtained from holding out the entire
segment. Thus the predicted values for the non-zero row in
each segment must also be identical for both cross-validation
strategies, and we can conclude that the PRESS functions
obtained by the SegCV- and the VirCV strategies must be
identical.
Collinear (Proportional) Rows: One might expect the

same result to hold when the rows within a segment are
proportional. This is however not the case with the modelling
strategy described above. The reason for this is that the

L2 =



1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
√

ϵc1
√

ϵc1 . . .
√

ϵc1
√

ϵc1
√

ϵc1
−

√
ϵc2

p
2 −

√
ϵc2

p−1
2 . . . . . .

√
ϵc2

p−1
2

√
ϵc2

p
2


.
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inclusion of a constant termwill make each of theK segments
become a rank 2 – rather than a rank 1 submatrix. With more
than one non-zero row on the left-hand side in each segment
the argument of the previous situation fails, and doing LooCV
on the transformed data is no longer equivalent to doing
SegCV on the original data. However, when omitting the
constant term from the modelling, each of the K segments
has rank 1, and the SegCV and VirCV approaches will result
in identical PRESS(λ)-functions. The rigorous explanation is
similar to the argument given for the situation with identical
rows.

APPENDIX E
TR PROTOTYPE MATLAB CODE

APPENDIX F
SEGCV PROTOTYPE MATLAB CODE

APPENDIX G
VIRCV PROTOTYPE MATLAB CODE
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APPENDIX H
COMPUTATIONAL COMPLEXITY OF THE FAST LOOCV
For a more precise description of the computational complex-
ity involved in calculating the fast LooCV, an approximate
count of the floating point operations (flop) is required.
According to Björck [17], an approximate flop count for
finding the reduced SVD (using a QR-SVD algorithm with

TABLE 8. Approximate flop counts for the required SVD(s) in the different
parameter selection methods when assuming p ≥ n.

Golub–Kahan–Householder bidiagonalisation) of a (n × p)-
matrix is 12pn2 + (16/3)n3 when assuming p ≥ n.
The remaining computations consist of centring, calculating
the PRESS values, and calculating the PRESS-minimal
regression coefficients for every response. With q different
responses, the approximate flop count for these computations
is given by:

(3np+ 3nq+ nr + 2nrq− q+ 2prq+ pq)

+ nλ(3r + 2nr + 2nrq+ qr + 4nq), (53)

where nλ denotes the number of different candidate regu-
larisation parameter values. For p ≥ n, the computations
needed to evaluate the PRESS(λ)-function for one additional
regularisation parameter is of the order O(qn2), and in
particular the additional computations are independent of the
number (p) of measured features. This makes the fast LooCV
highly useful also for problems where the number of features
is even larger than the number of samples. To calculate
the cost of finding the corresponding GCV (λ)-values as
well as GCV -minimal regression coefficients one should add
5nnλq−q+q(2pr+p) to the above flop count. Note that the
choice of regularisation matrix Lmatters here, and for L ̸= I
there are additional calculations (see Section C) that must
be taken into account. The exact number of flops associated
with these additional calculations will depend on the sparsity
structure of L and to what extent that sparsity can be utilised
in the required calculations.

APPENDIX I
COMPUTATIONAL SAVINGS OF THE VIRCV COMPARED
TO THE SEGCV
To assess the computational savings of the VirCV over the
SegCV, flop count approximations for the associated PRESS-
values must be compared. (We only consider the situation
involving L2 regularisation, i.e. the identity matrix I acting
as the regularisation matrix.) Let K denote the number of
segments, and assume for simplicity that the various segment
sizes are all bounded from above by the constant Bss. The
approximate number of flops required for the SVDs for the
different parameter selection methods when using the entire
dataset for training are given by the formulas in Table 8 (using
the approximate flop count for the SVD given in [17]). The
Table shows that the size of (all but one of) the required
SVDs for the VirCV are much smaller than for the SegCV
(assuming the size of each segment is much smaller than
the total number of samples, which is obviously the case
in most real applications). This is primarily what makes the
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VirCV superior to the SegCV in terms of computational
efficiency.

If the block diagonal structure of the transformation
matrix T is utilised, the matrix multiplication part of
the orthogonal transformation (32) for the VirCV requires
approximately

2Bss(Bss − 1) + K · Bss · p(2Bss − 1) + q · Bss(2Bss − 1)

(54)

flops. For keeping track of the remaining computations
needed for the VirCV we can use the flop count approxi-
mations in Section H, as the flop count for the VirCV and
the LooCV will be identical after applying the orthogonal
transformation required for the VirCV. The approximate flop
count of the remaining computations for the SegCV is given
by

2K · Bss(q+ p) − q+ rtrain · q(2Bss − 1)

+ q · nλ · K [3rtrain + 2p · rtrain + p+ 2p · ntest + 3ntest ]

(55)

where rtrain = min(ntrain, p) and ntrain is the number of
samples in the training set.

Although the main computational cost with model vali-
dation is with the initial SVD(s) there will also be an addi-
tional computational cost for each candidate regularisation
parameter value for which we want to validate the model.
Consider the case p > n of most interest for the present
work (the number of features is greater than the number
of samples). From the above reasoning, we observe that
when considering additional regularisation parameter values,
the SegCV flop count depends on the number of features
p for each candidate value. The above flop count for the
VirCV and the LooCV flop count in Appendix H shows
that this is not the case for the VirCV. When p is very
large it might therefore be computationally inefficient (or
even infeasible) to validate models for a large number of
regularisation parameter values based on the SegCV. Clearly,
the VirCV is the method of choice among the two in such
cases.
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