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ABSTRACT Distance sensors are important for mobile robots to perceive surrounding environment. Typical
sensors like LiDARs and depth cameras have been widely used, yet each has its limitations, such as LiDARs’
relatively high cost, depth cameras’ limitation to indoor use, and their poor performance in detecting
transparent objects directly. On the other hand, ultrasonic phased array that integrates multiple ultrasonic
sensors not only enables 3D ranging and imaging, but also provides advantages of strong environmental
adaptability, being cost-effective and being able to detect transparent objects. To explore the application
of in-air ultrasonic phased arrays for mobile robots, we simulate a 40 kHz 5 × 5 non-uniform sparse
ultrasonic phased array. The simulator emulates the process of phased array transmission and reception,
and utilizes algorithms such as beamforming and matched filtering to obtain depth information in three-
dimensional space. Then, a multi-view indoor 3D reconstruction method fusing the ultrasonic phased array
and a monocular camera is proposed, where two scanning strategies are developed to handle different
scenarios. Finally, the method is validated in different Gazebo scenarios and compared with other baseline
methods like LiDARs and depth cameras. The experimental results reveal the method’s strong performance
in terms of accuracy, consistency and completeness.

INDEX TERMS Phased arrays, reconstruction algorithms, sensor fusion, simulation, ultrasonic imaging.

I. INTRODUCTION
Three-dimensional imaging technology has seen unprece-
dented boom in recent years, especially those applied for
mobile robots. Digitization of our 3D space can provide great
insights in path planning, self driving, virtual reality and so
on, assisting robots in perceiving surrounding world. This is
achieved by a heterogeneous sensor fusion [1].When it comes
to 3D imaging, distance sensors are indispensable, whose
typical characteristics are shown and compared in Table 1.
LiDAR uses time-of-flight (ToF) technology to measure the
distance of spatial points, describing surroundings with a set
of accurate point clouds, whose limitations are its relatively
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high cost and poor performance to detect transparent objects
such as glass directly, which is common in many office build-
ings [2], [3]. Depth camera (3D camera) projects structured
light onto the object and capture it with a camera, obtaining
the 3D structure by generating a 2D image along with the
corresponding depth image. Although it’s not as expensive as
LiDAR, structured light is easily affected by other lighting
conditions, which limits depth camera’s applications to
indoor environment without transparent objects [4].

Ultrasonic sensor detects the distance to objects by
emitting high-frequency sound waves and calculating the
time interval between emission and reception to determine
the distance travelled, has been widely used in areas such
as smart parking systems [5] and unmanned vehicles [6].
It’s cheap and reliable in challenging environment [7] with
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TABLE 1. Typical characteristics comparison of the most representative distance sensors.

transparent objects detection capability. However, single
ultrasonic sensor is unable to distinguish objects due to
its low resolution. Inspired by sensor arrays, integrating
multiple ultrasonic sensors namely ultrasonic phased array
can generate beams with higher resolution and concentrated
energy like LiDARs to acquire distance directly. Despite this,
such ultrasonic point clouds are still too sparse to describe
surroundings, which is attributed to ultrasonic beam’s limited
angular resolution. On the other hand, camera’s dense
pixels provide high resolution measurements but no distance
directly. Hence, fusing camera and ultrasonic phased array
together for 3D imaging can combine strengths of both. In this
paper, we simulate an air-coupled ultrasonic phased array
and propose a method fusing that and camera to reconstruct
indoor rooms, whose simulation procedure is thoroughly
demonstrated in Fig. 1. Besides, the method is applied and
validated in different Gazebo scenarios. Specifically, the
main contributions of this work are listed as follows:

1) We design a simulator for ultrasonic phased array based
on acoustic models and principles, where multiple
signal processing algorithms are applied. The frame
rate of the array is significantly enhanced by adopting
orthogonal frequency-division multiplexing (OFDM).

2) We propose a multi-view 3D reconstruction method for
indoor environment using an ultrasonic phased array
and a camera. Two scanning strategies are developed
for different scenarios.

3) The proposed method is evaluated under different
indoor scenarios in Gazebo simulation environment.
Comparisons with other baseline methods verify the
method’s effectiveness.

II. RELATED WORK
A. IN-AIR ULTRASONIC 3D IMAGING
As demonstrated in Section I, ultrasonic sensor has promising
applications due to its robustness in the presence of optically
reflective or transparent objects, and more importantly, its
low cost. However, a single ultrasonic sensor is utilized
as a 1D range finder for limited directional information it
provides. The idea of combining a number of sensors into
a phased-array arrangement has been applied in medical
sonography [8] and underwater sonar [9]. Unlike tissue or
water, ultrasonic 3D imaging for mobile robots is challenging
mainly for four reasons: sound speed limitation, acoustic

energy attenuation, grating lobe suppression, and array
volume selection.

Based on the fact that sound propagates about 340m/s
in the air (15◦C, 1 atm) which is four times slower than
that in water or tissue, the frame rate is limited apparently
when scanning. Some techniques aim at increasing the frame
rate by reducing the number of scanning points, sacrificing
resolution as a trade-off. e.g., fan-beam scanning [10] and
diverging wave transmission [11]. Others applying advanced
waveform encoding techniques like orthogonal frequency
division multiplexing (OFDM) [12] allow scanning multiple
points simultaneously. Nevertheless, transducers with a wide
bandwidth are always needed under such cases. The next
challenge is that acoustic energy dissipates easily in the air,
limiting the max detection range. Phased array with multiple
transducers is necessary, while a suitable signal frequency
is equally important. Although a higher frequency provides
a higher angular resolution, several in-air applications
like levitation of small objects [13], power transfer [14]
and acoustic vortex [15], prefer lower resonant frequency
(typically lower than 100 kHz) to avoid strong acoustic
energy attenuation.

Grating lobes occur when the transducer’s size is too large
to meet the λ/2 criterion for the maximum inter element
spacing, resulting sound emissions in unintended directions,
which not only brings ambiguities to acoustic imaging, but
also causes harm to nearby users. To suppress grating lobes,
non-uniform sparse array is proposed by breaking the period-
icity of the element arrangement, which has been applied to
beamforming in sound source localization [16], [17]. A more
conservative approach is to meet the λ/2 criterion, which has
been accomplished by developing tiny transducers based on
PMUTS [18], CMUTS [19] or PVDF [20]. However, the
tinier the transducer is, the higher cost it will take. This is
also applicable to those attaching specific physical structures
such as the 3D printed wave guide [21], [22] and the shrinking
tubes by Konetzke et al. [23]. Considering the array volume
selection, usually a large-aperture array with more elements
has greater power and smaller angular resolution. On the
other hand, an array with a large aperture is difficult to be
integrated onto mobile robots for its large volume.

Our objective here is to design a relatively high frame
rate ultrasonic phased array simulator for mobile robots,
which can provide depth information by scanning points
within its field of view (FOV) like LiDARs. Considering
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FIGURE 1. The schematic diagram of our reconstruction method. A1 is a scenario that is flat and lacks textures, a monocular camera identifies
triangle surfels by ray-point-ray features, while a phased array scans these surfels to determine their positions with only a few points
effectively, outputting a surfel map A2. B1 is a scenario with multiple objects and different textures, the phased array scans repeatedly within
its field of view to generate a voxel map B2, whose colors and textures are provided by the camera.

the challenges mentioned above with these previous efforts,
we simulate a non-uniform sparse 5 × 5 phased array with
a 10 cm×10 cm rectangular aperture, whose elements have a
resonant frequency of 40 kHz. As a result, such an air-coupled
ultrasonic phased array is a trade-off among the above
challenges. Compared with other simulators like Field II,
ours is not limited to sound intensity distribution or beam
pattern calculation, but includes both transmitter and receiver
to simulate the complete process of beam scanning and
depth calculation. Apart from being validated in MATLAB,
the simulator has been packaged as a C++ shared library,
which enables its applications in the ROS Gazebo simulation
environment.

B. RECONSTRUCTION METHODS
Reconstruction is an important application for mobile robots
to perceive surrounding environment. As a range finder,
a single ultrasonic sensor is typically capable of converting
surroundings into a 2D occupied grid map for navigation and
localization [24]. With the ultrasonic 3D imaging techniques
mentioned above, an additional information of dimension is
available. However, the number of works on in-air ultrasonic
3D reconstruction is still limited, which is mostly attributed
to ultrasonic speckle’s relatively large size. Compared with
the laser speckle by LiDARs, the ultrasonic speckle is so
large that significant errors occur when the beams hitting
the edge of an object or the incident angle is too large,
limiting its usage to detecting flat surfaces. e.g., the L-shaped
obstacle reconstruction [25] whose scanning points are fitted
by RANSAC method [26] to further reduce errors. Despite
learning methods like supervised variational autoencoder
(VAE) have been applied to reconstruct objects regardless

of their surfaces [27], a training data is necessary here to
approximate their shapes.

Compared with the methods above, a more natural idea
is to identify those flat regions in the environment, whose
information can be easily provided by images as detailed in
Section I. Furuhashi et al. [28] has put this idea into practice.
They use a camera to measure the shape of an object and an
ultrasonic array sensorwith 16 receivers to obtain a 3D image,
whose results are combined into a depth image to reveal
the shape of the object. Despite obtaining depth images, this
method is only applicable to objects that are directly facing
the sensors and relatively flat, like the aluminum plate in the
study. Moreover, the 3D images acquisition cannot be done
in real-time, limiting its application in the field of mobile
robots.

To handle different scenarios, our proposed reconstruction
method consists of two modes. The first mode, surfel
scanning mode, is valid for flat, texture-less and structural
scenarios, adopting the similar idea in [28]. The difference
lies in that those flat regions are identified by a camera based
on ray-point-ray [29] features, after which only a sparse set
of scanning points is required to determine these regions in
space. Compared with the method in [28], ours not only oper-
ates in real-time but also can measure inclined objects such
as tilted walls. More importantly, because our transmitter is
also a phased array rather than a single ultrasonic sensor,
better beam directionality and detection range are available.
The second mode, repeated scanning mode, is applicable to a
wider range of indoor environments. We increase ultrasonic
phased array’s frame rate by employing OFDM technology
to generate an ultrasonic point cloud map, and output a 3D
voxel map finally.Although this mode can also be applicable
to environment where surfel scanning mode operates, surfels
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can reconstruct with fewer points and higher efficiency.
Therefore, they complement rather than replace each other.

III. METHODOLOGY
A. OVERVIEW
Fig. 2 shows the overall pipeline of the framework. Initially,
a monocular camera and an ultrasonic phased array are
calibrated extrinsically to match their FOV. Then for the
surfel scanning mode, the image segmentation module
extracts line features from the grayscale images by camera to
generate two-dimensional triangle surfels as representations
of flat regions. These flat regions are scanned by the
transmitting array using ultrasonic beams, whose echoes
are fed to the echo processing module and processed by
our receiver. In echo processing, a delay and sum beam
former is firstly performed, whose output is fed into a
matched filter for increasing the signal to noise ratio. Next,
the pulse compressed signal is enveloped whose maximum
value is taken as echo’s time-of-arrival, after which the depth
information is available.

In the post processing, once the position of a reflector
is determined, its ultrasonic point cloud is registered into
a global map, followed by 3D triangle surfels described
by 4 points (3 for generation and 1 for verification). Plane
optimizations are performed on these surfels through cosine
similarity judgment and global least square optimization,
during which their positions are adjusted and optimized
to achieve a better accuracy. These 3D surfels are fused
with the image information for vertex calculation, and their
corresponding point clouds are updated accordingly during
this process. The post processing will run continuously until
the array stops scanning and no more point clouds are
generated in the map.

For the repeated scanning mode, the calibration process
is the same as the surfel scanning mode. However, multiple
ultrasonic beams are generated at once, thus the echo is the
summation of them. Then an OFDM module is performed to
decode the echo and obtain depth information for multiple
points, whose point clouds are calculated and projected onto
RGB images to generate a point cloud map like a Lidar
does. The final step involves a filtering module to eliminate
outliers, downsample point clouds, and output a voxel map,
serving as the representation of surrounding environment.

B. ULTRASONIC PHASED ARRAY SIMULATION
Considering the challenges detailed in Section II, we simulate
a 5 × 5 non-uniform sparse array with a 10 cm×10 cm
rectangle aperture (Fig. 3). To suppress grating lobes, we start
with a 5 × 5 uniform array and set the peak side lobe level
(PSLL) within the FOV as our objective function, followed
by adjusting the positions of the array elements with a
genetic algorithm [30] to minimize the objective function.
The 10 cm aperture meets the miniaturization requirements
for integration with mobile robots while maintaining an
angular resolution of about 5◦ based on the 3dB definition

(the right beam pattern in Fig. 3 when the steering angle
is 0◦). The transducer we simulate is TCT40-10T/R with a
40 kHz resonant frequency, whose simulated beam pattern
at 0◦ steering angle is shown on the left of Fig. 3 with an
obvious directionality. Compared with other commonly used
frequency in the air like 75 kHz, this frequency achieves a
balance between energy dissipation and angular resolution.

Fig. 4 shows the schematic of the simulated ultrasonic
system. As depicted in Fig. 4a, the transmitter array is located
on the XY plane, whose normal is oriented along the positive
Z axis. The reflectorPi is located at the point (ρi, θi, ϕi) which
needs to be determined. The distance between the origin of
the array and the reflector is given by ρi, while θi and ϕi are
elevation (0◦-90◦) and azimuth (0◦-360◦) angles respectively.
Our goal here is to obtain the response of the reflectors.
We consider each array element as a vibrating sound source
emitting a sinusoidal pulse consisting of 20 cycles for one
time, which are corresponded with the excitation and decay
processes. Then we can model a reflector’s response:

sR(t) =

25∑
i=1

dTi E0
rTi

sin
[
ω(t − tDi ) − krTi + φi

]
(1)

where sR is the response obtained by superimposing the
vibrations of 25 array elements. Unlike ideal spherical waves,
our transducer has directionality, whose beam pattern has
been shown in Fig. 3, hence dTi describes the distribution
of emitted energy in all directions. E0 represents a single
transducer’s power, and rTi denotes the distance between the
ith element and the reflector [31], which is available in the
Gazebo simulation environment:

rTi =

√
(xTi − x)2 + (yTi − y)2 + z2 (2)

The part within brackets in (1) describes phase changes,
where ωtDi denotes the phase change by phased array’s
time delayed pulses and krTi denotes that by radial distance
rTi . Besides, considering that the excitation time of each
transducer can be different, the ϕi here is to describe the initial
phase of each transducer, which can be obtained by array
calibration.

Once an ultrasonic beam hits the surface of an object, the
corresponding speckle is determined consisting of multiple
reflectors due to array’s 5◦ angular resolution (as shown
in Fig. 4b). Here we divide the speckle into 25 reflectors
(the orange dots) with a spacing of 1.25 degree, whose
responses are superimposed together and then received by
each microphone:

sM (t) =

25∑
i=1

dRi αβR(Z1,Z2)

rRi
sR(t − rRi /c) (3)

where c is the speed of sound (≈340 m/s in the air) and rRi
is the distance between the ith reflector and the microphone.
Similar to the transmitting transducer, the directional charac-
teristics of themicrophone result in different energy reception
intensities from different angles, which is described by dRi .
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FIGURE 2. The pipeline of the framework combines ultrasonic point clouds and monocular camera images to generate a surfel map or a voxel
map for different scanning modes respectively. For the surface scanning mode, images from the camera are segmented into triangular surfels
firstly. Then an ultrasonic phased array scan these surfels to determine their positions, followed by an optimization of surfels belonging to the
same plane. Finally, a surfel map is generated. For the repeated scanning mode, point clouds are generated by an OFDM module and
subsequently projected onto an image to acquire color information. After passing a filter module, a voxel map is generated.

FIGURE 3. The transducer (TCT40-10T/R) and rectangle sparse array we simulate (middle), along with their beam patterns respectively (left and
right).

For coefficients α and β, β represents the ratio of scattered
energy to the total incident energy when the ultrasonic beam
hits the interface. While α represents the proportion of the
echo received by the array in relation to the total scattered
energy, which can be obtained by calculating its solid angle.
The reflectivity R determined by the acoustic impedance
Z1 and Z2 on both sides is given by:

R(Z1,Z2) =

(
Z2 − Z1
Z2 + Z1

)2

(4)

After these reflections are received by microphones in
the 25-elements array individually, we step into the echo
processing module including a beamformer, a matched filter
and an envelope detector as Fig. 2 shows. In the first step,

the beamformer acts as an acoustic lens which is steered into
a particular direction ψ in the frontal hemisphere. Similar
to the transmitting array, here ψ = [θ ϕ]T where θ is the
elevation angle and ϕ is the azimuth angle. In our case a
delay and sum (or time-domain Bartlett) beamformer is used
for its simplicity and robustness, moreover, it is capable of
achieving better peak side lobe level to improve detection
accuracy. We add time-delays tBi (ψ) to each channel to
compensate for the angle-dependent difference caused by the
array’s geometry:

sBψ (t) =

25∑
i=1

sMi
[
t + tBi (ψ)

]
(5)
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FIGURE 4. Schematic of the simulated ultrasonic system (a) Transmitter’s
working principles. The transmitter is driven by a series of time delayed
pulses, and reflectors (orange dots) are calculated when the ultrasonic
beam (θ ,ϕ) hits an object. Here ϕ and θ are the azimuth and elevation
angles respectively. (b) Receiver’s working principles. Each transducer’s
echo is the sum of reflector responses within the diffusing area. Echo
wave’s amplitude decreases due to impedance change (Z1,Z2), solid
angle energy loss (α) and transducer’s gain loss (β). These echoes are
processed in the Echo Processing Module to obtain depth information.

The next process is a matched filter which not only increases
the signal to noise ratio (SNR) but also compresses the signal
into its auto-correlation function. This filtering process [16]
leads to the pulse compressed signal sF (t) and can be
described by the following equation:

sF (t) = F−1
{
SBψ [jω] · S∗

e [jω]
}

(6)

Here F−1 is the inverse Discrete Fourier Transform (DFT)
applied on the discrete fourier transforms of the signal after
beamforming (SBψ [jω]) and its complex conjugate of the
fourier transform of the emitted signal (S∗

e [jω]). Followed by
an envelope fitting method [32] to detect the envelope of the
filtered signal, the time-of-arrival is available, and the object’s
depth d is computed as follows:

d =
l2 − b2

2(l − b cos θ )
(7)

In this equation, l represents the distance calculated from
the time-of-arrival, b refers to the baseline between the
transmitting and receiving arrays, and θ is the elevation angle
of the emitted ultrasonic beam. The depth d here is relative
to the origin of the transmitting array.

C. SCANNING FRAME RATE ENHANCEMENT
Considering indoor scenarios and the speed of sound
limitations, the range of the simulated ultrasonic phased
array is set to 5 meters, which means each transmission
and reception cycle must be completed within approximately
30 ms. If we detect one point at once, the scanning frame
rate is too low to perform repeated scanning like a LiDAR.
Orthogonal frequency division multiplexing (OFDM) allows
to select a group of mutually orthogonal frequencies or
their combinations when transmission, and then decoding
occurs using correlated signals when reception, enabling the
detection of multiple points during a single transmission and
reception cycle. If we have two signals: S1(t) and S2(t), then
their orthogonality can be mathematically described as:∫ T

0
sin(ω1t + φ1)sin(ω2t + φ2)dt (8)

FIGURE 5. Surfel extraction and processing workflow.

Here T is the duration of the signal, ω1 and ω2 are
angular frequencies of S1(t) and S2(t), while φ1 and φ2 are
their corresponding initial phases. After decomposition and
integration in equation (8), we obtain orthogonal conditions
between signal S1(t) and S2(t), where f1 denotes the
frequency of S1(t), and1f = f2− f1 represents the frequency
difference between two signals above:

(2f1 +1f )T = k,1fT = k, k ∈ Z (9)

The conditions in (9) imply that only when both (2f1 +

1f )T and 1fT are integers, the signal S1(t) and S2(t) are
orthogonal. In our case, each sinusoidal pulse consists of
20 cycles, thus T is 0.5 ms. If we select 1f = 4 kHz, then
equation (9) is satisfied. As a rule of thumb, the operational
frequencies should be centered around the transducers’
resonant frequency, thus we select 5 frequencies ranging from
32 kHz to 48 kHz, spaced at intervals of 4 kHz, to create
25 combinations in pairs for our transmit pulses within 30ms.
By this way, the detection time for each point is reduced from
30 ms to 1.7 ms, making it possible for repeated scanning.

D. SURFEL SCANNING RECONSTRUCTION
For the surfel scanning mode, although the depth information
is provided by the ultrasonic phased array as mentioned
above, either the frame rate or the accuracy is limited. Hence
inspired by the existing reconstruction methods, we propose
a method fusing ultrasonic point clouds and monocular
camera images for indoor 3D reconstruction. Corresponded
with the image segmentation and post processing in Fig. 2,
we use a monocular camera to identify those flat regions by
performing an image segmentation, followed by the point
clouds generated by the array scanning, and the points
that belong to the same region are organized in the form
of triangle surfels, serving as the representation of the
environment. Once the 3D surfels are generated, they are
registered into a global map and continuously optimized and
updated, achieving a globally consistent reconstructed map.
The process of fusion can be divided into two steps (Fig. 5):
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1) Surfel Extraction: The camera we simulate is MER2-
202-60GM/C with a frame rate of 25 frames per second
and a resolution of 1600 (H)×1200 (V). The process
starts with extrinsic calibration performed between the array
and camera, where the point clouds are projected onto a
monocular image to match their coordinate systems. Here,
the camera’s intrinsic parameters are specified by the URDF
file, whose coordinate system has its origin positioned 7.5cm
above the array’s origin (as shown in Fig. 1 and Fig. 3).
Hence, the extrinsic parameters are also derived accordingly.
For a newmonocular image, since the array’s FOV is smaller,
only the part within the FOV is kept, after which a Fast Line
Detector (FLD) is performed on the cropped image to extract
line features. During this step, the features belonging to the
same line are merged while those with a length smaller than
50 pixels are discarded. Based on the fact that a plane can be
determined by any two line segments in space with a common
intersection point, triangle surfels (the red dashed triangle)
are extracted by such line segments as representations of the
flat regions in the environment. Generally, each surfel can
be uniquely determined by 3 non-collinear points in space.
Here we select three points that are one-third of the way
along the line connecting the centroid and the endpoints of
the surfel.With the previously calibrated intrinsic parameters,
each point’s position can be measured by an ultrasonic beam,
whose elevation and azimuth angle (θ, ϕ) can be derived as:

θ = arctan(
√
(u− uc)2 + (v− vc)2, f ) (10)

ϕ = arctan(v− vc, u− uc) (11)

where (uc, vc) is the center coordinate of the image, and f is
the focal length of the camera. Note that the range of ϕ is
0◦ to 360◦, here a 2π should be added if ϕ < 0. Our array
will scan the three points counterclockwise, along with the
surfel’s centroid (4 points in total). Only when the distance
between the measured centroid and the plane formed by the
measured three points is below a threshold (0.15 m), will the
corresponding surfel represented by 4 points be registered
into a global map. The registration process is divided into
three steps: Firstly, a ground truth pose of the sensor relative
to the world coordinate system qi can be obtained by a wheel
odometer in the simulation environment. Next, the pose is
decomposed into a rotation matrixRi and a translation vector
ti. Since the coordinate of the point relative to the sensor p̂i
has been measured, the final step is to transform p̂i into the
world coordinate system, given by:

pi = Rip̂i + ti (12)

2) Surfel Processing: The surfel processing is performed
after the surfels are determined and registered. In 3D surfel
generation, surfel Sk is visualized by a triangle that contains
the vertices:

Sk = [p1,p2,p3];pi = [xi, yi, zi]T , i = 1, 2, 3 (13)

the next step is the plane optimization where a cosine
similarity is performed to determine whether two surfels

FIGURE 6. Transmit different frequency combinations sequentially in one
cycle and detect multiple points using OFDM: (a) 25 frequency
combinations ranging from 32 kHz to 48 kHz, with an interval of 4 kHz.
(b) Transmit different combinations in sequence within 30 ms. (c) Detect
25 points simultaneously (red dashed box).

belong to the same plane, followed by a least square method
to optimize the vertices of these surfels, which can be
described by the following minimization problem:

arg min
x

[
(Ax)TAx

]
(14)

A =

p1 − p̄
...

pn − p̄

 , x = [a, b, c]T (15)

Here A contains a set of surfel vertices to be optimized,
organized as an n × 3 matrix. p̄ = [x̄, ȳ, z̄] is the centroid of
all points. x represents the plane to be fitted, whose L2 norm
is 1. After the vertices of the origin surfels are projected onto
the fitted plane, these planes will automatically expand until
they intersect or exceed the field of view of the sensor (the
red dashed circles in Fig. 5). Besides, they are constrained
by the line segments extracted from the mono image (the
yellow dashed circles). After going through these two steps,
the vertices are further optimized to make the corresponding
surfels more precise. Up to now a submap has been generated,
and this part is performed among submaps from different
poses for a global consistency, until no more surfels are
generated.

E. REPEATED SCANNING RECONSTRUCTION
For the repeated scanning mode, our beam scanning direc-
tions are no longer determined by the camera. Instead,
they are determined by the ultrasonic phased array’s FOV
and beam angle. From the simulation results in Section B,
we obtain a 60◦

×40◦ FOV and a 5◦ beam angle, whichmeans
each frame contains 13 × 9 points. Our strategy here is to
transmit the 25 frequency combinations sequentially within
42.5 milliseconds (Fig. 6). By this means, the time cost for
each frame is 208.5 milliseconds, reaching a 5 Hz frame rate.

As Fig. 2 depicts, after passing the OFDM module, the
generated points clouds are projected onto the RGB images
according to the intrinsic and extrinsic parameters obtained
during the calibration. The projection process adds RGB
color information to each point cloud, followed by transform-
ing the point’s coordinate into the world coordinate system
in equation (12). The next step is map generation, where a
sparse point cloud map is generated first. Then to achieve a
better reconstruction outcome, the final step involves filtering
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FIGURE 7. Reconstruction comparisons with a Velodyne-16 and a Kinect 2.0 in different Gazebo scenarios: a single room with glass windows,
an indoor structure with multiple rooms, a small workshop and a large office.

and voxelizing the point cloud map, utilizing voxels as a
representation of the surrounding environment. A voxel’s
color is the average of the points’ colors contained within the
voxel.

IV. EXPERIMENTS AND RESULTS
In this section, we select four scenarios to evaluate the effec-
tiveness of our method in Gazebo simulation environment,
two of which are ideal indoor structures lacking textures
and objects, aiming at validating the surfel scanning mode
(Section III-D). Another two scenarios are a small workshop
and a large office, which are selected to validate the repeated
scanning mode (Section III-E). Additionally, we compare our
proposed method with a Velodyne-16 LiDAR and a Kinect
2.0 in each experiment. For ease of control, each sensor is
mounted on a Scout Mini with an offset of 0.1 meters and
0.5 meters in the x-direction and z-direction from the center
of the chassis respectively. All experiments are carried out
on the same PC platform with an Intel Core i7-11700K @
3.6GHz with 16GB memory.

A. SURFEL SCANNING RESULTS
As depicted in Fig. 7, the first scene is a single room which
covers an area of 45 square meters with two glass windows,
while the second scene is a structure consisting of multiple
rooms and interior walls (orange), both scenes are lack of
textures with light effect. A ground truth point cloud map
is generated by sampling on the scene models with 1 cm
resolution for accuracy evaluation. To match this resolution,

once surfels are generated and fused into one global map,
they are sampled with the same resolution. To maintain
the consistency of the reconstruction results, the poses of
the sensors are obtained uniformly by the robot’s wheel
odometer. We use CloudCompare to compute the point-
to-point distance error between the ground truth and the
reconstructed point cloud.

Since the reconstruction results are characterized by
point clouds, we consider their accuracy, consistency and
completeness as metrics for evaluation. For our results
(Fig. 7), accuracy is represented by color variations, con-
sistency is depicted by the continuity of color changes,
while completeness is indicated by those missing parts
when comparing the reconstruction results with ground truth.
In terms of accuracy, our surfel scanning method ensures
a level of precision comparable to that of LiDARs and
depth cameras, namely, 90% of the points’ distance error is
less than 2 cm. Regarding the consistency of point clouds,
the results from the depth camera exhibit multiple abrupt
color variations, while ours is on par with LiDARs and
surpassed that of depth cameras. This is because simply
transforming each frame into the world coordinate system
using odometry leads to abrupt accuracy variations. In spite
of this, our global optimization of surfels ensures effective
global consistency. As for the completeness of point clouds,
our method outperforms both LiDARs and depth cameras.
Although it is challenging to reconstruct extensive ground
areas, our camera’s FOV ensures completeness of walls and
corners, while ultrasonic beams are able to detect the glass
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FIGURE 8. Challenging and failure cases: (a) A challenging case with
shadow lines due to light effect. (b) A failure case with small objects and
high movement speed.

windows directly. Additionally, owing the representation
method of surfels, only minimal points are needed to generate
the densest point clouds in our method.

B. REPEATED SCANNING RESULTS
In order to maintain the consistency of results, we employ
an experimental setup similar to Section IV. A both in the
workshop and office scenarios. The only difference is the
utilization of repeated scanning for our sensor, not surfel
scanning. As shown in Fig. 7, in terms of accuracy, our
repeated scanning method ensures about 70% of the points’
distance error within 2 cm both in the small workshop and
large office, while that of the remaining points range from
2 cm to 15 cm. Regarding completeness and consistency,
unlike LiDARs and depth cameras, although it is challenging
for our ultrasonic beams to reconstruct small objects such
as tools in the workshop and cups in the office with sparse
point clouds, they still effectively capture larger objects like
tables, chairs and sofas, as well as the small glass windows
in the large office. That is to say, a colorful point cloud
map similar to that of LiDARs and depth cameras, which
is generated by a low-cost ultrasonic phased array and a
monocular camera, is available in this scanning mode, along
with the good performance in detecting transparent objects.

C. CHALLENGING AND FAILURE CASES
Besides the reconstruction results presented above, to further
demonstrate our method’s characteristics, we show one
challenging case and two failure cases of our method (Fig. 8).
As for the surfel scanning method, Fig. 8a is a challenging
case with shadow lines caused by light effect, which always
leads to errors in 2D surfel extraction. Despite this, our
method will recognize and remove these excessive line
features to make surfel extraction correct, obtaining the
well-reconstructed corner (two vertical walls and the floor),
showing our strategy’s good performance.

As for the repeated scanning method, it is developed to
address the limitation that surfel scanning is not suitable

for more complex indoor environment, and Fig. 8b shows
two cases when it fails. The first case depicts its inability
to reconstruct very small objects and detailed surfaces due
to the relatively large angular resolution of our ultrasonic
beams, compared with LiDARs and depth cameras. Hence
our method is more suitable for detecting indoor structures
and larger objects, as well as close-range supplementary
navigation for mobile robots. The second case depicts its
inapplicability in high-speed scenarios, which is determined
by the speed of sound and sensor frame rate. As can be seen
in Fig. 8b, under the same pose transformation, our method
yields thicker wall surfaces, compared with LiDARs and
depth cameras. These errors stem from factors like OFDM
calculation and odometry drift, but they are influenced by our
robot’s movement speed mostly.

V. CONCLUSION
In this paper we propose a method of fusing ultrasonic point
clouds and camera images to generate a map for mobile
robots in simulation environment. Two scanning strategies
are developed for different scenarios. The surfel scanning
mode is suitable for flat and texture-less scenarios. With
the feature and depth information provided by a monocular
camera and a simulated ultrasonic phased array respectively,
3D triangle surfels are generated to represent surrounding
environment, which are transformed into a surfel map by
post processing algorithms. For more complex scenarios,
our repeated scanning mode selects multiple frequency
combinations to simultaneously detect multiple points using
OFDM, achieving a scanning frame rate of 5 Hz. The
experimental results demonstrate promising reconstruction
capabilities for these scenarios. Compared with LiDARs
and depth cameras, ours utilizes camera and low-cost
ultrasonic sensor to realize multi-view 3D reconstruction
with good accuracy, consistency and completeness. Besides,
challenging and failure cases of two scanning strategies are
discussed. We hope this work would be helpful to mobile
robots research or areas.
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