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ABSTRACT Accurate current-voltage (I-V) modeling based on the Berkeley short-channel insulated-gate
field-effect transistor model (BSIM) is pivotal for integrated circuit simulation. However, the current BSIM
model does not support a buried-channel-array transistor (BCAT), which is the structure of the state-of-the-art
commercial dynamic random access memory (DRAM) cell transistor. In this work, we propose an intelligent
I -V modeling technique that combines genetic algorithm (GA) and deep learning (DL). This hybrid
technique facilitates both optimization of BSIM parameter and accurate I-V modeling, even for devices not
originally supported by BSIM. Additionally, we extended application of the DL to model one of the principal
degradation mechanisms of transistor, the hot-carrier degradation (HCD). The successful modeling results of
I-V characteristic and device degradation demonstrated that devices not supported by BSIM can be accurately
modeled for integrated circuit simulations.

INDEX TERMS BSIM-CMG, deep learning, genetic algorithm, I-V modeling, compact modeling, BCAT,
DRAM cell transistor, HCD.

I. INTRODUCTION
Accurate and fast current-voltage (I -V ) modeling is essential
for integrated circuit simulation. The Berkely short-channel
insulated-gate field-effect transistor model (BSIM) has been
widely used in the semiconductor industry over the past few
decades. Accurate I -V modeling necessitates the extraction
and optimization of over 100 distinct parameters.

The associate editor coordinating the review of this manuscript and
approving it for publication was S. Khandelwal.

To address these challenges, researchers have delved
into various optimization-based techniques for parameter
extraction, including the application of genetic algorithms
(GA) [1], [2], [3] and the implementation of deep learning
methodologies (DL) [4], [5], [6], [7], [8], [9].

The GA, grounded in the principles of natural selec-
tion and genetics, serves as a sophisticated approach to
identifying an optimal set of parameters. The DL techniques,
employing deep neural networks, can determine the values
of each parameter through the training I -V data. However,
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a fundamental constraint of these methods is that they can
only be applied to semiconductor devices that are supported
by the BSIM model.

A buried-channel-array transistor (BCAT) having a
saddle-fin and buried-gate structure has been employed in
state-of-the-art dynamic random access memory (DRAM)
technology [10], [11], [12]. Nonetheless, the lack of support
from BSIM makes it challenging to accurately model the I-V
characteristics of these advanced DRAM cell transistors.

In addition, the I-V characteristics of physical transistors
varies under environmental factors such as operating temper-
ature, device degradation, and so on. Especially, modeling of
device degradation mechanism is becoming more important
and critical in I-V characteristic as devices scaling.
There are known mechanisms that affects the devices

I-V characteristics such as hot-carrier degradation (HCD),
negative bias thermal instability (NBTI), positive bias ther-
mal instability (PBTI), time dependent dielectric breakdown
(TDDB) [13], [14], [15], [16], [17]. However, conventional
BSIM models encounter challenges in precisely forecasting
these phenomena.

To enhance model precision, the utilization of look-up
tables can be considered [18]. Nevertheless, it is noteworthy
that look-up tables come with the drawback of necessitating
a substantial amount of model parameters and I-V data sam-
pling. Furthermore, interpolation based on look-up tables is
vulnerable to data noise.

To overcome these challenges, we have proposed an I -V
modeling approach that enables BSIM-based circuit simula-
tion even for semiconductor devices not supported by BSIM.
Our proposed modeling technique, carried out through a
two-step integration of the GA and the DL, proved to be a suc-
cessful model for DRAM cell transistor. Also, we extended
ourmodeling technique to theHCD that is one of the principal
degradation mechanisms.

TABLE 1. BSIM-CMG parameters values optimized through the GA.

II. I-V MODELING USING GA AND DL
Fig. 1 illustrates the model implementation of BCAT for
circuit simulation. The drain current of BCAT can bemodeled
based on a conventional transistor and an add-on current
source as follows:

ID,model(GA+DL) = ID,BSIM(GA) × ε(DL). (1)

Here, ID,BSIM(GA) refers to the transistor current mod-
eled by BSIM, and its BSIM parameters are determined
using the GA. ε(DL) is a correction function that depends

FIGURE 1. I − V model implementation of BCAT for circuit simulation.

FIGURE 2. (a) A flow chart of GA. (b) Crossover and mutation during the
GA optimization of BSIM parameter.

on the gate-source voltage (VGS) and drain-source voltage
(VDS) [19]. This bias-dependent correction function ε(DL) is
determined using the DL. In summary, the proposed method
involves two stages.

In the first stage, BSIM parameter optimization is per-
formed by the GA. Here, we used BSIM-CMG model with a
FinFET that closely resembles the BCAT structure [20]. In the
next stage, a current source is introduced to reduce the error
arising from disparities between the BSIM-CMG model and
the actual BCAT characteristics. This current source function
is determined through regression using the DL.

Table. 1 represents some of the key BSIM-CMG param-
eters determined through the GA. The GA is a popular
optimization technique inspired by the process of natural
selection. It has been widely utilized in various domains to
solve optimization problems. As illustrated in Fig. 2(a), the
algorithm operates through several stages, as follows:

1. Initialization: The algorithm commences by initializing
a population of possible solutions (BSIM-CMG parameter
sets). We generated a total of 1000 individuals as the initial
population.

2. Fitness evaluation: In the fitness evaluation step, the
fitness scores of each individual in the population is calcu-
lated. The fitness score is an indicator of how closely the
modeling results resemble the target values. Fitness score
of each individual in the population is evaluated by fitness
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function:

fitness score =

∑
VGS,VDS

∣∣log10 ID,BSIM(GA)− log10 ID,measured
∣∣∣∣log10 ID,measured

∣∣
(2)

where, ID,BSIM(GA) is a drain current from BSIM-CMG
model, and ID,measured is the measured drain current. The fit-
ness score is calculated across theVGS orVDS range according
to the I-V graphs.
3. Selection: Based on the fitness score, individuals are

selected for reproduction. Here, the tournament selection
function was used (the selection tournament size= 2). Firstly,
we sort all of the individuals according to the fitness scores.
Then, the selection process was carried out on the top 50 %
of individuals.

4. Crossover: Selected individuals undergo crossover to
create offspring. The BSIM-CMG parameter values of the
selected two individuals are transformed into binary informa-
tion that can be called genes. Then, two genetic information
segments are crossed over around the midpoint of the
genetic information, resulting in the creation of two offspring
individuals.

This process involves exchanging portions of two individu-
als as shown in Fig. 2(b). Therefore, two offspring individuals
are generated from the two parent individuals, and selection
and crossover are repeated until the specified population size
is reached.

5. Mutation: To maintain genetic diversity within the pop-
ulation, right after the crossover, some of the offspring may
undergo mutation. This operation introduces small, random
changes to the individual’s genetic material as shown in
Fig. 2(b). The mutation rate was set to be 0.1 %.

6. Replacement: The individuals are replaced to the off-
spring from previous population. Additionally, we preserved
4 % best individuals from the previous population for
enhancing the performance of the GA.

7. Termination check: The algorithm checks whether a
certain termination criterion has been met. If a certain ter-
mination criterion, such as a generation iteration or fitness
scores, is met, the GA will be terminated. If the termination
criterion is not met, the fitness scores of the offspring will be
calculated, and the above process will be repeated.

Fig. 3(a) illustrates the result of parameter optimization
for BSIM-CMG based on the GA. The minimum value
of fitness score decreases as generation progress. We used
the BSIM-CMG parameters of the individual with the low-
est fitness score of the GA as the optimal BSIM-CMG
parameter. Fig. 3(b) shows the I-V characteristics of mea-
surement result and obtained by the BSIM-CMG model with
default parameter and optimal parameter. The GA based
BSIM-CMG model show the feasibility of modelling BCAT
current characteristics.

However, there is mismatch between measurement and the
GA based BSIM-CMGmodel. Because there is limitation on

FIGURE 3. (a) Fitness score versus the number of evolution generations.
(b) The modeling result of the transfer characteristics through GA as the
first step.

FIGURE 4. Deep neural network used in this work for DL.

the GA based BSIM-CMG model, the DL was implemented
to correct the modeling mismatch.

Fig. 4 shows the fully connected deep neural network
(DNN) architecture used in this work. The proposed DNN
has two input neurons (V ′

GS, V
′

DS) and one output neuron
(log10ε(DL)). Input neurons are transformed by preprocess-
ing the input parameters with min-max scaling. The neural
network comprises three hidden layers, utilizing the leaky
ReLU (f1) and hyperbolic tangent (f2) functions as activation
functions. The ε(DL) values span a very wide range from 0.1 to
10, so in order to bring themwithin the range representable by
the artificial neural network’s output, we have set log10ε(DL),
as the target output.

The cost function J is defined as the average root mean
square relative errors in drain current, transconductance and
output conductance (E(ID), E(gm) and E(gds)):

J =

√
25 × E(ID)2 + E(gm)2 + E(gds)2 (3)

where E(ID), E(gm) and E(gds) are given by

E (ID) =
1
k

k∑
i=1

(log10 I (i)D,model(GA+DL)

I (i)D,measured

)2

+ A

×

(
I (i)D,model(GA+DL) − I (i)D,measured

)2]
, (4)

E(gm) =
1
k

k∑
i=1

∣∣∣B×

(
g(i)
m,model(GA+DL) − g(i)

m,measured

)∣∣∣ ,
(5)

E(gds) =
1
k

k∑
i=1

∣∣∣B×

(
g(i)
ds,model(GA+DL) − g(i)

ds,measured

)∣∣∣
(6)
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TABLE 2. Comparison of measurement and modeling results for HCD.

FIGURE 5. The modeling results of (a) the transfer characteristics and
(b) the output characteristics.

where k is the training set sample size and A and B are scale
factors for the error calculation.

The neural network is trained with a dataset of (VGS, VDS
and ID,measured) with VGS and VDS range from 0 V to 2.0 V
with 50 mV increment. Then, we evaluate the accuracy of
the trained neural network using a test dataset that has the
same voltage ranges but smaller voltage increments of 5 mV.
Pytorch with AdaDelta [21] optimization was used for train-
ing. AdaDelta optimization is a stochastic gradient descent
method that uses adaptive learning rates per dimension to
overcome the challenges of continuously decaying learn-
ing rates during training and the requirement for manually
selecting a global learning rate.

Fig. 5 illustrates the I-V modeling results of BCAT using
the proposed model. The I-V characteristics obtained by the
proposed model exhibit a closer match to the measurement
results, especially include the off-current region in Fig. 5(a),
with lower fitness scores compared to the GA results.

Fig. 6 shows the fitness scores of each modeling results.
As the steps progressed, the fitness scores significantly
decreased for both the transfer characteristics curve and
the output characteristics curve at all VGS bias. At first,
the fitness score of the ID,BSIM(default) model in the transfer
characteristics curve at VDS = 0.05 V was 8.026 and the
fitness score of the output characteristics curve atVGS = 3.0V

FIGURE 6. The fitness scores at each (a) the transfer characteristics curve
and (b) the output characteristics curve.

FIGURE 7. (a) The modeling results of HCD degradation. (b) A magnified
graph of the voltage range 1.25∼2.00 V in Fig. (a).

is 4.248. After using the GA, The fitness scores of the
ID,BSIM(GA) model in the transfer characteristics curve and
the output characteristics curve were reduced to 1.439 and
0.429 respectively. Finally, when incorporating both the GA
and the DL for further refinement, the fitness scores for
the ID,model(GA+DL) model were observed to be 0.054 in
the transfer characteristics curve and 0.006 in the output
characteristics curve.

III. MODELING EXTENSION TO THE HOT CARRIER
DEGRADATION BY ADDING INPUT VARIABLES
In general, the I-V characteristics of real transistors exhibit
variations in response to different environmental factors such
as operating temperature, device degradation, and so on.
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By including various parameters in addition to VGS and VDS
as input parameters for the DL model, it becomes possible to
perform I-V modeling under a wide range of environmental
scenarios. By incorporating the HCD stress duration (THCD)
as an input parameter, we successfully modeled the I-V char-
acteristics of HCD in BCAT under various stress durations.
The stress voltage is VGS = VDS = 2.5 V, with the stress
duration ranging from 1 to 2000 sec. We used the same neural
network as illustrated in Fig. 4.

Fig. 7 depicts the modeling results of the BCAT affected by
HCD. Table 2 compares the measured values and modeling
results for key electrical characteristics. VTH was calculated
by current constant method at ID = 0.1 µA. ION is defined
as ID at VGS = 2.0 V and VDS = 0.05 V. Subthreshold swing
(SS) was extracted within the range of ID varying from 1 nA
to 100 nA.

In summary, our proposed I -V modeling technique can
be extended to various situations. It’s worth noting that if
the number of input parameters increases to represent mul-
tiple situations simultaneously, a modification to a larger and
deeper neural network may be necessary. Furthermore, while
this study only conducted I-V modeling for a single device,
it is necessary to conduct additional research on probabilis-
tically predicting the characteristics of devices based on the
mass data of many devices.

IV. CONCLUSION
In this study, we proposed a transistor I -V modeling approach
that sequentially utilizes the GA and the DL. The proposed
method has the advantage of enabling circuit simulation
based on accurate I -V modeling for next-generation devices
that are not supported by BSIM. By using state-of-the-
art commercial DRAM transistors (BCAT), we successfully
verified the proposed modeling. Furthermore, this model-
ing technique can be expanded to various device modeling
applications, including device degradation such as HCD.
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