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ABSTRACT Filtered back projection (FBP) is a classic analytical algorithm for computed tomography
(CT) reconstruction, with high computational efficiency. However, images reconstructed by FBP often suffer
from excessive noise and artifacts. The original FBP algorithm uses a window function to smooth signals
and a linear interpolation to estimate projection values at un-sampled locations. In this study, we propose
a novel framework named DeepFBP in which an optimized filter and an optimized nonlinear interpolation
operator are learned with neural networks. Specifically, the learned filter can be considered as the product
of an optimized window function and the ramp filter, and the learned interpolation can be considered as
an optimized way to utilize projection information of nearby locations through nonlinear combination. The
proposed method remains the high computational efficiency of the original FBP and achieves much better
reconstruction quality at different noise levels. It also outperforms the TV-based statistical iterative algorithm,
with computational time being reduced in an order of two, and state-of-the-art post-processing deep learning
methods that have deeper and more complicated network structures.

INDEX TERMS Analytical reconstruction, deep learning, FBP, neural network.

I. INTRODUCTION
X-RAY computed tomography (CT) is an important tool
for non-invasive diagnoses in modern medicine. However,
repeated exposure to CT scanning may increase the risk
of cancer and some other diseases like genetic defects [1].
Decreasing tube current and exposure time is one of the most
practical ways to decrease radiation dose. However, low-dose
CT imaging with classic methods such as FBP may lead to
excessive noise and artifacts in reconstructed images, which
could affect diagnoses [2].

Several improved FBP algorithms have been proposed
to deal with low-dose CT reconstruction. Zhong, et al.
improved the filtered back-projection with wavelet denois-
ing [3]. Nielsen et al. calculated a filter matrix which was
multiplied with the projection data to improve the recon-
struction performance [4]. Qu et al. applied a mean filter
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on the projection domain before performing the filtered
back-projection [5]. Pelt and Batenburg used a customized
data-dependent filter that minimizes the projection error of
reconstructed images [6]. Mu and Park optimized the filter to
suppress image artifacts in MR-FBP [7].

Iterative algorithms have been widely explored to improve
the image reconstruction quality of low-dose CT. There
are two categories of iterative reconstruction algorithms:
algebraic-based ones and statistics-based ones. Algebraic-
based algorithms directly relate an image to its projections
by linear equations that are solved iteratively to achieve
reconstruction. There are many variants, including the alge-
braic reconstruction technique (ART) [8], simultaneous
iterative reconstruction technique (SIRT) [9], and simul-
taneous algebraic reconstruction technique (SART) [10].
Statistical iterative reconstruction (SIR) algorithms achieve
reconstruction by optimizing target functions in which prior
information is expressed through regularization terms. SIR
algorithms have shown better performance than FBP and
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algebraic-based iterative algorithms. Different regularization
terms have been designed for noise reduction and information
preservation [11], [12], [13], [14], [15], [16]. However, SIR
algorithms are time-consuming due to their large number of
iterations.

Deep learning has achieved great success in medical imag-
ing. The most popular way is to use deep learning as a
post-processing procedure that suppresses noise and arti-
facts in images reconstructed by traditional methods such as
FBP [17], [18], [19]. For example, Chen et al. [18] used RED-
CNN [17], andWu et al. [19] used an improved DnCNN [20],
both to suppress noises on reconstructed CT images. Other
post-processing algorithms may use the perceptual loss [21],
[22], generative adversarial networks (GAN) [24], [25], and
multiple CT image layers information [23]. Although these
post-processing algorithms have shown promising results,
they do not really take the image reconstruction process into
account. In contrast, some researchers combined deep learn-
ing with SIR for reconstruction. Alder et al. used the Primal-
Dual Hybrid Gradient (PDHG) optimization algorithm to
expand the statistical iterative target function and replaced the
proximal operators with convolutional neural networks [26].
Wu et al. combined the K-Sparse Auto-encoder network
with the separable quadratic surrogate algorithm for iterative
reconstruction [27]. Chen et al. used the half quadratic split-
ting (HQS) technique and theGauss-Seidel method for CBCT
reconstruction [28].

In addition to its application in post-processing and iter-
ative reconstruction, deep learning has also been combined
with FBP directly. Syben et al. learned a diagonal matrix rep-
resenting the filter in the frequency domain [29]. Würfl et al.
used a convolution operation corresponding to the filter oper-
ation and represented the back projection as a fully connected
layer [30]. He et al. used a learnable fully-connected filter-
ing layer, a learnable sinusoidal back-projection layer, and a
common neural network for reconstruction [31].
In this study, we propose a new FBP framework com-

bined with deep learning, termed DeepFBP, which can obtain
high-quality reconstructed images while still retaining the
computational advantage of the original FBP. The proposed
DeepFBP framework consists of two key components: a
learnable window function and a learnable interpolation oper-
ator. Our contributions can be summarized as follows:

A. TO LEARN A DATA-DRIVEN WINDOW FUNCTION
Filtering in the projection domain is one of themost important
operations in FBP, in which a classical window function, such
as the Rectangular window [32], the Hamming window [33],
the Hann window [34], the Cosine window [35], or the
Sine window [36], is manually selected for the reconstruc-
tion. Sophisticated window function has also been developed
and shown improved performance in CT reconstruction.
For example, Yu et al. applied the Parzen window in the
filtered back-projection algorithm [37]. Farquhar et al. inves-
tigated a methodology for informed selection of the filter

function and the cut-off frequency for FBP [38]. Zeng et al.
derived a ray-by-ray weighted filtered back projection (rFBP)
algorithm [39]. Zeng also developed a modified window
function so that the analytical FBP algorithm behaved as
an iterative Landweber algorithm [40]. Generally speaking,
a window function or filter in these studies was designed
to achieve a balance between noise suppression and resolu-
tion preservation. Different from existing studies, we design
a neural network to implicitly learn an optimized window
function for FBP in this study. In our experiments, the learned
window function leads to excellent performance for FBP
reconstruction. Besides, the computational complexity of the
learned filters is nearly the same as the original one, without
bringing any additional computing time.

B. TO LEARN A DATA-DRIVEN NONLINEAR
INTERPOLATION OPERATOR
The interpolation operator during back-projection plays an
important role in FBP [41]. The linear interpolation is a
popular selection in the traditional FBP algorithm. Note that
linear interpolation is vulnerable to noise, and may lead
to information loss in the process of back-projection [42].
Different interpolation methods have been proposed for FBP.
Horbelt et al. considered using spline interpolation to improve
the standard FBP reconstruction [43]. Schaller et al. presented
a spiral interpolation approach for multislice spiral computed
tomography [44]. McCann proposed to use a cost-efficient
pre-filter method for CT reconstruction [45]. In this study,
we propose an interpolation operator learned using neural
networks. This new interpolation method can utilize more
information from nearby detector bins. The parameters of
interpolation are learned from a large training dataset auto-
matically. The operator can not only take full advantage of
the nearby bins but also avoid manual parameter selection.
In this way, we achieve a data-dependent interpolation that
fits a specific task better. We explore both the learnable linear
and non-linear interpolation operators. Both havemuch better
performance than traditional interpolation, and the nonlinear
one performs the best in our experiments.

II. METHODS
Let f (x, y) denote a 2D image and p (r, θ) the line integral
of the image over the line r = x cosθ + y sin θ . The classical
FBP algorithm includes two steps. The first step is a filtering
operation over the projection data at each angle:

Q (ω, θ) = P (ω, θ) |ω| , (1)

where P (ω, θ) denotes the Fourier transform of the pro-
jection p (r, θ), and |ω| is a ramp filter. The second step
is back-projection, which calculates q (r, θ) from Q (ω, θ)

through the inverse Fourier transform, and reconstructs the
original image f (x, y) using the back-projection operation
over q (r, θ):

f (x, y) =

∫ π

0
q(r, θ)|r=x cos θ+y sin θdθ. (2)
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A. TO LEARN WINDOW FUNCTIONS
Eq. (1) shows that the projection P (ω, θ) is multiplied by the
ramp filter filter0 (ω) = |ω| in the frequency domain in the
original FBP. Note that this ramp filter is non-bounded and
thus not realizable.

In practice, a window function h (ω) is usually added to
the original ramp filter to enforce the values of P (ω, θ) |ω|

outside a given frequency range to be zero, i.e., the original
filter in Eq. (1) is replaced by the following combined filter:

filter (ω) = h (ω) · |ω| . (3)

To get a better-reconstructed image, one should abide by
the following principles: 1) the width of the main lobe should
be narrow to get the steepest transition zone; and 2) the
maximum side-lobe should be small, to improve the visual
stationarity and increase the attenuation of the stopband [37].
The most common window function used in the original FBP
is the rectangular window. The combined filter (i.e., the ramp
filter multiplied by a rectangular window function) is the so-
called Ram-Lak filter, as shown in Fig. 1(a). However, the
Ram-Lak filter may produce the Gibbs phenomenon [46],
leading to ring artifacts in reconstructed images. To suppress
these ring artifacts, several smooth windows were commonly
used to replace the rectangular window function:

1) HAMMING WINDOW

h (ω) = 0.54 + 0.46 cos
πω

21ωK
,

2) HANN WINDOW

h (ω) = 0.5 + 0.5 cos
πω

21ωK
,

3) COSINE WINDOW

h (ω) = cos
πω

21ωK
,

4) SINE WINDOW

h (ω) =

(
sin

πω

21ωK

) /( πω

21ωK

)
,

where ω = 0, ±1ω,±21ω, ±K1ω is the frequency value,
K is an integer and 1ω is the frequency interval.

Fig. 1 displays several classical window functions, i.e.
h (ω), used in FBP and their corresponding combined filters,
i.e. h (ω) · |ω|. We can see that the amplitude of the Ram-Lak
filter increases linearly with frequency, which makes it sus-
ceptible to noise. Those smooth window functions make the
trailing of the filter fade away, thus reducing its amplitude at
high frequencies as shown in Figs. 1(b-e), which helps lower
both noises and ringing artifacts. Although these smooth win-
dow functions are more robust to noises and ringing artifacts,
they reduce the image resolution by introducing a blurring
effect [47]. The quality of a reconstructed image depends on
both the chosen filter and the cut-off frequency. A filter with a
high cut-off frequency may enhance resolution and contrast,
but cannot suppress noise effectively [37].

FIGURE 1. Window functions and their corresponding filters commonly
used in FBP.

FIGURE 2. Filtering operation with the learnable filter.

To achieve a balance between noise suppression and reso-
lution enhancement, in this study, we propose a simple way to
learn the filter directly from data using a specially designed
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FIGURE 3. Interpolation operation in reconstruction.

pipeline as shown in Fig. 2. The sinogram on the left in Fig. 2
represents the projection. After performing a 1D fast Fourier
transform (FFT), the sinogram is filtered with the learnable
filter in the frequency domain, shown in the middle part in
Fig. 2. At last, a 1D inverse Fourier transform is applied
to the filtered data to recover the filtered projection p. The
learnable filter in the frequency domain is directly defined
as the optimizable vector instead of being modeled by neural
networks to reduce the computational burden.

We used two strategies to learn the filter for FBP recon-
struction:

• Strategy I: projections at all angles share the same filter.
This strategy produces Filter I.

• Strategy II: projections at different angles use different
filters. This strategy produces Filter II.

Filter I is consistent with the principle of traditional filter
design, with parameters learned from data. Filter II can be
regarded as a generalization of Filter I. It takes account of
different angles in FBP. Filter I needs fewer parameters than
Filter II, while Filter II keeps more diversity. The second
column of Table 1 lists the number of optimizable parameters
in the filter under the two strategies. In order to facilitate the
whole end-to-end optimization, we initialized the learnable
filter for both strategies from the ‘‘ram-lak’’ filter to speed up
the convergence. We will test whether Filter II has a better
performance than Filter I. Note that once Filter I and Filter
II are trained, the computational complexity of FBP with the
learned filters is nearly the same as that with the original filter
without bringing any additional computing time.

B. TO LEARN INTERPOLATION OPERATORS
Detectors used in CT include a series of discrete receivers,
and the projection data is in discrete form and needs to use
interpolation during the back-projection step. Linear interpo-
lation is commonly used in FBP [48] as shown in Fig. 3(a)

and can be expressed as:

pxi,yi,θ = (1 − z) p (a) + zp (a+ 1) , (4)

where pxi,yi,θ denotes the estimated intensity at the position
(xi, yi) in the reconstruction image coming from the projec-
tion with angle θ , a = ⌊xi cosθ + yi sinθ⌋ represents the
corresponding detector position and p (a) its projection value,
and z is a weighted parameter. This simple linear interpolation
is sensitive to noise. Nearest interpolation, cubic spline inter-
polation, and piecewise cubic Hermite interpolation (PCHIP)
[49] can be better options over linear interpolation. In this
study, we design a learnable non-linear interpolation to
replace the original linear interpolation used in FBP.

A linear combination of nearby projection points may not
reflect one position’s real value. We propose a non-linear
interpolation for FBP reconstruction. We implement the non-
linear interpolation with a neural network for its strong linear
and nonlinear expression ability. To this end, we first apply
a non-linear transformation T to the projection p, i.e. p′

=

T (p), where T is modeled by a neural network as shown
in Fig. 3(b). Specifically, T consists of three residual blocks
and a 1-dimension convolution layer. Each residual block
sequentially comprises a 1-dimensional depth-wise convo-
lution layer, 1-dimensional batch normalization (BN), and
a parametric rectified linear unit (PRELU). A residual con-
nection is applied from the input to the output within the
residual block. By using all 1-dimension operations in T ,
we individually process each projection from different angles.
The input to the network T has size L × 360, where L is
the projection size and by 360 we mean projections from
360 different angles.

After obtaining the non-linearly transferred projection p′,
we then employ a linear combination to get pxi,yi,θ :

pxi,yi,θ = (1 − z) p′ (a) + zp′ (a+ 1) . (5)

C. CNN-BASED POST-PROCESSING
To further improve the performance of our algorithm, we add
an extra CNN module as a post-processing step for noise
suppression in the image domain. There are many denoising,
super-resolution networks that can be used directly in this
step. In our study, a simple CNNmodule based on Lim et al’s
study [50] is used. It contains three residue blocks and three
convolution blocks.

D. DeepFBP
Based on the learned filter and interpolation as well as
the simple post-processing module, this new analytical FBP
algorithm is termed as DeepFBP. The whole structure of
DeepFBP is shown in Fig. 4. There are two versions of
DeepFBP which use Filter I and Filter II respectively.
We name them as DeepFBP I and DeepFBP II.

The numbers of parameters of each component in
DeepFBP are listed in Table 1. The proposed method is
lightweight, especially for the Filter I version. Our method
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FIGURE 4. Structure of the proposed DeepFBP, which consists of the learnable filter, non-linear interpolation, and post-processing
network. During the training phase, we supervise these optimizable modules through L2 loss and normal-dose CT images. During the
test phase, DeepFBP directly restores the high-quality CT image from the degraded projection.

TABLE 1. Number of parameters in DeepFBP for images of size 512 × 512.

are much lighter than some commonly used denoising net-
works in CT such as the Cascaded-CNN [19] which has
1.1 million parameters. Our method has less than 0.61 million
parameters.

During the training phase, DeepFBP sequentially transfers
the initial projection across the learnable filter, non-linear
interpolation, and post-processing network, to generate the
final CT image. The L2 loss between the reconstructed CT
image and the normal-dose CT image is then computed,
and subsequently, the gradient of the loss back-propagates
through all learnable modules to achieve gradient-based
optimization. The detailed training settings are given in
Section III-E.

III. DATASETS AND EVALUATIONS
In this section, we introduce datasets used in this study
and evaluation metrics for algorithm evaluation. We use a
clinical patient dataset from Mayo Clinics for ‘‘the 2016
NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge’’
[18](hereinafter referred to as ‘‘AAPM dataset’’). It includes
twelve patients’ normal and low-dose scans. Three kinds of
projections are tested: low-dose projections, noisy normal-
dose projections, and sparse-view low-dose projections.
In each case, we chose ten patients as the training dataset
(2039 2D pairs), one patient as the validation data (128 2D
pairs), and the last one as the test data (211 2D pairs).

A. LOW-DOSE PROJECTIONS
Low-dose scans in the AAPM dataset are projected into
360 angles with an angle interval of 0.5◦ to generate low-dose
projections. Reconstruction algorithms are applied to these
low-dose projections to obtain low-dose reconstructions.

B. NOISY NORMAL-DOSE PROJECTION
Normal-dose scans are used to generate normal-dose pro-
jections, which are added noise to obtain noisy normal-dose
projections. According to previous studies [51], [52], [53],
[54], [55], CT noise can be assumed to be Poisson-distributed
quantum noise plus Gaussian-distributed electronic noise,
which is:

ni = Poisson
(
I0e−p

i
)

+ Gaussian
(
0,σ 2

e

)
,

where ni is noise over the i-th projection pi, Poisson (·) and
Gaussian (0, ·) denote the Poisson distribution and the zero-
mean Gaussian distribution respectively, I0e−p

i
is the noisy

transmission datum according to the Lambert-Beer law, I0
denotes the incident X-ray intensity, and σ 2

e is the background
electronic noise variance. According to several clinical stud-
ies [55], [56], [57], [58], [59], I0 is set as 1.0 × 105, and the
electronic noise variance σ 2

e is set as 10.

C. SPARSE-VIEW LOW-DOSE PROJECTIONS
By cutting down the projection angle from 360 to 90, we used
low-dose scans to generate sparse-view low-dose projections.
Reconstruction algorithms are applied to these projections to
obtain sparse-view low-dose reconstructions.

D. EVALUATION CRITERIA
Peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) are adopted to evaluate the reconstructed images.
PSNR is defined as:

PSNR = 10 · log10
µ2
max

MSE
,

where MSE is the mean-squared error between the recon-
structed image and the reference image and µmax is the
maximum possible value of the image. Higher PSNR means
less error between the reconstructed image and the reference
image [14]. SSIM is defined as:

SSIM (a, b) =
(2µaµb + C1) (2σab + C2)(

µ2
a + µ2

b + C1
) (

σ 2
a + σ 2

b + C2
) ,

where a and b are two local windows of size 8 × 8 pixels in
two images. The two windows have the same position, and
µa and σa, µb and σb are their mean and standard deviation,
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respectively, σab is the covariance between the two windows,
and C1 and C2 are two constants to avoid instability. In this
study, C1 and C2 are chosen as C1 = (0.01µmax)

2 and
C2 = (0.03µmax)

2. SSIM is used to measure the similarity in
the structure between the two windows where a higher value
means higher similarity. As the two windows move pixel-by-
pixel over the reconstructed image and the reference image,
we obtain an SSIM map. In practice, we use a single Mean-
SSIM (MSSIM) value to evaluate the overall image quality
by simply averaging the SSIM values [14].

E. TRAINING SETTINGS
For all experiments, we use AdamW as the optimizer with
default network initialization. The loss function is the L2
loss. All experiments are done on an RTX 2080Ti GPU.
In Section II, we have proposed two DeepFBP versions for
CT reconstruction (DeepFBP I and DeepFBP II). Both have
three new learnable components, namely, the learned filter
(window function), the learned interpolation, and the post-
processing module.

The training of DeepFBP is divided into three phases. First,
we pre-train the network with learnable filters and interpola-
tion only. The training epoch is 200, the learning rate is 1e−3.
The second phase uses pre-trained parameters from the first
phase, and only updates parameters of the post-processing
part. The training epoch is 100 and the learning rate is 1e−3.
In the third phase, all the parameters of the three learnable
parts are updated together. The training epoch is 100 and the
learning rate is 1e−4. We use a batch size of 8 for all the
experiments.

IV. EXPERIMENT
A. COMPARISON METHODS
We compare the proposed methods, i.e., DeepFBP I and
DeepFBP II, with four other methods, which are FBP, TV-
based statistical iterative algorithm, FBPConvNet [60], and
RED-CNN [18]. FBP is the most classic algorithm for
CT reconstruction. We chose the Ram-Lak filter and linear
interpolation for FBP. The TV-based iterative algorithm is
commonly used for CT reconstruction and shows a good
ability to preserve edges and suppress noise. It is often used as
a baseline [26], [60]. Both FBPConvNet and RED-CNN are
post-processing algorithms, providing state-of-the-art perfor-
mance for CT reconstruction. They utilize deep learning
networks to enhance the rough images reconstructed by FBP.
In our experiments, we train FBPConvNet and RED-CNN
using the pairs of rough images and their normal-dose ref-
erences.

B. LOW-DOSE RECONSTRUCTION
In this part, we compare DeepFBP with others over the low-
dose projections. The performance on the validation set and
test set is listed in Table 2.
As shown in Table 2, two DeepFBP algorithms achieve the

best performance among all methods. DeepFBP II improves

TABLE 2. Performance comparison on the validation set and the test set
on low-dose projections.

TABLE 3. Performance comparison on the validation set and the test set
on noisy normal-dose projections.

the PSNR by nearly 3dB over the classical FBP and nearly
2dB over FBPConvNet. Both DeepFBP I and DeepFBP II
exceed RED-CNN.

To visualize reconstruction quality, we display one recon-
structed slice from the test set in Fig. 5. The blue rectangle is
the region of interest (ROI) and is enlarged at the left bottom
of each subfigure. Both DeepFBP I and DeepFBP II have bet-
ter reconstruction visual quality than FBP, the TV algorithm,
FBPConvNet [60], and RED-CNN [18]. Particularly, both
DeepFBP algorithms suppress noise and preserve edges very
well. They are also good at removing the staircase effect that
typically presents in the TV algorithm. Both DeepFBP algo-
rithms obtain CT images with less noise than FBPConvNet
and RED-CNN.

C. NOISY NORMAL-DOSE RECONSTRUCTION
In this part, we apply all methods over noisy normal-dose
projections. The results are listed in Table 3.

As shown in Table 3, the traditional FBP algorithm and
the TV-based iteration algorithm show their limitations in
processing the noisy projection. Among deep-learning-based
methods, DeepFBP II achieves the best performance.

Fig. 6 shows one slice of the reconstruction images. As one
can see, the results of FBP and the TV-based method are of
quite low quality. Details are lost in Fig. 6(a) and Fig. 6(b).
By comparison, both FBPConvNet and RED-CNN are able
to improve reconstruction quality. Two DeepFBP algorithms,
especially DeepFBP II, show the best visual performance and
suppress noise the most successfully.
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FIGURE 5. Results of a low-dose reconstruction. The display window is [−160, 240] HU.

FIGURE 6. Results of a noisy normal-dose reconstruction. The display window is [−160, 240] HU.

D. SPARSE-VIEW LOW-DOSE RECONSTRUCTION
In this part, we apply DeepFBP and other methods over
sparse-view low-dose projections. The performance on the
validation set and the test set is listed in Table 4.
These results are even more impressive. Our methods

improve the PSNR by about 7dB over FBP, 5dB over the TV
method, and 1dB over FBPConvNet and RED-CNN. These
results indicate that when there is a large loss of information
in projection, the two DeepFBP algorithms became more
competitive compared with others. This mainly benefits from
both the learned filter and the learned interpolation.

To visualize the image quality from sparse-view low-dose
reconstruction, we display a reconstruction slice in the test
set in Fig. 7. As shown in Fig. 7 (a, b), FBP and TV have
excessive artifacts. Both FBPConvNet and RED-CNN alle-
viate these artifacts (Fig. 7 (c, d)). The proposed DeepFBP
I (Fig. 7 (e)) and DeepFBP II (Fig. 7 (f)) have much fewer
artifacts compared with all other methods.

E. LEARNED FILTERS IN DIFFERENT CASES
In this part, we show learned filters. Filters in DeepFBP I are
the same at all angles while those in DeeFBP II are different
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FIGURE 7. Results of a sparse-view low-dose reconstruction (90 angles). The display window is [−160, 240] HU.

FIGURE 8. Filters learned in low-dose reconstruction.

TABLE 4. Performance comparison on the validation set and the test set
on sparse-view low-dose projections.

at each angle. From Fig. 8 to Fig. 10, we plot Filter I, the
mean of Filter II, Filter II at the angle 0◦ and 90◦, learned in
the above experiments.

In general, all learned filters keep symmetry. Filters learned
in each case do not look the same and have their unique
characteristics. As shown in Fig. 8, in the low-dose projection
case, Filter I and Filter II are both similar to the Ram-Lak
filter. Filter II differs slightly at different angles but looks
similar. In the noisy normal-dose projection case, as shown
in Fig. 9, Filter I and Filter II do not look the same. Filter
I has multi-peaks while the mean of Filter II seems like the
Ram-Lak filter, and Filter II is still like the Ram-Lak filter at

different angles but with slight perturbations. In the sparse-
view reconstruction, Filter I and Filter II differ a lot both in
shape and data range. Filter II exhibits significant difference
at 0◦ and 90◦ in the sparse-view low-dose reconstruction.

F. COMPUTATION EFFICIENCY STUDY
In CT reconstruction, speed is also an important factor to
consider. Analytical algorithms are more widely used in clini-
cal scanners than statistical iterative algorithms. We analyzed
the computational time of each component in the proposed
DeepFBP algorithms, compared with FBP.

From Table 5, we can find that the proposed methods are a
little bit slower than the original FBP, but the gap is very small
especially when a GPU is used. Additionally, compared to the
TV-based iterative algorithm, the proposed methods are two
orders of magnitude faster.

V. DISCUSSION
In this study, we derive a novel analytical method for
CT reconstruction named DeepFBP. To construct DeepFBP,
we replace standard components in FBP with simple and
small neural network modules. These modules include a
learnable frequency-filter module, a learnable non-linear
interpolation module, and a simple post-processing module.
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TABLE 5. Inference time (MS) in CPU and GPU for images of size 512 × 512.

FIGURE 9. Filters learned in noisy normal-dose reconstruction.

FIGURE 10. Filters learned in sparse-view low-dose reconstruction.

Compared with those post-processing deep learning recon-
struction methods such as FBPConvNet [60] and RED-CNN
[18], DeepFBP can make better use of projection information
and is highly interpretable. We believe these are important
advantages for medical imaging. Experiments on three kinds
of projections demonstrated the high performance of the
proposed DeepFBP methods both quantitatively and visually.

One of our motivations is to improve the performance of
the analytical filtered back-projection for low-dose CT recon-
struction. FBP is much faster than iterative reconstructions
but with worse reconstruction quality. A natural question to
ask is: could the analytical reconstruction achieve comparable
performance as iterative reconstructions while still maintain-
ing high computational efficiency? Previous studies [29],
[30], [31] have shown that modifying the filter in FBP could
improve its performance. However, the performance of these
FBP variants is still not as good as iterative reconstructions.
In this study, we propose DeepFBP to optimize both the filter
and the nonlinear interpolation with simple neural networks
for the classical FBP. The proposed DeepFBP algorithms can
achieve better performance than the TV-based iterative recon-
struction algorithm and two state-of-the-art post-processing
deep learning reconstruction methods (FBPConvNet [60] and
RED-CNN [18]) while keeping the speed advantage of FBP.

One question is which part of FBP can be modified without
sacrificing its computational speed. Because of the important

role of the filtering step in FBP, we modify it to a data-
driven form that can be learned from the training dataset.
This modification does not increase the computational burden
but can greatly improve the performance while having a
good ability of interpretation. Taking the ray divergence into
consideration, we also propose a learnable data-dependent
non-linear interpolation method, which is more robust to
the noise by using the information of adjacent detector
bins.

We compare our DeepFBP methods with two state-of-
the-art post-processing deep learning methods for CT recon-
struction, namely, FBPConvNet [60] and RED-CNN [18].
RED-CNN is a very deep fully convolutional encoding-
decoding framework for image restoration such as denoising
and super-resolution [17]. FBPConvNet, on the other hand,
can be considered as a refinement of the multi-resolution
U-net structure [61] with a skip connection between input
and output [62]. Note that the proposed DeepFBP used much
simpler networks than those in RED-CNN and FBPConvNet.
Surprisingly, the DeepFBP algorithm did easily outperform
both FBPConvNet and RED-CNN in all cases in our experi-
ments. A possible reason might be DeepFBP takes full usage
of information of the reconstruction process, whereas these
two post-processing methods treat reconstruction as an image
restoration problem and totally ignore the physical behaviors
and properties in the reconstruction. Our study indicates that
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taking into account the reconstruction process is important
for designing a high-quality reconstruction algorithm.

Although the proposed new analytical reconstruction
method showed good performance and short computational
time, there are still several aspects that can be further
improved. For example, the filters need to be retrained for
different noise situations in our current DeepFBP. It can be
re-designed to be self-adaptive to different noise levels.

VI. CONCLUSION
In this work, we propose a new analytical method named
DeepFBP for CT reconstruction. In this method, the filter
and the interpolation method in the projection domain are
learned from data using neuron networks. Experiments on the
AAPM dataset demonstrate that DeepFBP not only achieved
better performance than the TV-based iterative reconstruction
method and two state-of-the-art post-processing deep learn-
ing methods but also kept the computational advantage of
FBP.
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