
Received 2 January 2024, accepted 18 January 2024, date of publication 22 January 2024, date of current version 29 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3357113

Fault Diagnosis Method for Bearing Based on
Attention Mechanism and Multi-Scale
Convolutional Neural Network
QIMIN SHEN 1 AND ZENGQIANG ZHANG2
1Jinzhong College of Information, Jinzhong 030800, China
2Taiyuan Institute of Technology, Taiyuan 030008, China

Corresponding author: Qimin Shen (ty2023ty@163.com)

This work was supported by the Shanxi Province Higher Education Teaching Reform and Innovation Project J20221448.

ABSTRACT Convolutional neural networks (CNNs) serve as powerful feature extraction tools capable
of effectively extracting information from complex environments, thus improving the accuracy of fault
identification for bearing data. In this paper, we present a method for diagnosing bearing faults using
an attention mechanism and a multi-scale convolutional neural network (MSCNN). Firstly, truncate and
sample the rolling bearing data, and use continuous wavelet transform to generate corresponding time-
frequency images, which will be used as inputs to the neural network. Next, the MSCNN, which includes
efficient convolutional modules with residual structures, is utilized to extract features from the input data
while maximizing the retention of valuable information. The extracted data then undergoes feature selection
through the employment of an Efficient Convolutional Module (ECM) with channel attention. Finally, after
being mapped through fully connected layers, the features are fed into a softmax layer for fault category
prediction. In this study, themodel results were tested and verified using the CaseWestern ReserveUniversity
(CWRU) dataset and the bearing dataset of Jiangnan University(JNU). A comparison was made with the
LeNet model, ResNet model, LSTM model, and WDCNN model. The results showed that the classification
accuracy of the ten types of bearing signals at the same speed can reach 100%, and the classification accuracy
of the thirty types of bearing signals at different speeds can reach over 99.4%, significantly higher than the
other models. The proposedmethod achieves the recognition of different fault states of rolling bearings under
complex conditions, including multiple operating conditions and variable operating conditions. It is capable
of extracting the global characteristic information of bearing faults, resulting in high diagnostic accuracy
and good generalization ability. This method can provide reference for the diagnosis of rolling bearing faults
under corresponding operating conditions.

INDEX TERMS CNN, bearing, attention mechanism, fault diagnosis.

I. INTRODUCTION
As one of the important components in mechanical equip-
ment, bearings play a crucial role in the performance and
reliability of the equipment. In reality, the failure rate of
bearing components remains high due to the long continuous
operation of mechanical equipment. Accurate and fast bear-
ing fault diagnosis is one of crucial significance in preventing
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equipment failures, reducing maintenance costs, and improv-
ing production efficiency.

Traditional methods for bearing fault diagnosis include
analysis methods based on vibration signals, sound signals,
and temperature signals, etc. These methods extract fre-
quency domain features [1], time domain features [2], and
time-frequency domain features [3] from the signals to deter-
mine the working condition and fault type of the bearing.
However, traditional methods have certain limitations when
applied in complex operating conditions and cannot meet the
requirements of practical applications.
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With the systematization and complexity of data in the era
of big data, data-driven intelligent diagnostic methods have
been used for self-diagnosis and self-recognition of equip-
ment faults. In terms of feature extraction, Zhang et al. [4], [5]
proposed the use of wavelet transform for feature extraction
of acquired signals and demonstrated the effectiveness of the
method through experiments. He et al. [6] employed a fea-
ture extraction method based on cross-wavelet transform and
variational Bayesian matrix decomposition, which can effec-
tively localize different types of defects with high accuracy.
In terms of diagnostic methods, researchers have proposed
a fault diagnosis method based on Manhattan distance and
voltage difference analysis [7], which can sensitively and reli-
ably detect and isolate multiple faults. Additionally, machine
learning and deep learning techniques have also emerged in
this field.

In the application of machine learning, classic algorithms
such as Artificial Neural Network(ANN) [8], K-Nearest
Neighbors (KNN) [9], and Support Vector Machine (SVM)
[10] have been cited and achieved certain effectiveness
in the field of fault diagnosis. However, these algorithms
inevitably encounter some issues when applied in practical
fault diagnosis. First, there is the issue of feature input.
These algorithms require a large amount of effective fea-
tures as input to be effective, and extracting useful features
from raw signals requires experienced professionals with
rich knowledge, resulting in additional personnel and time
costs. Second, there is the issue of training time. Traditional
machine learning algorithms are usually based on serialized
computing models, which can only process and infer one
sample at a time. This means that training and predicting
on large-scale datasets can be relatively slow. Lastly, the
structure of machine learning algorithm models is relatively
simple. While they may be effective for small datasets or
low algorithm complexity, their classification performance
is limited in complex environments and multiple operating
conditions. Therefore, currently, deep learning is widely used
for bearing fault diagnosis.

The deep learning techniques currently applied in bear-
ing fault diagnosis include DNN [11], CNN [12], [13], and
autoencoders [14], [15], among others. Compared to machine
learning, deep learning itself has powerful and efficient fea-
ture extraction capabilities. Additionally, deep learning mod-
els have complex structures, which enable them to overcome
various complex environments and operating conditions,
resulting in accurate classification. Wang et al. [16] proposed
converting one-dimensional vibration signals of bearings into
two-dimensional grayscale images, which achieved good
results after being processed by CNNs. Liang et al. [17]
applied residual networks to the fault classification model,
which deepened the convolutional network layers while
avoiding the problem of vanishing gradients. Additionally,
benefiting from the powerful time series information min-
ing capability of LSTM networks [18], An et al. [19]
proposed a rolling bearing fault diagnosis method based

on periodic sparse attention and LSTM. They compared
this method with others and validated its effectiveness and
superiority.

In the aforementioned studies, various deep learning net-
work architectures were employed for fault diagnosis with
the aim of attaining enhanced accuracy. However, for the
actual extracted bearing fault signals, there is often a sig-
nificant amount of noise mixed in, which can hinder the
accuracy of themodels’ recognition.Moreover, as the number
of layers and components of the CNNs increase, a large
number of redundant parameters are introduced, leading to
poor real-time performance due to lengthy training times.

To address these issues, Li et al. [20] introduced an atten-
tion mechanism into the diagnostic model, further enhancing
fault-related features while reducing the weights of irrele-
vant parameters. Their proposed model further improved the
accuracy of fault recognition. Zhang et al. [21] proposed
a feature extractor based on a multi-scale attention mech-
anism, and the results showed that their strategy had good
learning ability and diagnostic performance. Wu et al. [22]
proposed a multi-source domain adaptation network with
an attention mechanism, and the network model achieved
outstanding fault diagnosis capability by leveraging its excep-
tional adaptability to samples. These research achievements
demonstrate that the introduction of attention mechanisms
can strengthen the adaptive capabilities of network mod-
els, enabling faster and more accurate identification of fault
categories.

Inspired by the multi-scale attention mechanism [23], this
article proposes a rolling bearing fault diagnosis method
called MSCNN-ECM, which takes into account the inter-
ference of noise in actual samples. The method combines
various models such as residual modules [17], [24], [25],
multi-scale convolution [26], [27], [28], attention modules
[29], [30], [31], and decomposed convolution modules to
innovatively propose an efficient multi-scale convolution
module for feature extraction of input signals, maximizing
the retention of effective features from the original signal.
Therefore, the main contributions and innovations of this
paper are as follows:

a) In response to the issue of insufficient feature extrac-
tion, corresponding improvements are made to the model
structure. In order to fully extract effective fault information,
a three-branch structure is adopted to extract information
at different scales, and large-scale convolutional kernels are
used to enhance the effective receptive field of the network,
thereby better capturing information between input data,
while employing decomposed convolutions to reduce the
computational load.

b) Improvements are made to address issues such as
redundancy of multi-scale feature information and gradi-
ent vanishing. An attention mechanism is introduced after
multi-scale convolutions to select feature information from
different scales, and a residual structure is employed to ensure
continuous gradient descent of the model.
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II. RELATED WORK
This section will introduce the modules used in the fault
diagnosis model, including CNN, ResNet, Decomposed Con-
volution, and Attention Mechanism.

A. CNN
CNNs are widely used deep learning models in computer
vision and image processing tasks, typically for handling two-
dimensional data. As we will preprocess one-dimensional
time-varying bearing fault signals into two-dimensional rep-
resentations using specific methods, CNNs can be migrated
to the field of fault diagnosis. CNNs are named after the
convolution operation, which is a special type of linear oper-
ation extensively applied in signal processing and image
processing domains. In CNNs, the convolution operation is
used to extract local features from input data, and by learning
the parameters of the convolution kernels, specific patterns
in the input signals or images can be captured. Convolution
kernels of different sizes and shapes can be employed to
extract features of various scales and types.

For two-dimensional images, the convolution operation
can be understood as sliding a filter over the input image and
performing element-wise multiplication, followed by sum-
ming all elements to obtain the value at the corresponding
position in the output feature. The specific representation
process is illustrated in Figure 1.

FIGURE 1. Convolution operation with different strides.

Stride is the step size at which the filter traverses. In each
convolution operation, the filter slides horizontally to the
right by a stride length. When the filter reaches the rightmost
position, it starts sliding from the next row. Once the filter
reaches the corresponding position in the bottom-right corner
of the input image, the convolution operation is completed.

Figure 2 illustrates the padding scenario. By adding some
extra pixels around the input image in the convolution oper-
ation, we can control the size of the output feature map to
be the same as the input image, making network design and
computation more convenient. Additionally, padding helps
retain the information at the edges of the input signal.Without
padding, the pixels at the edge of the signal would be involved
in computation fewer times, leading to a loss of edge infor-
mation. By applying padding, the participation of edge pixels

in the computation remains the same as that of central pixels,
preserving edge information more effectively.

FIGURE 2. Padding operation in convolution.

Increasing the stride size reduces the output image dimen-
sions, while increasing the padding layers can increase the
output image dimensions. Suppose the input image has a
height of H and width of W. After performing a convolution
operation with a kernel size of k×k, the resulting output
image has a height of h and width of w. This relationship can
be expressed as follows:

h =
H − k + 2p

s
+ 1 (1)

w =
W − k + 2p

s
+ 1 (2)

In the equation, p represents the number of padding layers
in the convolution process, and s represents the stride size of
the filter. By using this formula, you can modify the relevant
parameters to control the size of the output image.

B. RESIDUAL NETWORK STRUCTURE
In the early stages of researching neural network structures,
it was widely believed that the depth of the network deter-
mined the accuracy and effectiveness of detection. Therefore,
many researchers focused on increasing the network depth,
and many classic models achieved good results by con-
tinuously deepening the network. However, it was later
discovered that when the network becomes too deep, the
performance actually starts to degrade, with issues such as
vanishing or exploding gradients. To address this problem,
the residual network structure was introduced.

The residual structure was initially proposed by He et al
[32]. It allows the network to propagate larger gradient values
back to the earlier layers during the backpropagation pro-
cess. Additionally, ResNet has a flexible network structure,
allowing for adjustments in the number of stacked residual
blocks and the number of channels within each residual block.
A basic residual block is shown in Figure 3.
In the above residual structure, the function F(x) represents

the residual mapping, and it is defined as F(x)= y - x. BN rep-
resents batch normalization operation, ReLU is the activation
function. During the process of residual learning, F(x) can be
directly used as the optimization objective. By minimizing
F(x) to approach zero, the optimal solution is obtained. This
allows the model to maintain its best state even when the
network is deepened. When the residual block takes xn as
input, the output can be represented as:

xn+1 = f (xn + F (xn,wn)) (3)
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FIGURE 3. Basic residual block.

Here, f(·) is the activation function,wn represents the corre-
sponding weight parameters, and F(·) is the residual mapping
function.

Compared to ordinary convolutional structures, the resid-
ual block adds an extra channel, allowing the input data
to be directly passed to the output data. This enables the
direct learning of residual values, simplifying the learning
objective. This structure helps sustain gradient descent, which
is beneficial for constructing deeper networks. The addi-
tional computational cost introduced by this structure can be
ignored with GPU acceleration, but it greatly enhances the
overall performance of the network.

C. DECOMPOSED CONVOLUTION
The principle of decomposed convolution [33] is to decom-
pose a k×k standard 2D convolution kernel into a k×1
vertical convolution kernel and a 1×k horizontal convolution
kernel. By reducing the dimensionality of the convolution
kernel, it effectively reduces the floating point operations
(FLOPs) required for convolution. Research has shown [34]
that simply stacking small kernel convolutions does not
significantly improve the effective receptive field [35] of
the network. However, the introduction of decomposed
convolution helps us mitigate the impact of large kernel
convolutions [36] that lead to a large number of parame-
ters. Decomposed convolution is implemented in two steps,
as illustrated in Figure 4.

FIGURE 4. Principle of decomposed convolution.

For decomposed convolution, considering the bias, the
corresponding FLOPs are as follows:

FFC = 4kcincoutHoutWout (4)

where FFC represents the FLOPs of decomposed convolu-
tion, k is the size of the convolution kernel, cin is the number
of input feature channels, cout is the number of output feature

channels,Hout is the height of the convolution output feature,
and Wout is the width of the convolution output feature.

For a regular convolution with a kernel size of k×k,
as shown in Figure 5, and considering the bias, the corre-
sponding floating-point operations are:

Fconv = 2k2cincoutHoutWout (5)

FIGURE 5. Standard convolution.

Decomposed convolution reduces the FLOPs of convo-
lution by dimension reduction of the convolution kernel,
changing the relationship between FLOPs and kernel size
k from quadratic to linear. When the kernel size k > 2,
the FLOPs of decomposed convolution will be smaller than
the computational cost of standard convolution. Moreover,
as the kernel size k and the number of output channels cout
increase, decomposed convolution saves more computational
resources.

To combine residual modules and decomposed convolu-
tion, we propose a new efficient multi-scale convolution
module called EMSCM (Efficient multi-scale convolution
module). The structure of this new module is shown in
Figure 6. This module ensures a large receptive field while
reducing computational and parameter burdens, which meets
the requirements of deep neural networks well.

FIGURE 6. Efficient multi-scale convolution module.

D. ATTENTION MECHANISM
The introduction of attention mechanism [37] aims to
enhance the model’s focus and concentration on the input
data, enabling the model to learn and process information
that is more important for the current task. The reason for
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incorporating attention modules in the fault diagnosis model
is that there is a significant amount of noise in the orig-
inal fault signals. By introducing attention, the model can
pay more attention to the relevant fault signals in the origi-
nal information and ignore most of the noise. Additionally,
for relatively complex CNNs, the introduction of attention
mechanism can simplify the model structure while main-
taining performance, thereby reducing training parameters
and time.

In this study, we employ the Efficient Channel Attention
(ECA) module to enhance the weights of crucial features.
Since our processed fault signals are two-dimensional, it is
necessary to map the 2D signal into a three-dimensional
matrix and then utilize the ECA attention mechanism mod-
ule to obtain channel weight information. The ECA module
utilizes a 1 × 1 convolutional layer after the global average
pooling layer, eliminating the need for a fully connected
layer while preserving the original feature map dimen-
sions. This allows for effective utilization of inter-channel
interaction information and captures local interaction rela-
tionships with surrounding channels. Moreover, the ECA
module achieves excellent results with only a small number
of parameters. The corresponding structure is illustrated in
Figure 7.

FIGURE 7. Efficient channel attention module.

ECA achieves cross-channel information interaction
through one-dimensional convolution, which can reduce the
model’s complexity while maintaining performance. The size
of the convolutional kernel, denoted as k, is adapted using a
function that allows layers with a larger number of channels to
have more cross-channel interactions. The adaptive function
is defined as follows:

k =

∣∣∣∣ log2 (C)

γ
+
b
γ

∣∣∣∣ (6)

where C represents the number of channels, γ and b are non-
linear parameters, and γ = 2, b=1.
Additionally, the corresponding weight calculation for-

mula is as follows:

ω = σ (C1Dk (y)) (7)

In this case, σ represents the sigmoid function. The output
feature map is obtained by multiplying the weights with the
corresponding elements of the original input feature map.

III. BEARING FAULT DIAGNOSIS MODEL
A. DATA PREPROCESSING METHODS
The vibration signals in the datasets from JNU and CWRU
used in this study are in the form of one-dimensional time-
varying non-stationary signals. In order to efficiently and
quickly extract features using convolutional neural networks,
sampling truncation and two-dimensional processing are
required. It is worth noting that during the truncation process,
it is best to ensure that each sample data contains the complete
set of sampling points for one rotation of the bearing. The
number of sample points required to cover a complete rotation
can be obtained according to the following formula:

N =
60
n
f (8)

where n is the rotation speed (r/min) and f is the sampling
frequency (Hz).

Taking an electric motor speed of 1730 as an example,
the number of sampling points contained in one rotation of
the bearing is approximately 416, calculated as 60÷1730 ×

12000. This study sets the number of sampling points in
each sample data to 1024. In order to increase the number
of sample data, overlapping sampling is adopted here: the
first set of data x1 (t) is sampled from 1 to 512, the second
set of data x2 (t) is sampled from 513 to 1024, and so on,
as shown in Figure 8. After truncation, continuous wavelet
transform is used to generate image data with time-frequency
characteristics.

FIGURE 8. Signal expansion method used in this study.

Continuous wavelet transform is a signal processing
method based on wavelet anaysis, which can be used to
analyze the time-frequency characteristics of non-stationary
signals. In this study, the complex Gaussian function is cho-
sen as the wavelet basis function. This function has the
advantages of Gaussian sub-wavelets and exhibits superior
resolution and concentration in the time-frequency represen-
tation.

B. MODEL DESIGN
In this paper, the proposed model is based on lightweight
considerations and simplifies non-essential components to
improve diagnostic efficiency while enhancing the feature
extraction and resolution capabilities of the model. The entire
model consists of efficient multi-scale convolution modules,
pooling layers, normalization and activation layers, attention
modules, fully connected layers, and a softmax layer. The
specific model structure is shown in Figure 9.

12944 VOLUME 12, 2024



Q. Shen, Z. Zhang: Fault Diagnosis Method for Bearing Based on Attention Mechanism and MSCNN

FIGURE 9. Adaptive CNN model based on attention mechanism.

The specific implementation process can be roughly
divided into three steps: signal input, feature extraction and
processing, classification output. Firstly, one-dimensional
vibration data is transformed into a two-dimensional image
with time-frequency features using continuous wavelet trans-
form. The transformed two-dimensional image is then input
into the model, and the time-frequency image features are
extracted efficiently using a multi-scale convolution module,
with attention mechanism used to filter the feature infor-
mation. Secondly, the feature map of the feature map is
further extracted using a regular convolutionmodule, and nor-
malization and activation function processing are performed
between these two steps, followed by pooling operation to
retain the main feature information. This process is repeated
three times to obtain two-dimensional feature signals for clas-
sification. Finally, the two-dimensional signal is flattened and
input into the fully connected layer for feature classification.
The model parameter settings are shown in Table 1.

C. MODEL PARAMETERS AND LOSS FUNCTION
We set the sizes of two large-scale convolution kernels in the
efficient multi-scale convolution module to 7 and 11, respec-
tively, and reduce the parameter volume by decomposing the
convolution. In the EMSCM module, 0/3/5 represents the
padding of the three branches, and 1× 1.7×7/11× 11 repre-
sents the convolution kernel size of the corresponding branch

in the three-branch structure. After normalization and acti-
vation layers, the attention module is used to obtain the key
channel information. This ensures that the width and height of
the processed feature map remain consistent with the original
input, while the number of channels remains consistent with
the number of filters. Then, a max pooling layer is applied
with a pooling window size of 3 × 3 and a stride of 2,
reducing the size of the feature map by half in the width and
height dimensions. The number of fully connected layers is
set to 2, with 1024 hidden neurons and 10/4 output categories.
‘‘10’’ represents the number of classifications on the CWRU
dataset, and ‘‘4’’ represents the number of classifications
on the JNU bearing dataset. Specific parameter settings and
module selections can be found in Table 1.

The chosen deep learning framework for this experiment
is PyTorch. The computer setup includes a Linux operating
system, an Intel Core i9-12900K CPU processor, and an
NVIDIA GeForce RTX 3090 graphics card. The selected
loss function is the cross-entropy loss function, expressed as
follows:

L = −

K∑
i=1

yi lg ȳi (9)

where L represents the error loss value, K represents the
number of fault categories, yi represents the true label for the
i-th category, and ȳi represents the predicted probability value
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TABLE 1. Specific model parameters.

of the model indicating the likelihood of being the i-th fault
category.

D. FAULT DIAGNOSIS PROCESS
The fault diagnosis process of the proposed model in this
paper is shown in Figure 11, and the specific steps are as
follows:

FIGURE 10. Time frequency images of each state under 1Hp load.

(1) Data information is extracted by truncating the data,
and continuous wavelet transform is used to convert the
one-dimensional data into two-dimensional form. Figure 10
shows the time-frequency diagrams for 10 states under a 1Hp
load in the CWRU dataset.

(2) The dataset is divided according to a certain proportion.
(3) The network model is constructed and the model

parameters are initialized before training. The batch size is
set to 32 and the number of iterations is set to 50. The
cross-entropy loss function and Adam optimizer are used.
The initial learning rate is set to 0.001, and the learning rate is
adjusted using the cosine annealing algorithm during actual
training.

(4) The training set is input into the model to start training.
The features are extracted through the convolutional module,
and the extracted features are classified using the classifier.

(5) The model performance is validated using the valida-
tion set, and the model parameters are adjusted to achieve

FIGURE 11. Fault diagnosis flowchart.

optimal performance. The best parameters obtained during
the training process are saved after reaching the specified
number of training iterations.

(6) The best parameters are imported, and the test set is
used to obtain accuracy information corresponding to the
model.

IV. EXPERIMENTAL ANALYSIS
This article uses the bearing vibration dataset from CWRU
and the dataset from JNU for testing to validate the model’s
generalization and robustness.

A. CWRU DATASET
The experimental setup of the CWRU dataset is shown in
Figure 12, which includes a 1.5 kW motor, a torque sensor,
a power analyzer, and an electronic controller. The experi-
ment selected the data from the drive-end bearing, with the
SKF6205 bearing model being tested. The bearing loads are
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TABLE 2. CWRU dataset partitioning.

divided into 1HP, 2HP, and 3HP, corresponding to a sampling
frequency of 12 kHz.

FIGURE 12. CWRU bearing test rig.

The fault in the experimental bearings was created using
the electrical discharge machining technique to generate a
single-point damage. The collected bearing data includes
fault data for the inner race, outer race, and rolling elements
positions. Each position includes damages with diameters
of 0.18 mm, 0.36 mm, and 0.53 mm. Based on the differ-
ent fault positions and diameters, the bearing data can be
divided into ten categories: Normal, inner race faults (IR007,
IR014, IR021), outer race faults (OR007, OR014, OR021),
and rolling element faults (B007, B014, B021).

According to the data sampling plan, 300 samples were
collected for each state under a single load condition. To con-
veniently represent the corresponding 10 states, they are
replaced with the numbers 0-9. The three load conditions
are denoted as A, B, and C. The training set, validation set
and testing set are divided in an 8:1:1 ratio. The specific
partitioning is shown in Table 2.

B. EVALUATION METRICS
In order to evaluate the performance of fault classification
results, four metrics are used: accuracy (Acc), precision (Pre),
recall (Rec), and F-score. Accuracy is the most direct eval-
uation metric, which represents the proportion of correctly
predicted samples to the total number of samples. It is simple
and easy to understand and reflects the overall accuracy of
the classification results. However, when the sample distri-

bution is imbalanced, the evaluation of accuracy may be
biased. Therefore, other evaluation metrics need to be used
in conjunction with accuracy to assess the classification per-
formance of the model. The formula for calculating accuracy
is as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
(10)

where TP (True Positive) represents correctly classified posi-
tive samples, FP (False Positive) represents negative samples
incorrectly classified as positive, TN (True Negative) rep-
resents correctly classified negative samples, and FN (False
Negative) represents positive samples incorrectly classified
as negative.

Precision represents the proportion of correctly predicted
positive samples to all samples predicted as positive. It eval-
uates the accuracy of positive class predictions. The formula
for calculating precision is as follows:

Pre =
TP

TP+ FP
(11)

Recall represents the proportion of correctly predicted pos-
itive samples to all actual positive samples. It is advantageous
for evaluating the model’s ability to capture positive class
samples. However, it ignores false negatives and needs to be
used in conjunction with precision to evaluate model perfor-
mance. The formula for calculating recall is as follows:

Rec =
TP

TP+ FN
(12)

F1 score is the weighted harmonic mean of precision and
recall, providing a balanced measure between accuracy and
capture capability. Depending on the specific scenario, the
use of F1 score as an evaluation metric needs to be deter-
mined. The formula for calculating F1 score is as follows:

F − Score = 2
Pre · Rec
Pre+ Rec

(13)

C. MODEL VISUALIZATION AND PERFORMANCE
ANALYSIS
We used the t-SNE algorithm [38] for visualization, as it is
a nonlinear dimensionality reduction algorithm that allows
for intuitive analysis of the model’s effectiveness. The t-SNE
algorithmwas applied to visualize a randomly sampled subset
of 2000 examples from the dataset, with 200 samples for each
class. In order to evaluate the performance of the proposed
model in this paper for visualization-based classification,
a comparison was made between the visualization results
obtained in this paper and those of LeNet, LSTM, ResNet
and WDCNN [39].

LeNet network consists of two convolutional layers and
three fully connected layers. The size of the convolutional
kernel is 5 × 5, followed by a corresponding pooling layer
after each convolution. LSTM network includes key com-
ponents such as input gate, forget gate, and output gate.
It effectively processes information in sequences by adap-
tively updating and managing the state of memory cells.
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TABLE 3. Comparison of model diagnosis results.

ResNet is a very deep convolutional neural network com-
posed of basic convolutional layers, pooling layers, and batch
normalization layers. It introduces residual connections to
address the degradation problem in deep networks. Each
residual block consists of two or three convolutional layers
and a skip connection. The size of the convolutional layers is
typically 3×3.WDCNN consists of five convolutional layers
and five maximum pooling layers. The first convolutional
layer is a wide convolutional layer with a kernel size of 64 ×

1, while the subsequent layers have a kernel size of 3 × 1.
The comparative graph is shown in Figure 13. From the

graph, it can be observed that the proposedmodel in this paper
accurately and correctly partitions the target dataset, while the
other models still exhibit significant misclassification in the
final classification.

Through training, the accuracy of all 10 classes in Table 3
can reach 100%, which is higher than other classification
methods including LeNet, LSTM, ResNet, and WDCNN.
The LSTM method and the WDCNN method both belong to
one-dimensional convolution methods. In comparison, two-
dimensional convolution can extract features in both row and
column directions simultaneously, thereby obtaining more
comprehensive feature representations. From the diagnostic
results, it can be seen that using two-dimensional convo-
lution for fault diagnosis has advantages. Additionally, the
WDCNN model adopts a multi-scale convolution approach,
which allows capturing fault features at different scales and
obtaining better global structural information. Therefore,
despite being in the form of one-dimensional convolution, the
WDCNN achieves higher accuracy than the LSTM model.
The proposed model in this paper takes advantage of the
multi-scale structure and combines it with large-scale convo-
lution kernels and attention mechanisms to more efficiently
process information at different scales, thereby improving the
diagnostic performance of the model. Furthermore, Figure 14
displays the confusion matrix for load condition A, clearly
demonstrating that each label has been well classified.

In addition, we also compared the training and testing time
of different models on dataset A, and the results are shown in
Table 4.
According to the data in the table, it can be seen that

the model proposed in this article consumed relatively less
time. Referring to the classification accuracy in Table 2, the
diagnostic accuracy of the proposed model in this article
increased by 1.45% compared to ResNet. Compared with the

TABLE 4. Comparison of time consumption between different models.

longest training time model, WDCNN, the training time was
only 38s. Compared with the shortest training time model,
LeNet, the training time was only 5s longer, but the training
accuracy improved by 3.85%. The above data indicates that
the proposed model in this article has low complexity, high
computational efficiency, and excellent diagnostic perfor-
mance.

D. EXPERIMENTAL VERIFICATION UNDER MULTIPLE
OPERATING CONDITIONS
In practical engineering applications, data acquisition is
influenced by surrounding environmental conditions. Addi-
tionally, the number of fault categories we need to classify
is usually much greater than 10. Here, we obtain more
categories and quantities of fault types by combining data.
Specifically, we combine different bearing data at three orig-
inal speeds. The basis for the combination comes from the
differences in sample distribution under different load condi-
tions, as shown in Figure 16. This results in a total of 30 fault
categories and three times the data volume compared to a
single operating condition.

To better evaluate the effectiveness and computational
scale of this model, we compare its experimental results with
those of LSTM, ResNet, LeNet and WDCNN models. The
comparison results are shown in Figure 15, where it can be
observed that our model outperforms other popular models,
achieving good detection results in a short time.

The confusion matrix in Figure 17 reflects the specific
label recognition results. It can be seen that misidentified
label data mostly come from normal samples under different
load conditions. This is because normal sample data have
similar signal distributions and are less affected by speed
differences, making them difficult to distinguish.

However, our model still achieves an accuracy of 99.46%
in recognition. This indicates that our proposed method can
maintain high fault recognition capability in multiple oper-
ating conditions, meeting the requirements of real-world
engineering applications.

It should be noted that the processor requirements and
computation time for specific industrial applications may
differ from the experimental setup described in this paper.
This is because factors such as the complex operating envi-
ronment, the scale of data extraction, and the precision of
sensors in industrial scenarios can all affect training time. The
algorithm proposed in this paper involves attention mecha-
nisms and large kernel convolution modules, which require
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FIGURE 13. Comparison of visualization-based classification results for different models.

FIGURE 14. Confusion matrix for load condition A.

FIGURE 15. Comparison of different model parameters.

CUDA implementation for GPU acceleration. There are no
specific requirements for CPUs. Considering the cost budget
and computational power of GPUs in industrial scenarios,
graphics card models such as GeForce GTX 650 or higher
can be used.

The graphics card model used in this experiment, GeForce
RTX 3090, has a computational capability that is 2.85 times
higher than the previous one. Specifically, in terms of train-
ing time, using GeForce GTX 650 takes approximately
2.85 times longer than the time mentioned in this article,
which is around 142 seconds. However, industrial data sets
are usually larger in scale compared to the data set used in
this article, which consists of 3000 samples. If we calculate
based on an industrial scale of 10,000 samples, it would take
approximately 473 seconds.

Therefore, when implementing this method on a large scale
in the industrial field, it is necessary to use at least a GeForce
GTX 650 or higher graphics card, with a corresponding com-
putation time of approximately 473 seconds.

E. EXPERIMENTAL STUDY ON TRANSFER LEARNING
UNDER VARIABLE LOAD
To verify the generalization ability of the proposed model in
this paper, a fault diagnosis experiment on bearings under
variable load was conducted in this section. The proposed
method was compared with LeNet, ResNet, LeNet, and
WDCNN, and the average values of five repeated experi-
ments were taken as the experimental results. In the specific
experiment, six transfer tasks can be established based on the
data under three different loads. For convenience, ‘‘A → B’’
is used to represent the transfer diagnostic task with A as the
source domain data and B as the target domain data. In the
target domain, the training set and test set were divided in
a 2:8 ratio. The specific transfer tasks and data division are
shown in Table 5. The diagnostic results of eachmethod under
variable load conditions are shown in Figure 18.
From the figure, it can be seen that the average accu-

racy of the proposed method reached 98.35%, which is
much higher than other models. Compared with the LSTM
and WDCNN models adopted by the comparative methods,
which use one-dimensional convolution with raw vibra-
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FIGURE 16. Fault signals under different operating conditions.

FIGURE 17. Confusion matrices for three load conditions.

tion signals as input, the diagnostic effect is limited. The
LeNet and ResNet methods use continuous wavelet trans-
form to extract the time-frequency features of the original
signals and use two-dimensional convolution to efficiently
process more abundant fault feature information, thereby

improving the diagnostic accuracy. The proposed method,
by introducing multi-scale convolution and attention mecha-
nism, can more efficiently extract effective fault information
and still achieve good results even under variable load
conditions.
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FIGURE 18. Diagnostic results for different migration tasks.

TABLE 5. Migration data partitioning.

TABLE 6. JNU dataset.

F. GENERALIZATION EXPERIMENT ANALYSIS
To further verify the performance of the proposed method on
other datasets, experiments were conducted using the bearing
dataset from JNU. This dataset includes fault states such as
normal, inner ring fault, outer ring fault, and rolling element
fault, with a sampling frequency of 50kHz for vibration sig-
nals. Data collection was performed for each fault type at
three different speeds: 600 r/min, 800 r/min, and 1000 r/min.
The same overlapping sampling method was used, collecting
400 data samples for each state, and generating corresponding
two-dimensional time-frequency images through continuous
wavelet transform. The data collected at the three speeds
are denoted as D, E, and F, respectively, with each speed
containing 1600 data samples. The data partitioning of the
dataset is shown in Table 6.

During the actual training, the number of categories was
changed to 4 while keeping other parameters unchanged.
In the experimental phase, five methods (LSTM, ResNet,
LeNet, WDCNN, and the method proposed in this paper)
were compared and tested, and the experimental results under
different models are shown in Table 7.
By analyzing the data in the table, it can be concluded that

the proposed method in this paper still demonstrates excellent

TABLE 7. Comparison of model diagnosis results.

diagnostic performance when applied to different datasets.
Compared to the ResNet network, the diagnostic accuracy
has improved by 1.31%. These findings suggest that the
algorithm proposed in this paper has good generalizability.

V. CONCLUSION
This paper proposes a multi-scale convolutional neural net-
work model based on attention mechanism for bearing fault
diagnosis. A reasonable truncation sampling method is pro-
posed to address the form of fault signals, and the signals
are transformed into two-dimensional matrices for process-
ing through continuous wavelet transform. To improve the
effective receptive field and reduce the number of model
parameters, an efficient multi-scale convolution module is
designed. At the same time, the design of residual module
can effectively avoid the problem of gradient explosion and
gradient disappearance. In order to address the interference
problem of noise information in the data itself, an efficient
channel attention module is proposed to focus on effective
information. The algorithm was validated on the CWRU
bearing vibration dataset and the JNU bearing dataset, and
compared with other mainstream algorithm models. The
results show that the proposed method performs well in both
single and multiple working conditions, and outperforms
other algorithms. In addition, to verify the generalization
ability of the model, different transfer tasks were established
using the CWRU dataset, and the experiment shows that the
proposed model has good transfer performance.
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