
Received 13 October 2023, accepted 11 December 2023, date of publication 22 January 2024, date of current version 6 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3357351

Sorotoki: A Matlab Toolkit for Design, Modeling,
and Control of Soft Robots
BRANDON J. CAASENBROOD , ALEXANDER Y. POGROMSKY,
AND HENK NIJMEIJER , (Life Fellow, IEEE)
Department of Mechanical Engineering, Eindhoven University of Technology, Noord Brabant, 5600MB Eindhoven, The Netherlands

Corresponding author: Brandon J. Caasenbrood (b.j.caasenbrood@gmail.com)

This work is partly supported by Netherlands Organization for Scientific Research (NWO), and is part of the Wearable Robotics
perspective program under the name Soft Structures and Actuators under Grant P15-06 (P2).

ABSTRACT In this paper, we present Sorotoki, an open-source toolkit in MATLAB that offers a
comprehensive suite of tools for the design, modeling, and control of soft robots. The complexity involved in
researching and building soft robots often stems from the interconnectedness of design and control aspects,
which are rarely addressed together as a unified problem. To address such complex interdependencies
in soft robotics, the Sorotoki toolkit provides a comprehensive and modular programming environment
composed of seven Object-Oriented classes. These classes are designed to work together to solve a
wide range of soft robotic problems, offering versatility and flexibility for its users. We provide here
a comprehensive overview of the Sorotoki software architecture to highlight its usage and applications.
The details and interconnections of each module are thoroughly described, collectively explaining how to
gradually introduce modeling complexity for various soft robotic scenarios. The effectiveness of Sorotoki
is also demonstrated through a range of case studies, including novel problem scenarios and established
works widely recognized in the soft robotics community. These case studies cover a broad range of research
problems, including: inverse design of soft actuators, passive and active soft locomotion, object manipulation
with soft grippers, meta-materials, model reduction, model-based control of soft robots, and online shape
estimation. Additionally, the toolkit provides access to four open-hardware soft robotic systems that can
be fabricated using commercially available 3D printers. For more information about Sorotoki, readers are
encouraged to visit: https://bjcaasenbrood.github.io/SorotokiCode/

INDEX TERMS Soft robotics, software, design, modeling, control, matlab.

I. INTRODUCTION
Since the early 1980s, roboticists have been developing
fluid-driven robots inspired by biological systems. Examples
include the pneumatic three-link soft robot manipulator
developed by Wilson et al. [1], [2], [3] and the fluidic
four-fingered soft gripper presented by Suzumori et al. [4],
[5], which both showing high dexterity for advanced object
manipulation without the need for advanced (contact-aware)
controllers. Although the design and control of these robots
were simple, their level of dexterity and adaptability was
previously unseen in rigid robotics and strongly resembled

The associate editor coordinating the review of this manuscript and

approving it for publication was Hailong Sun .

biological systems. These benefits were achieved through
the use of ‘‘soft materials’’ paired with fluidic actuation,
where ‘‘soft’’ refers to the collective mechanical prop-
erties of highly compliant materials such as flexibility,
compressibility, and mechanical robustness. Just as nature
exhibits diverse evolutionary solutions to environmental
stimuli during locomotion and manipulation, soft materials
possess a plethora of beneficial mechanical properties that
can be applied to robotics. Today, the philosophy of building
robots from soft materials has significantly matured and has
become a well-recognized field known as ‘‘soft robotics’’.
Although definitions may vary depending on one’s scientific
background, a formal definition found in the Encyclopedia of
Robotics [6] states that ‘‘soft robots are robotic systems with

17604

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-6299-1730
https://orcid.org/0000-0001-5883-6191
https://orcid.org/0000-0001-7654-5574

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

purposefully designed compliant elements embedded into
their mechanical structure.’’ While mechanical compliance
may compromise speed and precision (see Section I-A),
it offers viable solutions to issues commonly encountered
with traditional robots [7].
A major benefit over its rigid counterpart is that soft robots

are less likely to cause injury during collisions, making them
a more suitable alternative for tasks involving close human-
robot interaction. Second, soft robots possess the ability to
adapt to unstructured environments and manipulate a diverse
array of objects through their ability to change shape and
conform adaptively to their surroundings [8], [9]. These
features are somewhat analogous to those found in nature,
such as the trunk of an elephant grasping tree branches or
the tentacles of an octopus squeezing through narrow spaces.
Soft materials can be tuned to allow for delicate grasping [10],
[11] or high-power densities [12]. Additionally, their high
adaptability paired with tunable low compliance make
them extremely robust towards abrupt impacts or high
compression forces [13], making them suitable for various
tasks in harsh environments without breaking [14], [15],
[16]. Moreover, soft robots are typically constructed from
low-cost materials and fabricated through straightforward
manufacturing processes, such as rubber casting, making
themmore cost-effective compared to traditional rigid robots.
With recent advances in soft material AdditiveManufacturing
(AM), soft robots can even be fully 3D-printed [17], [18].
This not only reduces production time and cost, but also
allows for the embedding of printed on-board logic [19],
[20]. Additionally, soft robots tend to be lightweight, making
them easier to handle and transport, making them ideal for
wearable robotics.

A. PROBLEM FORMULATION
Although significant progress has been made since their
inception, generalized solutions for the design and control
of soft robots are still lacking in comparison to those
available for rigid robots. This can be partially attributed
to the inherently nonlinear and high-dimensional nature
of the mathematical descriptions for deformable robotic
bodies composed of compliant materials. This presents
major challenges in finding suitable models that enable
fast simulation, which ultimately hinders efficient struc-
tural design and model-based controller design. Despite
the numerous challenges in soft robotics, two major
research trends can be recognized within the soft robotics
community:

A: Design of soft actuators and sensors. A majority
of the soft robots are actuated in two ways [7]: (i) local
actuation through variable length tendons (e.g., cables [21] or
shape-memory alloy wires [22]) or (ii) distributed actuation
through responsive soft materials [23] or surface loads using
fluidics [14], [24], [25], commonly implemented as fluidic
networks embedded within the soft body. The latter method
is often referred to as Fluidic Elastomer Actuators (FEAs) or

Soft Fluidic Actuators (SFA). FEAs can be designed through
either geometric asymmetries in their structural design or
by incorporating a composition of different materials, such
as fibers or meshes, that induce the desired deformation
when pressurized. While FEA designs date back many
decades, there remain significant gaps in understanding
and applying established engineering principles to their
design. FEAs frequently experience large deformation when
actuated, leading to slow actuation due to material relaxation
or, in more severe cases, fatigue or tearing caused by
ballooning [9] – an almost inherent effect in elastomers.
Furthermore, low-compliance soft elastomer actuators often
undergo parasitic deformation when exposed to external
forces, like gravitational load. To efficiently solve the design
cycle in soft actuators, it is essential to have a comprehensive
understanding of the nonlinear deformation characteristics of
soft materials under static and dynamic conditions.

In parallel, proprioceptive soft sensing technology is
still in early stages. The high compliance of soft robots
often makes it difficult to apply common embedded sen-
sors, such as encoders, capacitive sensors, strain gauges,
and inertial sensors. These sensors are well-suited for
rigid robots with articulated joints, as they are effective
in measuring local joint displacement. However, in soft
robots, displacement is often distributed, rendering these
sensors less suitable. Furthermore, these sensors must be
designed to minimize their impact on mechanical impedance,
in order to minimize changes to the structural dynamics
and operational workspace. A common approach is to
incorporate microfluidic channels filled with a conductive
liquids [26], [27], [28], such as Eutectic Gallium-Indium
(EGaIn), into the soft body, that are placed antagonistic to
the soft actuator. Upon deformation, the resistance changes,
allowing for the correlation of specific deformation profiles
with the soft robot. Other solutions incorporate integrated
Hall sensors to measure changes in the magnetic field of
ferromagnets distributed throughout the body [29], [30],
or utilize fiber-optic grating bending sensors [31]. Generally,
the correlation between sensor output and deformation is
complex, often necessitating the collection of extensive a-
priori measurement data, which may be synthetic, to be
mapped onto motion primitives.

The geometry of soft actuators and sensors plays a crucial
role in determining their functionality and performance.
Currently, most soft robotic components are designed using
Computer-Aided Design (CAD) software similar to those
used for rigid robots. However, as the geometric complexity
of soft robots increases, particularly with the increasing
trend towards bio-inspired and 3D-printed designs, there
is a growing need for software that can handle free-form
designs and have predictive capabilities for soft material
deformation.

B: Modeling and control of soft robots. With the aim
of achieving comparable performance to rigid robots and
eventually biological creatures, there is a strong demand
for advanced closed-loop control in soft robotic systems.

VOLUME 12, 2024 17605

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

However, the challenges in soft actuation and sensing extend
directly to several modeling and control paradigms for soft
robots [32], [33]: (i) their high dexterity and adaptability
are challenging to incorporate into a modeling framework,
and (ii) due to their continuum elastic bodies composed
of a finite number of actuators and sensors, soft robots
are inherently under-actuated and under-sensed, a problem
common to infinite-dimensional systems (e.g, continuum
systems). In regard to the closed-loop control of soft robots,
the field has introduced two distinct branches that can
competently address the relevant issues.

First, model-based control uses first-principle mathe-
matical models of the system being controlled to design
and implement controllers. The derived models often
have conventional structures, e.g., Lagrangian or Port-
Hamiltonian, that is (closely) analogous to classic rigid
robotics [32], [33], [34], [35]. As such, they extend (with
minor modification) to existing control strategies includ-
ing model-based feedback control [25], [36], impedance
control [37], adaptive control [38], [39], iterative learning
control [40], and energy-shaping control [41], [42], [43],
[44]. Also, model-based approaches provide physical inter-
pretations of the control gains, making controllers more
transparent in terms of stability guarantees. Nonetheless,
for some scenarios, first-principle modeling approaches (i.e.,
Euler-Lagrange methods) will not suffice. For example,
during environment or self-contact, it can be challenging to
select a finite-dimensional state representation of the soft
robotic model that balances precision and computational
efficiency. Also, a-priori unknown system uncertainties, such
as unreliability of sensors and actuators, model mismatches,
and time-varying parameters, can impede the approach
altogether.

Second, data-driven modeling focuses on utilizing existing
data to establish the connection between inputs and outputs,
instead of depending on prior knowledge or assumptions
to formulate a theoretical model. The training data can
be derived from measurements or high-fidelity surrogate
models, which empowers the model to adapt as new
information becomes available, similar to adaptive control.
Despite often being black-box or grey-box approximators,
these methods can be fine-tuned for low dimensionality,
rendering them highly efficient for simulation purposes.
As an alternative, synthetic data generated from digital
environments can be used to train learning controllers,
e.g., in Reinforcement Learning (RL) [45], [46]. Model-
Predictive Control (MPC) can also be applied within a
data-driven framework [47], [48]. However, in both cases,
it is crucial that the training data is comprehensive enough to
encompass the entire dynamic workspace. This requirement
prevents the generalizability of the method to be applicable
to unseen scenarios and necessitates retraining for specific
control objectives. Additionally, control policies learned
through virtual environments may not be effective in the
physical system due to differences with reality, known as the
Simulation-to-Reality (Sim2Real) barrier [49].

B. CONTRIBUTION OF SOROTOKI SOFTWARE
To address some of these challenges, we introduce
Sorotoki (short for Soft Robotics Toolkit), an open
MATLAB® toolkit for soft robotics that offers a range of
tools for design, modeling, and control. Sorotoki aims
to reduce barriers to entry in the field of soft robotics by
providing a comprehensive software package that integrates
various layers of modeling and control approaches, including
continuum mechanics, dynamic systems and control theory,
topology optimization, computer graphics, real-time control,
and vision-based sensing. These diverse capabilities provide
a highly flexible programming environment that can facilitate
the development of innovative soft robotics research. The
main feature of the Sorotoki are listed below:

1) Design and fabrication – Implicit modeling using
Signed Distance Functions (SDFs), mesh generation,
computational design, STL generation for 3D printing;

2) Modeling and control – Finite element models,
efficient reduced-order soft beam models (Lagrangian
or port-Hamiltonian), programmable interconnections
of a network of dynamic systems, e.g., soft robots,
pressure vessels, and inertial rigid bodies;

3) Actuation and sensing – Real-time, high-precision,
fluidic control platform using Raspberry Pi, vision-
based sensing using RGB-depth camera;

4) Visualization – Fast and responsive 3D graphics ren-
dering, mesh deformation modifiers, FK/IK-rigging.

5) Accessibility – A minimal programming syntax, char-
acterized by the ability to express complex problems
with a minimal number of lines of code.

6) Open hardware – Four 3D-printable soft robots (e.g.,
soft hand, soft manipulator).

We briefly detail the organization of the paper. Section II
reviews existing open-source soft robot software packages.
Section III then assists the reader in getting started with the
toolkit and introduces the open-source soft robotic systems.
In Section V, we detail the software architecture, the theory
underlying the Sorotoki functions, and how the theory can
be applied through coding examples in Sorotoki. Once
the reader is familiar with the basic software architecture,
Section VI presents advanced study cases based on seminal
works in soft robotics research. The paper concludes in
Section VII with a summary and outlook for future work.

II. RELATED WORKS
Over the past two decades, significant advancements have
been made in the field of soft robotics. To support the
growing community, researchers in the field have made
efforts to provide open-source software tools alongside their
scientific contributions. This section provides a review of
related work on open-source software packages for soft
robotics, comparing these software packages and discussing
how Sorotoki addresses any gaps in functionality.

One widely used tool is the SOFA (Stand Alone
Open Framework for Animation) software [50], which is
an open-source framework for real-time physically-based

17606 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

simulations of deformable mechanical systems. Relevant
to soft robotics, SOFA is commonly used to simulate the
behavior of soft robots and to design and test control
algorithms on real platforms [50], [51]. SOFA employs the
Finite Element Method (FEM) to describe the continuum
deformations of inertial elastic bodies, a numerical technique
that solves partial differential equations (PDEs) that describe
physical systems by dividing the domain of the system
into small elements and approximating the PDEs with a set
of algebraic equations [52], [53]. FEM models generally
provide high-accuracy volumetric deformation simulations
of soft materials, but their high state dimension, which
can often be in the thousands or millions of degrees of
freedom, can render them computationally expensive for state
feedback. To enhance efficiency, Goury and Duriez [54] have
explored model reduction using snapshot Proper Orthogonal
Decomposition (POD).

Snapshot POD [55], [56] is a method for significantly
reducing the dimensionality of a model by collecting snap-
shots of its state and utilizing Singular Value Decomposition
(SVD) to identify the principal components. The projection
is achieved by taking a linear combination of the principal
components, weighted by their corresponding coefficients
(also known as ‘‘modes’’). The resulting projection is then
a reduced-order model of the original system, which can be
used for faster simulation. In addition to improving speed, this
approach also provides accurate, robust, and efficient models
suitable for closed-loop controller design [57], [58], [59],
[60]. The numerical FEM models in SOFA incorporate both
the structural geometry and material properties, facilitating
easy transfer of control policies to a physical system. This has
enabled successful control synthesis using SOFA in various
experimental settings [58], [61]. SOFA also includes tools for
real-time visualization and data analysis, making it a valuable
platform for testing and debugging control algorithms.
Recently, Schegg et al. [45] introduced an interface between
SOFA and OpenAI called SofaGym. This wrapper enables
the training of reinforcement learning (RL) policies using
real-time simulation models, and it incorporates model
reduction to further improve the efficiency of RL that
otherwise suffer from computationally-intensive simulations.

Another software package that utilizes the nonlinear finite
element approach similar to SOFA is the Gibbon toolbox,
developed by Moerman [62]. Gibbon is a MATLAB-
based pre-processor and post-processor for FEBio [63].
The toolkit has recently been used to solve the nonlinear
deformation of bending soft pneumatic actuators using finite
shell elements [64], generate designs using a multi-objective
heuristic [65], and analyze soft bending actuators composed
of an adaptive fiber-elastomer composite [66]. It also
features various tools for image segmentation, meshing, and
visualization, with a focus on biomedical engineering.

Despite the availability of open-source FEM packages for
modeling and controlling soft robots, challenges still exist in
using FEM for design-based optimization of these systems,

particularly due to the complexity of hyper-elastic materials
and unconventional (fluidic) actuation, which are popular
themes within the field. Currently, there are limited options
for frameworks that effectively and efficiently address these
issues, although recent developments are promising. Smith
and MacCurdy [67] recently proposed a versatile free-form
design and fabrication workflow called SoroForge, which
builds upon [64], [65]. Unlike volumetric representation, their
approach can design complex soft actuator exteriors using a
highly-flexible and fast node-tree interface of implicit func-
tion primitives. However, these generative CAD solutions are
limited to only addressing quasi-static deformations and do
not consider the deformation induced by control.

There are several software packages specifically designed
for the dynamic locomotion of soft robots, which take into
account the structural design, actuator placement within the
soft body, control actions, and even adapt the body’s topology
accordingly. One such example is EvoSoro developed by
Kriegman et al. [49], which builds on the work of Hiller and
Lipson [68] and Cheney et al. [69]. This study discretizes a
soft continuum body into small voxels, which can be assigned
different cell types: soft or hard passive cells, or two different
muscle cell types that undergo periodic contraction with
an +π phase offset. The dynamic behavior of the system is
modeled through a network of mass particles and springs,
and a Compositional Pattern-Producing Network (CPPN) is
utilized to determine the optimal combination of material
type and placement within a specified domain, enabling
locomotion. This concurrent optimization of topology and
control policy, referred to as ‘‘co-design’’, is a subject of
active research within the field of soft robotics [18]. Another
example of co-design in soft robotics is EvoGym [70], which
optimizes for a wide range of tasks such as locomotion
and object manipulation (e.g., carrying and throwing). More
recently, DiffTachi (the successor to QueenChain
[71]) is a differential programming environment that allows
users to directly provide gradient-based information into
a neural network controller using a least-squares Material
Point Method (MPM). Unlike FEM, MPM is a mesh-free
approach that describes the continuum using a finite number
of hybrid Euler-Lagrangian elements referred to as‘‘material
points’’. In terms of learning control policies, SoMoGym
by Graule et al. [72] uses reinforcement learning (RL) to
teach locomotion and object manipulation in soft robots, and
has successfully bridged the gap between simulation and
reality (Sim2Real). It is important to note thatQueenChain,
DiffTachi, and SoMoGym focus purely on learning
control and not design. Simultaneous optimization of (free-
form) design and control for soft robots remains an open
challenge.

Parallel to volumetric-based FEM or MPM soft robotic
software, there also exists a branch of dynamic beam (or rod)
models for soft robots. These beam model approaches for
soft robots have long been a viable alternative to FEM-based
models – examples include the Piecewise-Constant Curvature

VOLUME 12, 2024 17607

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

TABLE 1. Comparison between different open-source software provided by the soft robotics community that are tailored either towards design,
modeling, or control of soft robots. ∗Inverse design here refers to automated algorithms that freely optimize the topology of the soft body. †Sim2Real
here implies the software has been used on a real soft robotic platform – either successfully transferring open or closed-loop control policies to reality;
or optimized design solution to real soft systems.

(PCC) model [25], [77], [78], the augmented PCC rigid-body
model [37], [38], [39], and various non-constant curvature
descriptions [37], [79], [80], [81]. As the formulations of
these models are often synonymous to rigid robot models,
they have a rich basis of control-oriented research [44], [78],
[82], [83]. TMTDyn by Sadati et al. [84] is a MATLAB
toolkit that automates the derivation of dynamic models for
hybrid rigid-continuum body soft robots, based on discretized
lumped systems and reduced-order models. More recently,
SoroSim was developed by Mathew et al. [75], which
is a MATLAB toolbox with a graphical user interface for
modeling, analysis, and control of soft, rigid, and hybrid
robots. SoroSim is based on the Geometric Variable
Strain (GVS) approach applied to the geometric Cosserat
beam theory in SE(3), introduced relatively recently by
Renda et al. [81] and Boyer et al. [80]. Its Lagrangian formu-
lation also allows for various complex control designs, such
as a geometrically-exact inverse kinematic controller that
accounts for under-actuation of tendon-based actuation [75].
SoroSim has been used for dynamic models of flexible
flying rods, hybrid rigid-soft manipulators, design optimiza-
tion for soft robot swimmers, and inverse dynamic control.
The toolbox has also been employed for the simultaneous
swimming and grasping dynamics of underwater soft-rigid
hybrid robots [85].
Alternatively, PyElastica (a wrapper for Elastica

[86]) by Tekinalp et al. [46] is an open-source software pack-
age written in Python that provides the capability to simu-
late an assembly of Cosserat beams. The software is based
on the work of Gazzola et al. [76]. Unlike the Geometric
Variable Strain (GVS) approach proposed in [75], [80], and
[81], PyElastica employs a discrete formulation of the
Cosserat partial differential equation (PDE) through a finite
rod elements referred to as Discrete Elastic Rods (DERs).
Additionally, its c++ architecture enables it to handle

problems with higher computational complexity. As demon-
strated in [87], Elastica has been used to model snake
muscular systems, bird wing flapping, and bio-hybrid robots
using soft contractile filaments. Furthermore, PyElastica
has been utilized in energy-based control and even extended
to model the full muscular-skeletal system of an octopus’
tentacle modeled as an collection of Cosserat beams [88],
and mimic biological movements accordingly [89]. It also
provides wrappers for OpenAI to enable reinforcement
learning.

To summarize, Table 1 provides an overview of the
functionalities of the previously discussed software packages
for soft robotics. The table highlights the diversity of software
options available, each with specialized solution approaches
for specific sub-problems in soft robotics. However, there are
limited tools that address the combined issues of design and
control in an interdependent, holistic manner. For instance,
developing a model-based controller for a specific soft
robot heavily relies on its structural geometry, material
composition, network of soft actuators, and their dynamic
interaction with the soft body. On the other hand, finding
a suitable soft robot design requires a-priori knowledge
of the material properties and their deformation under the
admissible control inputs. This complex interplay between
design, modeling, and control makes studying and developing
soft robots a challenging task. Sorotoki aims to address
these challenges by integrating many different scientific
disciplines of design and control into a unified toolkit.

III. GETTING STARTED WITH SOROTOKI
In the following section, we briefly detail a starter’s guide for
Sorotoki. The software package Sorotoki is available
via mpm (Matlab Package Installer [90]):

17608 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 1. Open-source soft robots and soft actuators that are included within the Sorotoki toolkit. All systems are fully 3D-printed using either
Selective Laser Sintering (SLS) or Stereolithography (SLA) and their 3D files can be found on the repository. All systems are driven by pneumatics.
(a) A two-bellow soft robot suitable for planar motion. (b) An optimized PneuNet bending actuator. (c) A soft robotic hand composed of five soft
bending actuators, whose fingers are easily replaceable. (d) A three-bellow soft robot manipulator with a mounted soft gripper at the end-effector.
The center axis is hollow, allowing for electronic cables when compact sensors (e.g., IMUs) are mounted on the soft gripper.

To install the toolkit, request the documentation, or preview
demonstrations of the toolkit, we call

in the MATLAB command prompt, respectively. The online
documentation1 provides information on the features and
capabilities, installation instructions, general use, syntaxing
and a selection of toy examples. The documentation assists
users in comprehending and efficiently navigating the
software for their research purpose, and it serves as a
complement to the work presented herein.

IV. OPEN-SOURCE SOFT ROBOTS OF SOROTOKI
Aside from software, we also present a selection of
open-source soft robotic systems, see Figure 1, as part of
the Sorotoki toolkit. These systems all feature fluidic
actuation and can be fabricated using conventional additive
manufacturing techniques such as Selective Laser Sintering
(SLS), Stereo-LithogrAphy (SLA), or Direct Light Projection
(DLP). FormLabs Elastic 80A™ resin or a flexible TPU
with a shore hardness of less than 80A are suggested
for the deformable bodies in SLA/DLP and SLS printing,
respectively. For further details concerning the SLS/DLP
manufacturing process, consult Proper et al. [91]. The 3D
models (in .stl format) are publicly available through mpm:

A brief description for each soft robot is provided below.

1) SOFT BENDING ACTUATOR
The first system is a soft bending actuator (Figure 1a),
an alternative to the PneuNet actuator proposed by
Mosadegh et al. [92]. Like PneuNets, our soft actuator
consists of an array of bellows placed on a relatively

1The online documentation and installation instructions can be
accessed at the following https://bjcaasenbrood.github.
io/SorotokiCode

inextensible medium. The stiffness gradient in the actuator
allows for pure bending to occur when the network of bellows
is pressurized. The geometry of the PneuNet-based soft
robot was optimized using Sorotoki’s topology optimizer,
which was specifically tailored for use with FormLabs Elastic
80A resin. The soft actuator is fully 3D-printed using SLA
and can accept pressures in the range of −10 ≤ u ≤ 100 kPa
at its central pressure input.

2) PLANAR SOFT ACTUATOR
The second system is a planar soft actuator that comprises
two pneumatic bellow networks that are connected in parallel
(Figure 1b). Similar to the previous soft actuator, bending
occurs due to a pressure differential between the two
pneumatic networks. However, the system is also capable
of pure elongation and contraction if the pressure in both
networks is equal. This enhances the motion capabilities of
the soft robot, enabling it to move within a planar workspace
of approximately 100 × 100 mm. The system has two
pressure range of −10 ≤ u ≤ 50 kPa.

3) COMPOSABLE SOFT ROBOTIC HAND
The third system provided by Sorotoki is a soft robotic
hand with a higher level of complexity compared to the
previous soft robots (Figure 1c). This design is inspired by
the work of Laake et al. [93] and Fras and Althoefer [24]. The
soft robotic hand consists of five independently controlled
soft fingers that can be actuated using pneumatics or fluidics.
Each finger is fabricated using SLA with Elastic 80A, while
the base is fabricated using FDM with PLA. The dimensions
and scale of the soft robotic hand are similar to those of a
human hand, with approximate dimensions of 190 × 100 ×
40 mm. All fingers have a length of 90 mm except for
the thumb, which is slightly shorter at 80 mm. The soft
robotic hand has five seperate inputs that accept pressures
of −10 ≤ u ≤ 60 kPa.

4) FULL SOFT MANIPULATOR WITH SOFT GRIPPER
The final soft robot provided by Sorotoki is a soft robotic
manipulator that features three independent bellow networks

VOLUME 12, 2024 17609

https://bjcaasenbrood.github.io/SorotokiCode
https://bjcaasenbrood.github.io/SorotokiCode

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 2. The Sorotoki software toolkit is structured according to a problem-solution pipeline, consisting of seven Object-Oriented classes
that address common subproblems in the field of soft robotics research. These classes are: Sdf, Mesh, Fem, Shapes, Model, Control, and
Vision. The software architecture flowchart employs the symbol (•) to represent class outputs and the symbol (⋄) to denote inputs.

and a three-fingered soft robotic gripper attached to the end
effector (Figure 1d). With independent actuation of each
bellow network, the manipulator has a full 3D workspace of
approximately 150 × 150 × 150 mm. The soft elements are
fabricated using Elastic 80A resin, while the rigid connector
pieces are made using Rigid 10K resin. The gripper has
demonstrated the ability to successfully grip objects with
a diameter of 40 mm, with a maximum payload of 100 g
without significant parasitic deformation. The central axis
is hollow, enabling the pneumatic tubing of the gripper and
the cables for state estimation sensors (e.g., IMUs) to be
embedded. The manipulator has three inputs that accepts
−10 ≤ u ≤ 30 kPa, and the gripper accepts −30 ≤ u ≤
60 kPa.

V. SOFTWARE ARCHITECTURE
In this section, we will present the software architecture
of the Sorotoki toolkit. The toolkit consists of seven
Object-Oriented classes, each designed to address a specific
sub-problem within the field of soft robotics. We will
introduce each class in the following sequence:

• In Section V-A we will discuss the class Sdf: a Signed
Distance Function (SDF) class that are used to build
spatial geometries – ‘‘Implicit CAD’’;

• In Section V-B we will discuss Mesh responsible for
mesh generation for the finite element solvers;

• In SectionV-Cwe discuss the classFem: a finite element
solver required for high-detail soft robot simulations;

• In Section V-D, we detail the class Shapes responsible
for beam models used for fast (real-time) simulations;

• In Section V-E we explain Model – a model composer
to interconnect models, and the control synthesis;

• Following, in Section V-F, we highlight Control
that serves as a control interface for fluidic platform
communicating to MATLAB® via TCP/IP;

• Finally, Section V-G will explain Vision – a
Vision-based tool for state estimation through optical
markers.

FIGURE 3. Distilled software architecture that highlights Sorotoki classes
and solution pipelines based on common question prompts provided by
soft robotics students and researchers.

To assist the reader, we have included a software architectural
flowchart in Figure 2. The flowchart demonstrates how the
classes can be interconnected to increase system complexity
while maintaining the structured and separable nature of
the subproblems. At first, the interconnectivity may seem
complex; thus, to aid the reader’s comprehension, let us
consider some common questions asked by soft roboticists:
• Q1: How do I design a soft robot (parametrically)?
• Q2: How do I analyze its deformation behavior?
• Q3: Can I run simulation models in real-time?
• Q4: How do I applymodel-based control on a soft robot?

In response, Figure 3 provides a brief answer through
a distilled software architecture of the seven Sorotoki
classes. Classes can be combined to tailor the specific needs
of its users. Throughout the paper, we will explain the
functionality of each class, together with illustrative examples
and corresponding MATLAB scripts. The topics covered
include design, modeling and analysis, model reduction, and
control and vision-based sensing, presented chronologically.

17610 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

A. SIGNED DISTANCE FUNCTION
Signed Distance Fields (SDFs) have been widely applied in
various areas of computer graphics, including the represen-
tation of implicit surfaces [94], [95], collision detection in
robotics [96], [97]. In particular, SDFs have gained attention
for their use in implicit modeling [67], a technique for
representing 3D shapes as continuous functions, rather than
discrete mesh descriptions.

In Sorotoki, SDFs are implemented in the class Sdf.m
and can be used to construct general 2D and 3D geometries.
They can also be utilized to model static or dynamic contact
environments, generate 3D models of soft actuators that are
suitable for 3D printing, and compute inertia tensors for
continuum bodies in R2 and R3.

1) IMPLICIT MODELING USING SDFS
In this section, we briefly outline the mathematical foun-
dations underpinning the Sdf class. As the name suggests,
signed distance functions are a type of function that encodes
distance information relative to an object defined implicitly.
Adopting the notation used in [94], given a domain � ⊂ Rn

and its boundary ∂�, these signed distance functions can be
written in the following general form:

sdf(p) =

{
−d(p, �) if p ∈ �,

+d(p, �) if p ∈ Rn
\�,

(1)

where d(p, �) := infy∈� ||p − y||2 is a scalar function that
returns the smallest Euclidean distance from a sample point
p ∈ Rn to the boundary ∂�.
SDFs provide a simple yet efficient way of determining the

location of a set of points relative to a domain � implicitly.
The SDF is a scalar function that encodes the Euclidean
distance of a sample point p ∈ Rn to the boundary ∂�

of the domain. By evaluating the sign of the SDF, it is
possible to classify the set of points as being within or outside
the boundary. This enables set operations such as union,
difference, and intersection to be performed.

In the signed distance package, these operations are
implemented usingMATLAB’s arithmetic operators between
two or more instances of the Sdf class, including ’+’ (union),
’-’ (difference), ’/’ (intersection), * (scaling), and ’.*’
(repeating). By utilizing these set operations and a library of
basic SDF primitives, it is possible to construct a wide range
of complex geometries with relative ease. Subsequently, the
SDFs can be transformed into a .stlfile using theMarching
Cube algorithm [98], enabling 3D printing. This functionality
is implemented in the command Sdf.export.

> EXAMPLE: IMPLICIT CAD USING SDFS
To demonstrate the use of signed distance functions in
Sorotoki, we present an example of 2D and 3D implicit
modeling scheme as shown in Figure 4. This example
illustrates the utilization of various SDF primitives, which
are combined through standard set operations, such as union,

FIGURE 4. Exemplary functionality of the Signed Distance Function (Sdf)
operators in Sorotoki. The top figures are two-dimensional Sdfs, whereas
below are three-dimensional Sdfs. Sorotoki allows the user to combine
Sdf using Matlab’s arithmetics, like ’+’, ’-’, and ’/’, to perform unions,
differences, and intersections, respectively. These set operations like
union, difference, and intersect lead to new (differentiable) SDFs.

difference, and intersection, to generate complex geometries.
The accompanying code is provided below:

2) SDF DIFFERENTIABLILITY
Contrary to mesh-based geometries, signed distance func-
tions (SDFs) possess closed-form differentials. Specifically,
if � is a subset of Rn with piecewise smooth boundaries,
the SDF is (i) differentiable almost everywhere, and (ii) its
gradient satisfies |∇sdf| = 1. As a result, the unit-normal
vector n(p) pointing away from the boundary ∂� can be
expressed as n(p) := ∇sdf(p). The gradient can be estimated
using a finite-difference scheme:

ni(p) ≈
1
ε

[
sdf(p+ εδi)− sdf(p)

]
, (2)

where δi is a vectorized Kronecker delta and ε a small step.
Such finite difference routine is efficiently imple-

mented such that the normal, tangent, and bi-normal
vector computations can be called using [N,T,B] =
Sdf.gradient(p). These gradient vector computations
are crucial for contact dynamics with the environment whose
topology may be arbitrarily complex. The normal vector
can also be useful in finding the closest-point projection
onto the surface ∂�, namely proj∂�(p) := p − sdf(p) ·
∇sdf(p). The projection operator is implemented as [P,d]
= Sdf.project(p), which takes a point cloud p and
returns a point cloud P that is mapped onto the boundary of

VOLUME 12, 2024 17611

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 5. Example of mesh generation in Sorotoki. The figure shows the
evolution of an unstructured polygonal mesh based on Lloyd’s algorithm.
The colors relate to the relative element size with respect to the mean
element size, given by ∈ [0,2] mm2. Notice that only after a few
iterations, the centers of the Voronoi cells become homogeneously
distributed within the domain �.

the SDF. It also returns the Euclidean distance d(p, ∂�) from
the surface. This can be extremely useful in simulations of
soft robotic grippers for grasping, or obstacle avoidance for
soft manipulators.

B. MESH GENERATION FOR FINITE ELEMENT ANALYSIS
In finite elements and computer graphics, mesh tessellation
is a common language used to describe the structural
geometry through a finite collection of vertices and edges.
In Sorotoki, meshes and mesh generation features are
packaged into the class Mesh.m. In general, a mesh defines
a discrete representation of a continuum body that is
subdivided into smaller convex sub-volumes, referred to as
‘‘elements’’. The nodal and elemental information are stored
in data structures that can be accessed using msh.Node and
msh.Element, respectively. For two-dimensional FEM
problems, it is common to use linear elements such as Tri3
and Quad4 or quadratic elements like Tri6 and Quad8.
For three-dimensional FEM problems, the common practice
is to use hexahedron elements (i.e., Hex8) or tetrahedral
elements (i.e., Tet4 and Tet12). There are also polygonal
tessellations, often denotes as PolyN finite elements [99].
Sorotoki supports all these types.

1) MESH GENERATION FROM SDFS
The Sorotoki toolkit explores several routines for mesh
generation, which are all contained in the class Mesh.m.
Our primary focus is on using a modified version of the
PolyMesher software developed by Talischi et al. [99].
Their work provided a stable foundation for generating
unstructured meshes of PolyN elements. The approach
starts by defining a material domain implicitly using SDFs
(as discussed in Section V-A). The number of elements
is chosen a priori, and then repeated random sampling of
Equation (1) is performed until the number of samples that
fall within the specified domain matches the number of
elements. A bounded Voronoi diagram is generated using
the samples and the centers of the Voronoi cells are updated
using Lloyd’s algorithm [100]. To generate a mesh from
an Sdf class, one can call msh = Mesh(Sdf) followed
by msh = msh.generate.

> EXAMPLE: MESHING OF SDFS
Weprovided amesh generation example in Figure 5wherewe
used the SDF function from the previous example to generate
our tessellation. The code is given below. In Figure 5, we see
the evolution of the Voronoi cells that produce the PolyN-
type mesh. Observe that after a few iterations of Lloyd’s
algorithm, the centroids are distributed homogeneously over
the compact domain � (as shown by the color distribution).

2) MESH FROM COMMON FILE FORMATS
An alternative option is to use the mesh generation tools
provided by the Partial Differential Toolbox in
Matlab. Such function is also included in Mesh.generate.
SDFs can also be used in this process, although an
intermediate step is required. For two-dimensional domains,
SDFs are first converted into binary images and then the
image boundary detection is used to convert them to either a
linear mesh (Tri3) or a quadratic mesh (Tri6). Direct input
of black-and-white .jpg or .png images is also supported.
For three-dimensional domains, SDF functions are converted
to an .stl file using the Marching Cube algorithm [98] and
then provided to the MATLAB PDE toolbox to generate the
tessellation. Importing and exporting .stl or .obj files
directly is also possible.

C. FINITE ELEMENT MODELING
Following the mesh generation process, Sorotoki offers
a nonlinear finite element solver for both quasi-static and
fully dynamic simulations. An illustration of the FEM
approach is given in Figure 6. FEM-based tools are crucial
when describing large deformations in soft robots, which
also accounts for hyperelastic materials and geometric
nonlinearities. The FEM package is provided in a class called
Fem.m and can be instantiated using fem = Fem(Mesh).
This class serves two main purposes: (i) to solve static or
dynamic continuum problems with high accuracy, and (ii) to
solve gradient-based optimization problems, also known
as inverse design problems. It is important to note that,
unlike SOFA, the focus of Sorotoki is on high-detail
simulations rather than real-time implementation for control.
The presented FEM simulation models are not intended for
real-time applications, but rather for system identification and
analysis.

1) HIGH-DETAIL FINITE ELEMENT MODEL
The nonlinear dynamics of the finite element model in
Sorotoki, similar to SOFA and Gibbon, can be described

17612 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 6. Illustration of the Finite Element Method (FEM), where a solid
geometry � is subdivided into Ne finite elements �i . Each element has
dim(xi) DOFs, which allows the computation of the deformation
gradient F . The deformation gradient can be decomposed into F = QV ,
an isochoric deformation part V and rigid-body rotation part F .

by the general Newton-Euler equation of motion:

Mẍ + fmat(x, ẋ)+ fg = fu(x, u, t)+ f�env (x, ẋ, t), (3)

where x, ẋ, and ẍ are the global nodal displacement, velocities
and accelerations of the mesh tesselation, respectively; M
the constant generalized mass matrix, f mat the internal soft
material forces, f g the constant gravitational forces, f u a
user-defined input, and f �env the normal reaction forces and
tangent friction forces imposed by the dynamic contact with
a (possibly time-dependent) environment �env. The environ-
ment �env can be described using the SDF functionality (see
Section V-A) using the syntax fem.addContact(sdf).
A broad collection of generalized external inputs can
be added using: fem.addLoad, fem.addDisplace,
fem.addGravity, and fem.addTendon. Alternatively,
time-varying pressure inputs can be added using the com-
mand fem.addPressure.
Without loss of generality, thematerial force can be decom-

posed into a position-dependent and velocity-dependent part:
f mat(x, ẋ) = f e(x) + f d(ẋ), i.e., an elastic and dissipation
contribution, respectively. We assume that the dissipation is
given by f d = Rẋ = ζMẋ with damping coefficient ζ > 0.
Materials can be assigned using fem.addMaterial. Note
that the conservative elastic material forces f e require
more involved computation. Since this computation is not
straightforward, we briefly explain the derivation of the
nonlinear hyper-elastic material forces in (3), which follows
standard nonlinear finite element procedures [52], [53],
[101].

INTERMEZZO: DEFORMATION GRADIENT
A fundamental measure of deformation in continuum
mechanics is the deformation gradient, denoted by F . The
deformation gradient characterizes the local deformation for
a neighborhood of the continuum body�. Since a subvolume
of the continuum body cannot be reduced to a point, it follows
that det (F) = J > 0 and F−1 exists. The term J is called
the relative volume change and it is equal to 1 for isochoric
deformations, such as rigid body deformations. Given these
properties, the deformation gradient can then be factorized
into F = QV , where V ≻ 0 is the right-handed stretch

TABLE 2. Table of deformations measures relevant for continuum
mechanics problem. All measures can be related to the first-order
deformation tensor F , following the works [52], [53], [101].

tensor and Q ∈ SO(3) is a rotation matrix belonging to the
special orthogonal group [52], [53], [101]. For convenience,
we summarize the derived quantities of F in Table 2 that will
be used throughout this section.

INTERMEZZO: DERIVATION OF HYPERELASTIC FORCES
Let�i denote the subspace spanned by the i-th element of the
finite element mesh, and let x i denote its nodal displacement
vector. The elasticity of the constitutive soft material can be
described by a strain-energy density function 9 : F → R≥0.
A comprehensive discussion on common constitutive models
for 9 will be provided later in the subsequent paragraph.
The elastic potential energy of the continuum body is given
by Ue =

∫
�

9(·) dV , and the conservative hyper-elastic
force contribution can be computed as fe := ∇x Ue.
This contribution can be approximated using piecewise
finite element interpolation and integrated using the Gauss
quadrature rule [52] as follows:

f e(x) =
Ne∑
i=1

d
dx i

{∫
�i

9(F(x i, s)) ds
}

,

≈

Ne∑
i=1

Nw∑
j=1

wj
∂9

∂F
(F(x i, sj))︸ ︷︷ ︸
PK1

∂F
∂x i

(x i, sj), (4)

where the Gauss weights are denoted by wj > 0, and the
number of finite elements and Gauss samples are represented
by Ne and Nw, respectively.

The term ∂9/∂F is also referred to as the first Piolla-
Kirchhoff (PK1) stress tensor, which can be represented
in closed-form for many constitutive models. The term
∂F/∂xe denotes the deformation Jacobian, which can also
be given in closed-form but depends on the choice of
element type. It should be noted that these tensor cal-
culations are highly nonlinear, making their computation
the most time-consuming aspect of the finite element
assembly. To enhance computational efficiency, the toolkit
employs .mex executable code, generated during installation
(Matlab Coder is required).

VOLUME 12, 2024 17613

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 7. Nonlinear buckling mode analysis of periodic circular porous elastic structure inspired by [102] and [103]. The horizontal
displacements are indicated by ∈ [−5, 5] mm. (top) The first four eigenmodes of the elastomer structure for ε = 0% compression,
no buckling modes appear. (bottom) The first four eigenmodes for ε = 12.5% compression. Notice that the first mode θ1 is a buckling mode
where the collapses holes orient periodically either vertically or horizontally.

INTERMEZZO: NEWMARK-BETA SOLVER
The Newmark-β method is an implicit numerical integration
scheme extensively used to solve high-dimensional structural
dynamic problem [53], [104]. We briefly explain the
algorithm implemented in the function fem.simulate.
First, let us subdivide the time domain such that (0, . . . ,T)
with uniform timesteps 1t = ti+1− ti. Then, given the initial
conditions for (3), wewish to compute the state evolution x(ti)
and ẋ(ti). For conciseness, let us write the discrete states of the
FEMmodel as x(ti) = x(i). Through the extended mean value
theorem, we can formulate the general Newmark-β scheme
as

ẋ(i+1) = ẋ(i)+1t
[
(1− β1)ẍ(i) + β1ẍ(i+1)

]
, (5)

x(i+1) = x(i)+1t2
[
ẋ(i)

1t
+ (12 − β2)ẍ(i) + β2ẍ(i+1)

]
, (6)

where β1, β2 ≥
1
2 . Now, in the expressions above only

the forward-time acceleration ẍ(i+1) is the unknown partial
solution, hence we conveniently write w := ẍ(i+1).
Substitution into the flow (3), we find:

r(w) := Mw+∇xH(w)+ fd(w)− f (i+1)u − f (i+1)�env
, (7)

where H is the Hamiltonian. Following, the residual
vector (7) forms an optimization problem in the form
argminw∥r(w)∥2 for unknown accelerations w. This implicit
relation can be solved numerically using the Newton Raphson
method. Given the n-th iteration, the recursive solver reads

w(n+1)
= w(n)

+ α+

[
A(w(n))

]
−1r(w(n)), (8)

where A :=
[
M + β11tR+ β21t2KT

]
is the hessian matrix,

and α+ a positive update coefficient. The matrix KT denotes
the tangent stiffness related to the local gradient of the
conservative force, given byKT := ∇x

(
f e − fu − f�env

)
. The

number of steps can significantly deceased by choosing α+
adaptively. We follow the adaptive gradient descent approach
proposed by Malitsky and Mishchenko [105].

2) HYPERELASTIC MODELS AND SOFT MATERIAL PRESETS
An important aspect of soft robotics in general is to accurately
describe large nonlinear deformations of inertial continuum

TABLE 3. Table of material models included in Sorotoki, including the
NeoHookean (NH), Mooney-Rivlin (MR), and Yeoh (YH) model.

bodies under motion. Yet, due to these large deformations,
many classical Hookean elasticity models may not be
accurate for elastomer materials.

To address this, Sorotoki provides a library of
hyper-elastic constitutive material models: Neo-Hookean
(NH), Mooney-Rivlin (MR), and Yeoh model (YH). The
strain energy densities for these models are derived based
on the strain invariants I1, I2, and I3 provided in Table 2
and are shown in Table 3. The material models presented
in Table 3 are implemented in Sorotoki under the
class Material, but have specific constructors tailored
towards each material, NeoHookean, Mooney, and Yeoh.
Regarding their parameters, the work of Marechal et al. [106]
provides an open-source database that includes a broad
collection of soft materials commonly used in soft robotics,
gathered through uniaxial material tests. Based on their
dataset and relevant other literature [18], [52], [54], [101],
Sorotoki offers some preset material models of soft
materials commonly used in soft robotics, such as the
Ecoflex30/50 series, Dragonskin10/30 series, NinjaFlex, and
Formlabs Elastic50A/80A material. These material classes
also include the physical data for density, viscosity, and
tangential contact friction. Following (4), the first Piola-
Kirchhoff (PK1) stress tensor can be evaluated by P =
Material.PiollaStress(F).

3) FEM SOLVERS AND (NONLINEAR) MODAL ANALYSIS
To solve the structural forward dynamics of the system (3),
the toolkit uses an implicit Newmark-β solver [104],
which is briefly outlined earlier. Implicit solvers offer
improved stability compared to explicit methods, such as
the Runge-Kutta solver (ode45), particularly when larger

17614 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

time steps are employed. However, the cost of larger time
steps is a decreased numerical precision. Alternatively, for
quasi-static problems when ẍ = ẋ = 0n, we aim to seek
the solutions to the static force equilibrium f res(x) = 0n
where f res := −f mat + f g + f u + f �env is the force residual
vector. The nonlinear equality for nodal displacements x
is solved using a reduced implementation of the Newmark
solver. To call these solvers, dynamic simulations are
executed with fem.simulate and quasi-static simulations
with fem.solve. Upon completion of a simulation, all
displacements, velocities, forces, and stress information are
stored in the fem.solver.sol data structure. This log
file can be accessed for data analysis or during simulation
to facilitate state feedback control.

Alternatively, we can explore nonlinear modal analysis at
any quasi-static equilibrium configuration x∗ ∈ X of the
system (3). Let KT ,e :=

[
∂f e
∂x1

. . .
∂f e
∂x2

]
be the Jacobian

matrix of the (nonlinear) elastic potential forces, also referred
to as the tangent stiffness. Then, the local eigenvalue problem
for the linearized FEMmodel around the point x∗ is given by[

KT ,e(x∗)− λiM
]
θ i = 0n, (9)

where λi is a real scalar eigenvalue and θ i is its corresponding
eigenmode. The dynamic analysis is implemented in Sorotoki
using fem = fem.eigen(x), which stores the necessary
data in fem.Log. It is important to note that, unlike
linear analysis, the eigenmode set {θ i} obtained from the
eigenvalue decomposition in (9) is highly dependent on
the linearization point x∗ and may thus not be unique for
all x∗ ∈ X .

> EXAMPLE: BUCKLING ANALYSIS VIA DECOMPOSITION
An excellent case study of the eigenvalue problem in nonlin-
ear elasticity systems is the buckling behavior of patterned
elastomer metamaterials, as studied by Bertoldi et al. [102]
and later by Overvelde et al. [103]. In their studies, an elas-
tomer specimen with a periodic circular porous structure was
subjected to uniaxial compression. The specimen displayed
an inward buckling phenomenon at a critical loading point,
resulting in the specimen exhibiting a negative Poisson
ratio, i.e., auxetic behavior. To be specific, the structure
undergoes a so-called ‘‘bifurcation’’ where solutions switch
stability or new solutions arise for a critical parameter value.
In this case, the bifurcation parameter is the compression
ratio ε.

In accordance with [103], a square elastomer specimen
with circular holes was modeled using a Neo-Hookean
material model, with Young’s modulus E = 19 (kPa) and
Poisson ratio ν = 0.45. As reported in [103], the critical
buckling point was observed to occur at approximately ε =

−12.5% uniaxial compression.
A numerical solution is obtained through quasi-static

analysis using the function fem.solve. To model
compression, a displacement load was added using
fem.addDisplace(‘top’,...). The resulting

equilibrium configuration was then utilized in the eigenvalue
problem via the function fem.eigen(x). The eigenmodes
for the zero-stress and ε = −12.5% compression cases
are illustrated in Figure 7. It is worth noting that the
first three eigenmodes of the elastomer structure at ε =

0% compression exhibit no buckling modes. Conversely,
the first eigenmode θ1 at ε = −12.5% compression
displays a buckling mode, wherein the collapse of the holes
is periodically oriented either vertically or horizontally.
This buckling mode is in accordance with the experiments
from [103] and [102]. The supplementary code is provided
below:

> EXAMPLE: LOCOMOTION OF UNDULATING SOFT ROBOT
To demonstrate a dynamic finite element method (FEM) sim-
ulation that incorporates contact, we will utilize Sorotoki
to model the locomotion of a multi-gait soft robot crawler
inspired by the work of Shepard [107]. The study by Shepard
et al. [107] presents a soft robot system that consists of
five pressure chambers - four for each leg and one for the
spine. The pressure chambers are actuated in a sequential
manner to produce an undulating motion. The work of
Shepard et al. [107] demonstrates that complex locomotion
can be achieved through the use of open-loop controllers
and the dynamic interaction between the soft robot and its
environment.

To simplify the model, we assume general plane
motion. The geometry of the soft crawler’s cross-section
is first provided to Mesh.m to generate a triangular
mesh. Then, a finite element method (FEM) model is
generated, with the material model fem.Material =
Ecoflex0030. To model the environment, the function
fem = fem.addContact(sLine) is utilized, which
simply creates an unbounded horizontal line. In accordance
with [107], a harmonic excitation is applied to each chamber,
as expressed by the following: ui = A · sat [sin(ωt − φi)],
where the index i ∈ {1, 2, 3} represents the front,
middle, and back pressure chambers embedded in the
soft body.

VOLUME 12, 2024 17615

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 8. (top) Experiment of soft multi-gait crawling soft robot developed by Shepard et al. [107] performing an undulating forward motion by
periodic pressurizarion of its internal pressure chambers, back legs → middle → front legs. The soft robot is made from an elastomer material with
strain-inhibit layer at the bottom to enhance bending. The Von Mises stresses are shown as ∈ [0, 10] MPa. (bottom) Simulation recreation of
the experiments performed by Shepard et al. [107] using the Finite Element solver in the Sorotoki toolkit. Images used from a public video based on the
work from Shepard et al. [107] with copyright permission under CC-BY license.

The excitation signal parameters are set as follows: A = 45
(kPa), ω = 5π (rad), and φi =

π
3 · (i − 1) (rad). The

saturation function is defined as sat(x) = 0 for x < 0,
and sat(x) = x for x ≥ 0. Gravitational acceleration is
added, and the dynamic simulation solver is invoked using
fem.simulate. Figure 8 presents a comparison between
the soft robot described in [107] and the dynamic simulation
performed by Sorotoki.

The results of the simulation performed using Sorotoki
show a morphological behavior that is consistent with the
experimental recordings. Figure 9 depicts the trajectory of the
center of mass (CoM) of the soft robot during the undulating
locomotion. Note that an identical stair-like evolution of the
CoM is also observed in the work of Shepard et al. [107].

FIGURE 9. (top) Numerical simulation of the center of mass displacement
and gait for undulating soft crawler. The horizontal displacement is given
by (--), and the vertical as (--). (bottom) The gait cycle of the soft
crawler where the sequence {--, --, --} shows the fluidic activation.

4) GRADIENT-BASED COMPUTATIONAL (INVERSE) DESIGN
Besides modeling, the field of computational inverse design
can also benefit from the use of FEM models. Building up
the Fem class, the objective is to find a topological structure
of a continuum system based on a desired deformations
or compliance. One widely adopted method is the Solid
Isotropic Material with Penalization (SIMP) approach, which
is a commonly used material interpolation technique in
topology optimization [108]. In the SIMP method, each
finite element e ∈ {1, 2, . . . , ne} is assigned a continuous
density variable ρe ∈ (0, 1], which serves as an indicator
of the material distribution within the mesh. If ρe = 1, the
element is considered solid, while if ρe = 0, the element is
considered void. This assignment of density variables enables
the modification of the strain energy density in (4):

9̃e =
[
ε + (1− ε)ρep

]
9, (10)

where 0 < ε ≪ 1 a lower bound on the densities, and p > 1 a
penalty factor for penalizing intermediate densities during
the optimization process. By collecting the density values
ρ = col{ρ1, ρ2, . . . , ρNe}, the inverse design problem can be
formulated in terms of two unknowns: the displacement field
x and the density field ρ. Consequently, the computational
design problem for general soft material structures can be
expressed as a nonlinear topology optimization problem of

17616 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

the following form:

min
ρ

8 = −β1 L⊤x + β2 f⊤e f u

s.t. f res(x, ρ) = 0

v⊤ρ ≤ v⋆

ρ ∈ P

(11)

where L a sparse unit-vector composed of nonzero entries
for the degrees-of-freedom corresponding to the desired
morphology of the soft robot, v the element volumes, v⋆

the desired volume infill, P = {ρ ∈ Rne | 0 < ρi ≤ 1}
admissible set for the design variables, and β1 and β2 are
positive scalars that can be adjusted to vary the optimization
problem, with β1 ≪ β2 resulting in complianceminimization
and β1 ≫ β2 leading to a compliant mechanism. To solve
the optimization problem in (11), we utilize the Method of
Mixed Asymptotes (MMA) proposed by Svanberg [109],
[110]. Earlier work on this computational design approach
was presented in [111] and we refer to this work for the
analytic gradients required for the MMA solver.

The optimization routine in the Sorotoki framework
is incorporated into the Fem class and can be invoked
by utilizing the command fem.optimize(‘type’),
where ’type’ represents the optimization problem at
hand. For minimizing compliance, the cost function is self-
adjoint [108], hence objective function and constraints are lin-
ear operators. However, when dealing with compliant mecha-
nisms, it is necessary to specify the selection vector L, which
can be defined using the fem.addOutput(id) command.
The value ofid represents the nodal indices of interest, which
can be identified using the fem.Mesh.findNode routine.

D. REDUCED-ORDER SOFT BEAM MODELS
While the finite element method (FEM) is known for produc-
ing reliable and highly accurate results, its high-dimensional
state can make it computationally slow, making direct appli-
cations for closed-loop control challenging. To address this
issue, the Sorotoki toolkit offers reduced-order models
based on Cosserat beam theory [32], [112], [113], similar to
SoroSim [75] and PyElastica [76]. In Cosserat beam
theory, deformable solids are modeled as elastic strings that
are governed by finite strain theory. This formulation can be
applied to the dynamic modeling of slender soft robots as
one-dimensional spatial curves passing through the geometric
center of the deformable soft body. As shown in Figure 10,
a (slender) soft robot can be described using geometric
Cosserat beam models, representing it as a parameterized
curve on the group of rigid-body transformations SE(3):

g : [0,L]× [0,+∞)→ SE(3), (12)

where SE(3) ∼= SO(3) × R3 composed of a (special)
orthogonal rotation matrix and a translation vector.

The objective of this approach, similar to the finite element
method, is to solve a dynamic system in a continuous
manner, often through projecting the problem onto a finite-
dimensional subspace. To address the infinite dimensionality

FIGURE 10. Illustration of the soft beam model using geometric Cosserat
beam theory, where the backbone curve is g ∈ SE(3) shown as (--). The
geometric strain vector ξ := vec{0,U} a vector of size 6 consisting of
stretch-shear strains U and twist-bending strains 0.

of the curve g and make the continuum kinematics com-
putationally tractable, various methods have been proposed,
including elemental discretization [76], [114] (which is
analogous to Section V-C). A widely adopted alternative
is modal approximation [80], [115]. The concept of modal
decomposition for describing the kinematics of continuum
robots dates back to the early 1990s [115], [116], and some
modal representations (e.g., first-order fourier series) even
provide closed-form solutions to the inverse kinematics.

The method for constructing soft beam models in
the Sorotoki toolkit is expressed using the syntax
shp = Shapes(pod,dof). In this expression, pod is
a modal interpolation matrix that is derived from a modal
basis selected by the user, and dof is a vector of six
unsigned integers (uint8) that couples the beam degrees
of freedom, including extension, bending, torsion, and shear,
to their modal representation. The Shapes class serves
two primary purposes: (i) to enable fast forward dynamic
simulation of soft robots and (ii) to simplify the design
of model-based controllers for both online and offline
environments. Compared to the FEM model in (3), the soft
beam models implemented in Sorotoki typically have a
significantly lower dimensional representation, resulting in
improved computational speed and, in some cases, real-time
performance. This enables model-based controllers on real
platforms, at the cost of model accuracy.

1) COMPUTATIONALLY-EFFICIENT SOFT BEAM MODELS
Following the geometric Cosserat beam frameworks [80],
[81], [117], the reduced nonlinear dynamics of a soft beam
model, fixed to a non-inertial base, can be represented using
a Lagrangian formulation:

M (q)q̈+ C(q, q̇)q̇+ fmat(q, q̇)+ . . .

+ f g(q) = τ (q, u)+ f �env(q, q̇), (13)

where q, q̇, and q̈ represent the modal coefficients, velocity,
and acceleration, respectively; M denotes a state-dependent
generalized inertia matrix, and C denotes the Coriolis
matrix. The material forces are expressed as f mat(q, q̇) =
K (q)q + Rq̇, where K is a generalized stiffness matrix
and R is a generalized damping matrix. The environmen-
tal forces are represented by the vector f �env , and the

VOLUME 12, 2024 17617

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

generalized input is given by τ = Gu, where G(q)
is the input mapping. As in Section V-C, material and
contact models can be assigned using comparable syntax,
Shapes.addMaterial and Shapes.addContact,
respectively. The intrinsic length of a curve can be altered
by utilizing the function Shapes.setLength, while
its cross-sectional geometry can be modified through the
function Shapes.setGeometry(sdf), which accepts
a two-dimensional SDF function that may be arbitrarily
complex.

Due to the complexity of deriving the forward kinematics
and dynamics in the Cosserat model, the following sub-
sections provide a clear summary of the finite-dimensional
basis representation and its relationship to reduced kine-
matics. The system matrices, on the other hand, are
notoriously lengthy expressions and thus omitted in this
work. The reader is referred to [78] for a full derivation of
model (13).

2) FINITE DIMENSIONAL PROJECTION
To start, our aim is to obtain a finite-dimensional approx-
imation of the local geometric strain vector, denoted as
ξ := (g−1 ∂g

∂σ
)∧ := (0⊤, U⊤)⊤, where σ ∈ [0,L]

is a spatial coordinate and (·)∧ : se(3) → R6

(see [35]). Here, 0i and Ui are the torsion-curvature and
elongation-shear curve parameters, respectively. To achieve
this, we employ a Ritz-Galerkin modal discretization
approach following the work of Boyer et al. [80]. This
approach assumes that the strain can be accurately rep-
resented through a finite series of orthonormal basis
functions:

[ξi]θ i (σ, qi) =
ki∑
j=1

θi,j(σ)qi,j + ξ◦i (σ),

=
[
θi,1(σ) . . . θi,ki (σ)

]︸ ︷︷ ︸
θ⊤i (σ)

qi + ξ◦i (σ) (14)

where θ i is the modal approximation vector related to
the i-th strain component, qi is its corresponding modal
coefficient, and [·]θ denotes the subspace projection operator.
By collecting all terms qi,j and θi,j, we compactly express the
finite-dimensional approximation as an affine operation:

[ξ]2(σ, q) = 2⊤(σ)q+ ξ◦(σ) (15)

where 2 := blkdiag{θ1, . . . , θ6} is referred to as the
‘‘modal approximation matrix’’, and q := vec{q1, . . . , q6}
is the generalized coordinate vector of the global soft beam
model in (13). Note that a geometric strain entry may
be constrained and therefore not contribute to the overall
continuum dynamics, thus θ i, qi are fixed to zero without loss
of generality. The choice of basis plays a crucial role and often
relies on ad-hoc approaches. It is therefore critical to choose
an appropriate basis for optimal performance of the soft robot
model.

FIGURE 11. The library of modal basis functions is implemented in the
Sorotoki toolkit, with a modal ordering of {--, --, --}. These function
bases include Piecewise Constant Curvature (PCC), Piecewise Linear
(PWL), full and piecewise Chebyshev, and full and piecewise Bernstein
polynomials.

3) LIBRARY OF MODAL STRAIN BASES
In Sorotoki, the general constructor for creating a modal
basis is defined as pod = Basis(N,M,’type’), where
N represents the number of samples (i.e., the level of
discretization of the spatial curve),M is the degree of the basis,
and ’type’ is an input that specifies the basis type.

The literature presents various types of modal bases, with
the Piecewise Constant Curvature (PCC) approach being the
most commonly used [25], [118]. The Piecewise Constant
Curvature approach is suitable for certain conditions, for
example, when homogeneous bending moment and homoge-
neous material properties are considered. However, it lacks
the ability to ensure the continuity of the strain field at
the boundaries between sections, resulting in jumps in the
strain profile. As a result, researchers have been exploring
alternative representations that more effectively preserve
the continuity conditions of the deformable continuums.
Examples of alternative representations of bases include
piecewise linear [119], affine curvature [120], [121], Fourier
cosine/sine series [115], [122], Legendre or Chebyshev [80],
[117], and actuation load bases [81]. The Sorotoki
package offers access to a library of anonymous functions,
facilitating the utilization of a range of basis functions.
As an illustration, a collection of basis functions is shown in
Figure 11.

REMARK: ON THE MODAL ORDER
Generally, finding a suitable reduction basis and reduction
order can be a challenging task. The general assumption is
that if the basis belongs to a regular function space (i.e.,
Sobolev space) and the modal index ki goes to infinity,
the strain approximation converges (uniformly) to the exact
solution on the interval [0,L]. However, as increasing the
modal order enhances precision, it also greatly impacts
computational performance. Thus, finding a balance between
accuracy and computational speed is of utmost importance for
the successful implementation of soft robotic models, often
mandating an ad-hoc approach.

17618 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

4) DATA-DRIVEN STRAIN BASIS FROM FEM SIMULATIONS
To address the challenges of improving efficacy in the
modal reduction of soft beam models, we propose a novel
approach that merges the finite element method and soft
beam modeling. This approach involves extracting geometric
modal information from FEM simulation data to construct
a low-dimensional strain basis, which we refer to as the
Data-driven Variable Strain (DVS) basis. The DVS basis
is similar in concept to the snapshot method presented
by the SOFA toolkit [51], [54], [73], but adapted for
use with one-dimensional curves on SE(3). It takes into
account the underlying geometric features of the soft robot
and represents them in a minimal subspace representation.
This approach leads to a substantial reduction in the
number of states while still maintaining high accuracy in
deformations, high computational efficiency, and providing a
clear structure for passive and active joints. The derivation has
two steps:

• Step 1: Recovery of geometric strain from FEM: The
reconstruction of the DVS basis begins with obtaining geo-
metric strain data from a Finite Element Method (FEM) sim-
ulation. Such simulation supports either Fem.simulate
or Fem.solve, and the resultant information is stored in
the fem.solver.sol data structure. Mathematically, the
simulation retrieves the states x(i) := x(ti) at discrete time
instances ti ∈ {0, . . . ,T }, which in turn provides the nodal
position vectors p and the deformation gradient F at any
point in the mesh. Using the polar decomposition Q =

FV−1 ∈ SO(3), see Table 2, we can retrieve the rigid body
transformation of the FEM mesh

gFEM(s, x(i)) =

Q(s, x(i)) p(s, x(i))
0 1

 , (16)

where s ⊆ � is an arbitrary point inside the undeformed
mesh. It is important to note that if s does not correspond to
a nodal location of the mesh, interpolation using elemental
shape functions is employed. Now, let γ̄ : [0,L] → � be a
unit-speed reference backbone curve that is contained within
the mesh domain �. Then, we can retrieve gFEM(γ̄ , x(i)).
Subsequently, the geometric strain can be approximated as
ξFEM ≈ (gFEM)−1δgFEM. Here, δgFEM represents the spatial
derivative of the reference curve w.r.t. σ , which is calculated
using the central difference method. It is worth noting that the
choice of γ̄ is free, allowing for the estimation of geometric
strain for many complex structures. The full procedure is
outlined in Algorithm 1.
• Step 2: POD snapshot basis: Next, we employ the

‘‘Snapshot Proper Orthogonal Decomposition’’ (POD) as
described in [54] and [73]. This data-driven approach
determines a suitable orthonormal basis from simulated or
experimental data [56]. Let yi(σ, t) := ξFEM,i(σ, t) represent
the measurement of the i-th entry of the strain ξFEM. For
each discrete time ti, the sample is condensed into a column
vector y(t)i := col {yi(0, t), . . . , yi(L, t)} and then stacked

Algorithm 1 Recover geometric strain field ξFEM
from offline dataset of soft robot FEM simulations
Input: Nodal displacements x, mesh tesselation T ,

reference curve γ̄ , and sample set S
Output: Geometric strain field ξFEM at time ti

1 for i = each spatial sample σi ∈ S do
2 get reference position p̄← γ̄ (σi) ;
3 get element E ← InElement(p̄, T) ;
4 if E == ∅ then
5 get edge E ← OnClosestEdge(p̄, T);
6 end
7 initialize 8(0)

← I3 ;
8 initialize δγ (0)

← 03 ;
9 for j = each vertex spanned by element E do
10 get nodal displacement X ← FEM(x j) ;
11 get deformation gradient Y ← FEM(x j) ;
12 [Q, V]← PolarDecomposition(Y) ;
13 α← ElementInterpolation(p̄) ;
14 update 8(j)

← AverageSO3(8(j), αQ) ;
15 update δγ (j)

← δγ (j)
+ αX ;

16 end
17 g(i)FEM← SE3(8(j), p̄+ δγ (j));
18 end
19 for i = each spatial sample σi ∈ S do
20 δg(i)FEM← CentralDiff(g(i−1)FEM , g(i+1)FEM) ;
21 assemble strain ξ

(i)
FEM← (g(i)FEM)−1δg(i)FEM;

22 end

into the ‘‘snapshot matrix’’ S i = row
{
y(0)i , . . . , y(T)i

}
where

T is the finite horizon time. The correlation matrix Ci =
1
mS
⊤
i S i is then computed with m = dim(yi), and the spectral

decomposition is performed:

CiV i = λiV i, (17)

where V i = row{vi,1, , . . . vi,m} is a eigenvector basis and
λi = diag

{
λi,1, , . . . , λi,m

}
is a diagonal matrix of sorted

eigenvalues. By selecting ki ≤ m such that λi,ki ≤ δ, where
δ is a desired threshold, we obtain a truncated orthonormal
basis {vi,j}

ki
j=1. This process is repeated until the modal

interpolation matrix 2, required for (15), is fully obtained.
Finally, a Gram-Schmidt orthogonalization procedure is
performed to ensure that its columns are mutually orthogonal.

> EXAMPLE: DVS BASIS FROM PNEUNET SIMULATION
To demonstrate the reconstruction of the DVS basis, we con-
sider a soft bending actuator, similar to the well-known
PneuNet actuator. A FEM simulation model is constructed
where the soft actuator is subjected to a linearly increasing
pressure up to 40 kPa and curls around a cylindrical object
when pressurized. Figure 12 (top) illustrates the true system
and the FEM simulation obtained through fem.simulate.
The FEM class is then integrated into the Shapes class
through the syntax shp = Shapes([],dof), where

VOLUME 12, 2024 17619

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 12. Example reconstruction of the Data-driven Variable Strain
(DVS) basis for a PneuNet actuator grasping a cylindrical object. (top) The
first three modes of the DVS basis related to planar bending, i.e.., planar
curvature. The ordering is {--,--,--}. (bottom) The positional forward
kinematics when regarding the bending modes {--,--,--} individually.

dof = [0,3,0,0,0,0] indicates the desire to recover
the first three curvature bending modes from the fem object
class. The length and base orientation are specified using
shp.setLength and shp.setBase, respectively. The
basis is then reconstructed by calling shp.reconstruct.
The first three curvature bending modes are displayed
in Figure 12 (bottom). It can be observed that the geo-
metrical features of the PneuNet actuator are encoded
in the basis, with the 12 embedded pressure chambers
represented by the DVS strain basis. The associated code is
provided below:

5) FORWARD BEAM KINEMATICS
Once a basis representation 2 has been selected, the forward
kinematics of the continuum body can be efficiently solved
using exponential maps for the group SE(3). As such, the
backbone curve is approximated by

[g]2(σ, q) = g0 expSE(3)
[
�k (σ, q)

]
. (18)

where �k is the k-th order approximation of the Mag-
nus expansion [75], [81], [123]. We use a first order
approximation of the Magnus expansion given by �1 =∫ σ

0 [ξ̂]2(s, q) ds. On the other hand, the local velocity
twist is represented by η := (g−1ġ)∨, which, similarly to
rigid robotics, is linear in the joint velocities q̇. Regarding
computation, the velocity twist of a point σ on the curve g

FIGURE 13. Example reconstruction of the Data-driven Variable Strain
(DVS) basis for a PneuNet actuator grasping a cylindrical object.
A comparison between the true physical system, the FEM model, and the
soft beam model shown in (--). The Von Mises stresses are shown as

∈ [0, 5] MPa.

can be represented by:

[η]2(σ, q, q̇) =
[
Ad−1[g](σ,q)

∫ σ

0
Ad [g](s,q)2(s) ds

]
︸ ︷︷ ︸

J (σ,q)

q̇, (19)

where J (σ, q) denotes the geometric Jacobian that maps
the joint velocities q̇ to velocity twist in the body frame.
For conciseness, we write Jσ (q) := Ad [g](σ,q)J (σ, q) for
the global frame. The Jacobian matrix is of paramount
importance, not only for inverse kinematics but also for map-
ping external wrenches onto the generalized joint torques.
For instance, it can be used to calculate the environmental
forces as f �env =

∫ L
0 J⊤σ Fenv dσ , where Fenv repre-

sents a wrench related to the environment �env described
by SDFs.

Given the expressions in (15), (18), and (19), we can
numerically evaluate the forward kinematics. We use a
two-step Runge-Kutta integration solver that approximates
the spatial integration. The forward kinematics solver is
called by shp = Shapes.string(q,dq), which stores
all necessary numerical evaluations into a data structure
shp.system, or p = Shapes.solveFK(q) for the
backbone alone.

6) INVERSE BEAM KINEMATICS (SHAPE CONTROL)
The inverse kinematics problem for soft continuum manip-
ulators involves finding a solution q such that either
(i) the end-effector reaches a specified setpoint, or (ii)
desired shape of the backbone is achieved. These manip-
ulators often exhibit high levels of redundancy, so called
‘‘hyper-redundancy’’ [115]; leading to different solution
approaches common to rigid robotics. Few modal basis
representations possess a closed-form solution to the inverse
kinematics, and they are typically solved using an iterative
numerical method (e.g., Newton Raphson). In Sorotoki,
the inverse kinematics solver for soft beam models is
implemented as Shapes.solveIK. We briefly detail the
theory.

Suppose the desired shape of the soft manipulator is
g⋆(σ) ∈ W σ with the set of possible configurations of the

17620 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

backbone curve at σ given by

W σ :=
{
X ∈ SE(3) | X = [g]2(σ, q), q ∈ Q

}
. (20)

Note that W L spans the workspace of the end-effector, and
W� := {W σ | σ ∈ [0,L]} the workspace of the entire soft
body. For sake of readability, we redefine gi(q) := [g]2(σi, q)
and g⋆

i := g⋆(σi). We also rewrite the geometric Jacobian by
J i(q) := Ad [g](σi,q) J (σi, q).

Then, the inverse shape kinematics problem for the
discretized soft manipulator can be formulated as an
optimization problem of the following form:

minimize
q

8 =

Np∑
i=1

∥∥∥∥Kp logSE(3) [g−1i (q)g⋆
i

]∨∥∥∥∥
2

subject to gi, g⋆
i ∈W�, (21)

where logSE(3) denotes the logarithmic mapping from the Lie
group to its algebra, see [124], [125]. Despite the highly
nonlinear nature of the optimization problem, its solution
procedure is a relatively straightforward two-step procedure:

Given an initial guess q(0) ∈ Q, the aim is to compute
an incremental update step that brings us closer to a local
minimizer of the objective function 8. For clarity, let 4i :=

g−1i g
⋆
i represent the geometric error between the soft robot and

the desired shape. The state increment can then be expressed
as:

λ
(k)
i = J⊤i (q

(k))
[
K pTSE(3)(4i)logSE(3)(4i)

]
∨, (22)

q(k+1) = q(k) +
Np∑
i=1

3i

[
λ(k) − N i(q(k))∇9sub

]
, (23)

where TSE(3) denotes the tangent operator map on the group
SE(3), see [124], K p an artificial stiffness tensor, N i =

(I − J†i J i) represents the null-space projection, and 3i
a diagonal activation matrix. The trivial choice is 3i =

In. The null space projector can be extremely useful in
exploring the high redundancy in soft robots, allowing sub-
tasks 9sub to be considered in parallel to the primary inverse
kinematic problem. Classical examples of such subtasks
include:minimizing elastic energy or obstacle avoidance. The
iterative solver in (22) and (23) runs until convergence in q(k)

is achieved.

> EXAMPLE: CONTACT KINEMATICS OF SOFT GRIPPER
To showcase the forward and inverse kinematic solvers of
Sorotoki, we will describe the ultra-gentle underwater
soft gripper developed by Sinatra et al. [10]. The soft
gripper consists of six soft fingers attached to a rigid palm
base, where each soft gripper was designed to apply low
contact pressure and minimize harm to common jellyfish
species. An illustration of the system is shown in Figure 14.
The delicate compliance of the soft gripper is achieved
through the use of an extremely low durometer silicone
matrix (Shore 20A). The actuator has a simple rectangular
geometry, with a narrow cross-section of approximately

FIGURE 14. (top) A snapshot of the ultra-gentle soft robot gripper
developed by Sinatra et al. [10] is shown, demonstrating its ability to
grasp a delicate jellyfish. Figure is produced with copyright permission.
(bottom) The reconstructed soft gripper using Sorotoki is presented,
where each tentacle finger is modeled individually using the Shapes
class. It can be observed that the soft tentacles envelop the SDF object,
indicating a balanced solution between task and subtask. Raw image
obtained from Sinatra et al. [10], used with copyright permission with
rights belonging to
2019 Science.

10 × 2 mm and an internal off-center rectangular hole.
The thinnest part of the soft actuator, called the mem-
brane, is approximately 0.35 mm thick, and length of
about 130 mm.

In this study, we aim to reproduce a grasping scenario of
a jellyfish modeled as a static SDF object. To achieve this,
we first initiate a soft finger by utilizing the Shapes class.
We employ a third-order Chebyshev basis to approximate
the strain field. The geometric properties of the soft finger
are specified through the functions Shapes.setLength
and Shapes.setGeometry. Using a for-loop, we gen-
erate each soft finger sequentially, defining the spatial
location of the fixed base with Shapes.setBase. Prior
to deployment, each soft finger undergoes predeformation,
which is calculated through the application of the forward
kinematics solver Shapes.FK(q). The joint configura-
tion q is selected to match the experiments presented in
Figure 14.

Subsequently, the deformed backbone is projected onto
the surface of the SDF jellyfish through the use of the
function sdf.project. The inverse kinematics solver is
then invoked with Shapes.solveIK, resulting in the
image depicted in Figure 14. Note that the inverse kinematics
solver effectively places the soft finger onto the surface of
the SDF object without causing penetration. The code for the
forward and inverse kinematics is presented below:

VOLUME 12, 2024 17621

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

E. MODEL COMPOSER
In many instances, soft robots comprise multiple dynamic
components that are interconnected to form the overall
system. For instance, the soft robotic hand depicted in
Figure 1c comprises five actively controlled soft fingers
connected to a rigid palm base, each of which exhibits its
own fluid-structure interaction. While each soft finger can
be modeled through the Shape class, the class itself lacks
a composer or solver that addresses the interconnections
between a network of dynamic systems.

To address the issue, we propose the Model class, which
concatenates dynamic systems to systematically increase
complexity. The class is equipped with an implicit solver
that facilitates communication of state information between
subsystems. The goal of the Model class is two-fold: (i) to
facilitate the composition of multiple dynamic components
that form a soft robotic system, and (ii) to leverage the
dynamic network structure to design controllers through
interconnection of subsystems. For example, a soft robot,
the fluidic actuation, and the model-based controller can be
modeled as three separate entities and be composed into one
global closed-loop system. This approach also enables the
adaptive controllers that require additional state dynamics for
online estimation of parameters. Contact interaction, on the
other hand, are embedded functions inside Fem and Shapes
that are called during each state increment of the forward
dynamic solver.

1) INTERCONNECTED NETWORK OF DYNAMICAL SYSTEMS
The class Model.m allows users to compose an arbitrarily
large network of dynamical systems that are presented in the
state-space structure6i : żi = f i(zi, ui, t). Then, the network

of dynamical systems can written as

6net : ż = Fnet(z, u, t). (24)

The network system matrices are assembled as: Fnet(z) :=
blkdiag(f 1, f 2, . . . , f n). The implementation in Sorotoki
is straightforward. Let f0 = @(z,u,t) ode(z,u,t)
be an anonymous function that defines a state space model,
where z, u, t are the state vector, the input vector, and a time
variable, respectively. In contrast to standard ODE solvers in
MATLAB® (e.g., ode45.m), the input u is treated as an
additional input to the ODE. This simplifies the design of
controllers as it enables the definition of control laws outside
of the ODE function caller, as opposed to the standard ODE
packages in MATLAB®.
To proceed, we first convert the function to a

sys0 = StateSpace(@f0) class, which stores infor-
mation on the state dimension, input dimension, and
numerically computes the Hessian. Then, the model
class is constructed using mdl = Model(@f0). Other
dynamic systems, represented by the StateSpace class
sys1, sys2, and sys3, are added to the network
by mdl.addSystem(sys1,sys2,sys3). The Model
class is also compatible with other classes, such as the Fem
and Shapes class, allowing for example the interconnection
between a FEM model and a soft beam model. To compute
the forward dynamics, we call mdl.simulate([0,T])
which solves the state trajectories on the finite horizon
domain [0,T] using an implicit Trapezoidal solver (i.e.,
similar to ode23t solver).

2) ASSIGNING THE CONTROLLER
Once a network of dynamic systems has been composed
in the Model class, assigning a control is straightfor-
ward. Controllers can be defined as auxiliary anonymous
functions @(mdl) Control(mdl) and added using
mdl.addControl(@Control). At each time instance
of the implicit solver, this controller function is called and
prompted with the current instance of the Model. Once
prompted, the solver retrieves the global input vector u
as in (24). All system information of the network can be
retrieved within the function by mdl.getState[I,J],
where I is the system index and J the indices of the states
of subsystem J. Such implementation presents a highly
dexterous and efficient controller design platform.

3) FLUIDIC RESERVOIR WITH VOLUME-VARIANCE
The majority of soft robots are actuated through fluidics.
In recognition of this, Sorotoki offers a variant of the
StateSpace class, called Fluidic, which incorporates
fluid-pressure dynamics of an enclosed pressure reservoir
based on the ideal gas law. The dynamics of such fluidic
reservoir is determined by the compressibility of the fluid and
the capacitance of the reservoir that is related to its volume
V > 0. As a soft robot deforms, so does its internal volume.
As such, consider a scalar variable J : Q → (0,+∞] such
that we can describe the volume by V (J (q)) = J (q)V0 where

17622 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 15. (top) Experimental snapshots of the open-source soft robotic hand provided by the Sorotoki toolkit. The five-fingered robot is
subjected to a harmonic oscillator that commands oscillatory pressure to the individual fingers. Since each oscillator has a preset phase difference
(φ = π/6), the fingers of the soft robot hand undergo a periodic swinging motion. (bottom) Reconstructed soft robotic hand using Sorotoki, where
each finger is modelled using the Shapes class and then composed using the Model class. Following, each oscillator is added using
‘‘mdl.addSystem’’ and then their ouputs are connected to the inputs of each Shapes class. As can be seen, the dynamics between the numerical
model and the experiments are in close agreement.

V0 is the intrinsic volume. From a physical point of view,
the scalar J (q) can be seen as the relative volumetric change
of the reservoir depending on the state of the soft robot.
Assuming constant temperature T and polytropic coefficient
nk , the pressure dynamics can be described by

ṗ =
nk
V (J)

(
RTṁ−

dV
dJ

(J)J̇ p
)
− µleakp (25)

where the input is ṁ the mass flux into the reservoir, R the
ideal gas constant, and µleak a pressure leakage coefficient.
For a perfectly enclosed system, the parameter µleak = 0.
Note however, that the volumetric change J̇ might not always
be available or it is difficult to derive. As an alternative,
we substitute J̇ with an ‘‘dirty derivative’’ approximation ˙̃J
following the work of Loría [126]:

ż = α1[z+ α2J], (26)
˙̃J = z+ α1 J , (27)

where α1, α2 > 1 are filter gains. Hence, the system of equa-
tions (25), (26), and (27) leads to the full pressure dynamics.
In case of an isochoric compression (i.e., no volume change
V̇ = 0) with J = 1⇒ J̇ = 0, we can revert to a single-input-
single-output (SISO) system with u = ṁ (i.e., the mass flow
ṁ as the system’s input).

REMARK: ON FLUIDIC VOLUMES DERIVED FROM FEM
The Sorotoki toolkit is equipped with functionalities that
provide the volume of enclosed regions of the FEM. When
fem.solve or fem.simulate is called, the time-series
data of these volumes can be stored, and thus can be used to
identify how the state deformation q is related to the volume
change using, e.g., methods of nonlinear regression.

For many control applications for soft robotics, fluidic
reservoirs are internally pressure regulated. Hence, the mass
flow ṁ(p, pd) depends on the internal pressure p and a
(possibly time-varying) pressure trajectory pd . The mass flow
controller of a proportional pressure-regulated reservoir is
modeled here as PI-type controller:

ṁ = 9v(ν, p), (28)

ν = kp(p− pd)+ ki

∫
p(τ)− pd (τ)dτ, (29)

where 9v(ν, p) i a valve flow function related to mass
flow saturation of the pressure valves, and kp, ki > 0
the proportional and integral control gains, respectively.
In Sorotoki, such fluidic system is provided as Fluidic
class. The volume of the reservoir can be set using
Fluidic.setVolume(@V) where V = @(x)... is
an auxiliary anonymous function. The mass flow func-
tion can be modified by the user using a similar com-
mand Fluidic.setMassFlow(@M). By default, the
flow function is 9v(ν, p) = ν, and the regulation
Fluidic.isRegulated = true.

>EXAMPLE: SIMULATION SOFTHAND WITH FLUIDIC FINGERS
To demonstrate the versatility of the Model class and the
Fluidic class, consider the example of modeling the soft
robotic hand previously shown in Figure 1. Prior to the
simulation model, we conducted an experiment to allow a
qualitative comparison with our modeling approach. Here,
a predefined harmonic pressure signal is introduced to each
of the soft fingers, with each harmonic having a +π

6 offset
relative to its neighboring soft finger. The pressure signal is
sinusoidal with an upper and lower bounds of−5 and 80 kPa,
respectively. As depicted in Figure 15, an oscillatory motion
arises, where the fingers sequentially undergo bending.

The objective is to recreate the experimental oscilla-
tory behavior of the soft hand, incorporating the fluid
dynamics and continuum dynamics of the soft fingers.
Each soft finger can be modeled separately using the
Shapes class and its internal fluidic network using the
Fluidic class. We start by sculpting the model for
the soft fingers, assuming a fifth-order Chebyshev poly-
nomial basis and considering planar bending curvature
only. We assume that only the first mode can be actively
controlled by the fluidic network, thus the input map is
manually assigned using Shapes.setInputMap(@(q)
...). The Shapes class is duplicated five times using a
for-loop routine, with the base frame assigned accordingly at
each iteration using Shapes.setBase.

VOLUME 12, 2024 17623

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

For each soft finger, it is assumed that it has its own fluidic
network that is equipped with internal pressure regulation.
However, as each soft finger deforms, the internal volume of
the pressure reservoir also changes. This volumetric change
is modeled as V (α) = V0(1 + tanh(α)), where it is assumed
that α = 0.06 q1 (i.e., the first joint of the soft beam) and
V0 the initial volume. Then, a for-loop is used to include the
both Shapes and Fluidic systems to the network.
Finally, mdl.addControl(@Control) is used to

add the control law. In this auxiliary function, we specify
the pressure reference for the fluidic network, and we return
the state deformations of the soft fingers to the fluidic
network; required for the computation of the volumetric
change. The dynamic simulation is solved implicitly using
the mdl.simulate command. The code for the dynamic
simulation of the soft robotic hand is shown in Figure 15.

As depicted in Figure 15, the dynamics of the numerical
model and the experiments are in close qualitative agreement.
This serves as a testament to the efficacy of the dynamic
model composer Model in building dynamic complexity

through its modular functionalities. Additionally, the ability
to represent the controller as an auxiliary function that
can retrieve state information at any given time confers
Sorotoki with a high degree of flexibility in offline
controller design.

F. FLUIDIC CONTROL HARDWARE
The implementation of online controllers for physical soft
robotic systems is a crucial aspect of Sorotoki. Although
there are various options available in the research commu-
nity [18], Sorotoki has a specific focus on fast closed-loop
control. Drawing from our prior work [127], Sorotoki
incorporates a TCP communication wrapper (tcpip) that
enables real-time communication with a host computer, such
as a Raspberry Pi (RPI). This host computer is connected to
six pressure control boards, each capable of supporting up
to two proportional pressure control valves from Festo. As a
result, Sorotoki offers up to twelve pressure-regulated
control ports with a range of -100 to 100 kPa that can
be directly controlled using script-based programming in
MATLAB®. Its entirety, including the software, is open-
source and readily reproducible by researchers with diverse
backgrounds [127].
By calling brd = Control(‘ip’,’pwd’), connec-

tion with the fluid control platform is establish, where ’ip’
is the IP address and ’pwd’ the password of the RPI.
On the RPI, the Python script ConnectToMatlab.py
must be executed that makes connection with MATLAB
and awaits control commands. To initiate the control
loop, a while-loop is used whose condition statement is
brd.loop(T) where T is finite horizon time. Within the
while-loop, all functionalities of Sorotoki are available,
thus model-based controller design is possible for instance
using the Sdf, Fem, Shapes, Model classes. Each
pressure regulation can be controlled using the command
brd.setInput(id,P) or get pressure measurements
using P = brd.getOutput(id).

> EXAMPLE: PICK-AND-PLACE CONTROL OF SOFT ROBOT
As an example of the capabilities of the fluid control platform,
we used it for a pick-and-place application involving the
aforementioned soft robot manipulator with soft gripper. The
soft robot has four independent pressure inputs: three for
the bellows network embedded into the soft body and one
for the soft gripper. The Sorotoki toolkit communicates
a desired pressure profile to a Raspberry Pi board computer,
which is interfaced with an expandable array of proportional
pressure regulators. As shown in Figure 16, the system
successfully manipulates a 40 mm cylinder of 45 (g) into its
container.

The system has also been successfully simulated using the
Shapes and Model class, shown in Figure 17, where the
cylinder is modeled as a Newton-Euler rigid body system (see
RigidBody preset classes).

17624 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 16. Implementation of open-loop control of a 3D-printed soft robot manipulator with a soft gripper using the Sorotoki toolkit. The soft
robot has four independent pressure inputs: three for the bellows network embedded in the soft body and one for the soft gripper. The Sorotoki
toolkit communicates a desired pressure profile to a Raspberry Pi board computer, which is interfaced with an expandable array of proportional
pressure regulators. A straightforward pick-and-place task can then be easily programmed using the Control interface, using auxiliary MATLAB
functions.

FIGURE 17. Simulation of the soft robot manipulator with gripper using
the Shapes and Model class. The rigid-body is modeled by the
Newton-Euler equation of motions implemented via StateSpace.

G. COMPUTER VISION
The final Object-oriented class addresses the challenge of
soft sensing through vision. The class, named Vision,
can be instantiated using cam = Vision(Id), where
Id is a user-specified index obtained from the cell array
of available webcams using webcamlist. Alternatively,
the Vision class is capable of reading sensor data from
the RealSense D400 series RGB-Depth camera from Intel.
The class is equipped with a suite of vision techniques that
make use of the OpenCV Python implementation. It features
three key functions: (i) extraction of optical markers from
an image using RGB and depth data, (ii) calibration of
the world coordinate frame using Aruco markers, and
(iii) monitoring of a soft robot in real-time using camera
feedback. The detection of color markers utilizes a circular
Hough transform [128], which provides the pixel location of
a circle within the specified search conditions. These tools
provide a broad range of options for state estimation of a
soft robot, which can be easily incorporated into closed-loop
control schemes.

VI. SOFT ROBOTICS STUDY CASES
In the subsequent section, we will dive into the capabilities
of the toolkit. To provide a comprehensive overview of the

toolkit, various problem scenarios will be considered, each
with specific problem settings aimed at the design, modeling,
or control of soft robots. We will also focus on widely cited
papers in the field of soft robotics and demonstrate these,
mostly experimental, works using the Sorotoki.

REMARK ON RESULT REPRODUCIBILITY
We like to emphasize that the full code can be accessed
in the repository under the folder ./examples/paper/,
enabling users of the toolkit to reproduce all presented
simulation results in the following section. Presets are found
under the ./+preset/ folder.

A. MULTI-LEGGED SOFT PASSIVE WALKER
In the first case study, the Sorotoki toolkit will be used to
examine the dynamics of a multi-legged soft passive walker.
The work of Suzumori and Saito [129] served as a key source
of inspiration for this modeling problem. They proposed
using a specialized soft structure that consists of an array of
V-shaped soft legs, which exhibit stable intrinsic locomotion
when placed on an inclined surface. This behavior was
observed in experiments, as shown in Figure 18. The natural
locomotion is driven by the elastic deformations of the
V-shaped legs and their interaction with the environment,
while propelled forward by gravity. To increase the amplitude
of these harmonics, small weights are placed at intermediate
locations on the connecting soft body between the pairs of
V-shaped legs. Each pair of soft legs is tuned to a natural
resonance frequency, and when coupled in parallel through
a central deformable elastic body, synchronization occurs
between the legs during locomotion. In other words, after a
transient period, each leg pair will converge to a similar limit
cycle, but with a phase offset relative to its neighbor(s).

The objective of this study is to reproduce the dynamics of
the soft passive walker described in Suzumori and Saito [129]
using Sorotoki. In the work of Suzumori and Saito [129],

VOLUME 12, 2024 17625

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 18. Snapsnots of the multi-legged passive walker from Suzumori
and Saito [129] can be observed. The soft walker is placed on an inclined
surface with a slope of ϕ = −30◦ and initiates locomotion from an offset
in the gravitational potential. These video frames were captured using a
high-speed camera. Images from Suzumori et al. [129], used with
permission with rights belonging to
2008 IEEE.

the material parameters of the soft passive walker were given
as: Young’s modulus E0 = 1.2MPa, Poisson ratio ν0 = 0.49,
and density ρ0 = 3600 · 10−12 kgmm−3. Since the material
model is not exactly specified in [129], a Neo-Hookeanmodel
was utilized with Rayleigh damping ζ = 1.5.
To design the geometry of the V-shaped soft legs, the

sStrut(V1,V2,W) function was utilized. This function
generates an element of the Sdf class, requiring two nodal
positions V1,V2 and the strut’s width W as input. The
function was used to assemble a pair of legs iteratively,
using the union operator implemented as MATLAB’s ’+’
arithmetic. The legs were then horizontally repeated three
times with a uniform spacing of 25 mm. A coupling soft
body was added, along with two weights at intermediate
locations. The resulting SDF is first converted to an
.png contour image and then imported using msh =
Mesh(‘SDF.png’,’ElementSize’,1.0) to gener-
ate the finite element mesh.

The mesh is then utilized to construct the finite element
model, i.e., fem = Fem(msh). The timestep for the
implicit solver is set at 1t = 0.33 ms, which is set
using fem.setTimeStep(dt). Instead of modeling the
inclined surface, which would also require rotating the
mesh, the direction of the gravitational acceleration vector
is modified as follows: g := Roty(ϕ)ag with ϕ = −π

6
(rad). The gravitational acceleration is then added using
the class function fem.addGravity. The inclined surface
is modeled as a horizontal line SDF, which is used as a
contact environment for the FEMmodel through the function
fem.addContact. It should be noted that in Figure 18,
the soft walker is held in place by two fingers, which results
in initial deformations of the soft body and nonzero initial
conditions for the dynamic locomotion. To account for this,
the mesh is pinned at the grasp locations, and the initial

FIGURE 19. Snaphots of the multi-legged passive walker from Sorotoki.
The experimental setup is similar to that described in [129]. By comparing
the gaits in Fig. 18, a resemblance can be seen between the results
obtained in Sorotoki and those reported in [129]. The Von Mises stresses
are shown as ∈ [0, 100] MPa.

quasi-static deformations are solved for using fem.solve.
Finally, the forward dynamics are solved implicitly using a
Newmark-β solver by calling the routine fem.simulate.

Figure 19 shows snapshots of the dynamic simulation
of the soft passive walker at times corresponding to those
depicted in Figure 18. Although slight deviations are notice-
able, the overall dynamic characteristics of the locomotion
are captured closely by the dynamic FEM model produced
using Sorotoki. To further demonstrate the validity of
the model, a comparison of the rectilinear displacement
of the front leg between the experimental data and the
simulated model is presented in Figure 20. The experimental
data is obtained from [129] and is shown in Figure 20 (in
gray). As demonstrated in the figure, the step-like behavior
is accurately captured by the numerical model, and the
horizontal and vertical distances traveled by the numerical
model (within reasonable discrepancy) qualitatively match
the original experimental data.

To examine the gait cycle, we introduce the state variables
θ1, θ2, θ3 to represent the joint angles between the V-
shaped legs, as depicted in Figure 21. The trajectory of
these angles over a small time window of 200 ms is
shown in Figure 22. The angular movements exhibit a
clear and consistent ‘‘stable’’ gait cycle, indicating that
synchronization indeed occurs between the deformable soft
legs due to their interaction with the deformable soft body.
An analysis of the stable gait cycle reveals a gait period of
approximately Tgait ≈ 47.5 ms or fgait ≈ 21.1 Hz.
The numerical simulations presented in this study have

effectively demonstrated the capabilities of the Sorotoki
framework in accurately capturing the complexities
commonly encountered in dynamic contact analysis of
soft robots. Furthermore, it has been demonstrated that
the methodology proposed by Suzumori and Saito [129]

17626 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 20. Comparison of the front leg rectilinear displacement between
the experimental data obtained from Suzumori and Saito [129] and the
numerical data produced by Sorotoki shows that, although there are
discrepancies, the step-like behavior and the traveled distance in the
horizontal and vertical directions appear to be truthfully captured in
comparison to the original experimental data.

FIGURE 21. Definition of the angular deflection of the three pairs of soft
legs, denoted by θ1, θ2, and θ3, respectively. It should be noted that each
pair has an intrinsic V-shaped structure, thus their stable equilibrium
position during rest is approximately θ⋆

i ≈ 90 ◦. Raw image obtained from
Suzumori and Saito [129], used with copyright permission with rights
belonging to
2008 IEEE.

can be efficiently replicated using a minimal amount of
code, specifically, approximately 30 lines of code within
Sorotoki’s programming language.

B. COMPUTATIONAL DESIGN OF PNEUNET ACTUATOR
In this section, we demonstrate the use of finite element
models to aid in the design of PneuNet actuators, a popular
type of soft robot actuator. PneuNet actuators, which have
been in use since the 1980s (e.g. Teleshev gripper), utilize
a rectangular-shaped actuator with a stiffness differential
to achieve a bending motion. Recent developments in the
field, such as the work of Mosadegh et al. [92] and
Ilievski et al. [130], have proposed a modern variation they
name ‘‘Pneu-Net’’ actuators that incorporate an inextensible
but flexible bottom layer to further enhance the bending
motion. The motion of a soft actuator depends on the
interaction between the soft material, structural geometry,
and the locations where external loads are applied. In their
work, Mosadegh et al. [92] demonstrated the importance

FIGURE 22. Angular deflection of the V-shaped structure of the soft
passive walker, simulated with Sorotoki. A clear gait cycle is observed in
these deflections, indicating synchronization between the deformable
structures due to the coupling of the soft body. By analyzing the stable
gait cycles, a gait period of approximately Tgait ≈ 47.5 ms or
fgait ≈ 21.1 Hz is found.

of geometry in the performance of PneuNet actuators by
proposing a new design, called the fast PneuNet (fPN), that
improved upon the earlier slower PneuNet (sPN) designs
presented in [130]. The fPN design requires less gas for
inflation and thus significantly increases the actuator’s
performance. Design optimization for PneuNets remains an
active area of research, as evidenced by recent studies [65],
[131]. This demonstrates the continued interest in design
optimization of PneuNets, despite decades of research since
its inception.

The purpose of this example is to demonstrate the use of
Sorotoki’s design capabilities to optimize and create a
PneuNet actuator. We will apply an inverse design method to
find the optimal configuration of a soft material that under-
goes pure bending when pressurized. This approach extends
upon the work presented in our earlier work [111]. To extend
of our prior study, we aim to show that the optimized
designs produced through this computational design method
can effectively overcome the Sim2Real hurdles. To find
the optimal material arrangement, we will use a nonlinear
topology optimization technique, specifically designed for
compliant mechanisms applicable to soft materials.

The objective in the nonlinear topology optimization
approach is to find the optimal material distribution ρ⋆

=

argminρ − L⊤x(ρ), where L is a sparse unit vector that
selects the nodal displacements that promote bendingmotion.
Once an optimum is found, the material distribution ρ⋆ can
be transformed into a 3D model and manufactured using a
commercial printable materials, such as Elastic 80A resin
(Formlabs). The optimization algorithm can take into account
the specific mechanical properties of the selected printing
material, allowing for an optimal design that is tailored to the
material properties and design specifications.

To simplify the problem, we consider a single pressure
chamber of the PneuNet actuator. To do this, a rectangular
design domain with a size of 15 × 30 mm is defined using

VOLUME 12, 2024 17627

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 23. Evolution of the topology-based optimization routine in
Sorotoki. At k = 0, we see the initial guess for the PneuNet actuator, and
at k = 100 we see a converged solution of the optimizer. Observe that the
algorithm proposes a solution very similar to the PneuNet, but instead,
it has a teardrop shape rather than the classical rectangular shape. It is
worth mentioning that the optimizer accounts for the hyper-elastic
material properties - in this case, Elastic 80A resin by Formlabs.

a Sdf library within Sorotoki. The Mesh class is then
utilized to generate a mesh, which is used to construct a
finite element model (FEM) using the Fem class. The Fem
class takes several arguments to set up the optimization solver
conditions, including the volume infill, penalty value, filter
radius, time steps, and the maximum number of iterations for
the Method of Moving Asymptotes (MMA).

The initial material distribution is set using the com-
mand fem.initialTopology(sdf) with sdf =
sCircle(5,[7.5,15]), which creates a hole in the
center of the actuator. The center element of the mesh is
designated as an invariant pressure input and influences
neighboring elements that satisfy the void conditions (i.e.,
ρi ≤ ε with ε = 0.1) using an efficient flood-
fill algorithm. The influenced void elements undergo
synchronous volumetric expansion to simulate a positive
pressure load. Given its similarities to muscular contraction,
the syntax for this function is added as fem.addMyocyte.
The material properties of the Elastic 80A resin from
FormLabs are then specified using fem.Material =
Elastic80A [18]. Boundary conditions are added to the
FEM model using the syntax fem.addSupport. Finally,
the optimization routine is started using thefem.optimize
command.

The evolution of the material distribution during the
first 100 optimization steps is depicted in Figure 23.
These interpolated isosurfaces are taken from the discrete
FEM mesh and show the intermediate design solutions.
Surprisingly, the optimization algorithm generates a design
that is reminiscent of the fast PneuNet design presented by
Mosadegh et al. [92], but with a bellows-shaped pressure
chamber in the form of an upside-down teardrop shape.

Next, the focus shifts to validating the optimization results.
The aim is two-fold: (i) to validate that the optimization
algorithm indeed produces the desired bending motion, and
(ii) to verify if the design suggestion can be successfully
transferred to reality (Sim2Real). To do this, the results
of the optimization from fem.optimize are converted
into a triangular mesh using msh = fem.exportMesh.
Then, boundary conditions are assigned, such as a clamped
boundary, gravitational loads, and internal pressure loads

FIGURE 24. Nonlinear finite element simulation of the optimized
PneuNet actuator using Sorotoki. The system is subjected to a linear ramp
upto 80 kPa, and we observe the classical bending behavior of PneuNet
actuators. The Von Mises stresses are shown as ∈ [0, 10] MPa.

FIGURE 25. Validation study of a 3D-printed PneuNet actuator optimized
using Sorotoki. The soft actuator is printed using SLA on a Form3+ printer
using Elastic 80A UV-resin. Similar to the numerical simulations, we vary
the pressure from 0 to 80 kPa with a linear ramp. To measure the planar
displacement, an orange marker is placed such that the Vision class can
be employed.

for each embedded PneuNet chamber. The same material
model for Elastic80A resin is chosen. The quasi-static
FEM simulation results of the optimized PneuNet actuator for
linearly increasing pressure loads of u = 80 kPa are shown
in Figure 24. As can be seen, the desired bending behavior is
achieved in the simulation.

Next, the optimized isosurface shown in Figure 23 can be
transformed into a 3D CAD model and printed as a physical
soft actuator using a Form3+ SLA printer (FormLabs) with
Elastic 80A resin. To validate its performance, the soft
actuator is subjected to a linearly increasing pressure load of
80 kPa in 5s window. As seen in Figure 25, the optimized soft
actuator successfully performs the desired bending motion,
indicating the feasibility of crossing the Sim2Real barrier.

To quantify the discrepancies between the FEMpredictions
and the actual system, an optical marker is placed at
the tip of the soft actuator. The spatial coordinates of
the optical marker are obtained using the Vision class
of Sorotoki, which uses the color-filtered Hough-space
circle transformation to return the pixel coordinates of
the marker. These measurements are collected using a

17628 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 26. Comparison between the numerical simulation in Sorotoki
and the experimental results where the orange marker is tracked using
the Vision.m class is shown. The Von Mises stresses are shown as

∈ [0, 10] MPa. The results indicate a close overall trend between
the simulation and experiment. However, a discrepancy in the initial
deformation (u = 0 kPa) is observed. It is hypothesized that this
discrepancy is attributed to the inherent creep of SLA resin materials,
which leads to a predeformed continuum due to the slow relaxation of
the material prior to actuation.

RealSense D435 RGB-depth camera (Intel). To retrieve the
spatial location of the color marker, we use the command
cam = Vision(‘realsense’) together with the func-
tion cam.getMarker(R,rgb), where R is an estimate of
the color marker radius in pixels, and rgb = [r,g,b] is
the RGB color value of the marker.

The comparison between the FEM predictions and exper-
imental results is presented in Figure 26. The deformation
patterns of the FEM model and the physical system show
close agreement, with an average error of ±2 mm. However,
there is a noticeable difference in the initial conditions,
as shown in Figure 26. For u = 0 kPa, under pure gravita-
tional loads, the deformations deviate significantly. The cause
of this discrepancy is believed to be related to post-curing and
internal stress relaxation of the photopolymerization process.
This suggests that the stress-free configurations of the FEM
model and the physical system may differ, but accounting for
this stress-relaxation phenomenon in photopolymer printing
is outside the scope of this study and the Sorotoki toolkit.

Despite the presence of some differences, the numerical
and experimental examples presented in this study highlight
the ability of the computational design framework within
Sorotoki to generate purposeful and useful material
distributions with limited prior knowledge of conventional
soft robotic design practices. This not only speeds up the
design process, but it also opens up the possibility of creating
new and innovative soft robot forms [111].

C. DYNAMIC GRASPING AND MANIPULATION USING A
HIGHLY DEXTEROUS SOFT GRIPPER
In this section, we will examine the use of reduced-order
models for soft beams within the context of the Sorotoki
software. These models are designed for efficient simulation
by exploring minimal state representations of the dynamics

FIGURE 27. (top) Original pinch and pair-pinch grasping experiments of
the soft gripper published in Suzumori et al. [4]. The high compliance of
each soft finger allows for an adaptive, stable grasp that conforms to the
shape of the rigid object. (bottom) A reconstructed soft gripper using the
Sorotoki framework. To model each soft finger, we utilized the Shapes
class and composed the entire gripper using the Model class. The rigid
objects were modeled using the Sdf class. We observed a close
resemblance between our simulation model and the original experiments
performed by Suzumori et al. in [4]. Used with copyright permission with
rights belonging to
1991 IEEE.

of continuum systems. To demonstrate the capabilities of
the soft beam modeling framework within Sorotoki,
we will consider a specific example of a soft robotic system
proposed by Suzumori et al. in their seminal work [4], [5].
Despite being published in the late 1980s, the work by
Suzumori et al. is still recognized as a seminal contribution
to the field of soft robotics and remains relevant to this day.

In their research, Suzumori et al. developed a highly
dexterous soft gripper consisting of four microfluidic soft
actuators driven by an electro-pneumatic control system.
Each finger has three internal pressure chambers, which
together provide three controllable degrees of freedom at
the fingertip, including pitch, yaw, and linear stretch. Unlike
classic rigid grippers, the soft body of the gripper conforms to
external forces, enabling intrinsic adaptation during grasping
or manipulation tasks. As an illustration of the static grasping
capabilities of this soft gripper, Figure 27 depicts two grasp-
ing configurations: a pinch grasp for a 40 mm diameter glass
beaker (left) and a two-finger pair-pinch grasp for a 5 mm
thick metal wrench (right). Suzumori et al. then employed
inverse kinematic and compliance control to relate the tip
position and compliance to input pressure values. As shown
in Figure 27, they were able to successfully hold and turn a
10 mm hexagonal bolt, with an average speed of 0.25 revolu-
tions per second. Due to the wide range of dexterous actions
performed by the gripper, the soft gripper proposed by [4] and

VOLUME 12, 2024 17629

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

[5] remains a seminal contribution to the field of soft robotics,
demonstrating the potential of the technology.

The objective of this investigation is to replicate the
static grasping and dynamic bolt-screwing experiments as
conducted by Suzumori in their published works [4], [5],
utilizing the Sdf, Shapes, and Model classes available
in the Sorotoki software. The soft gripper’s design
specifications are based on the parameters provided by the
available literature, which comprise a radius of R0 = 6 (mm)
and an assumed length of L0 = 80 (mm) for each finger.
Although the properties of the soft gripper’s material are not
mentioned explicitly, we use a Neo-Hookean model ansatz
to address this issue. The proposed model has an elasticity
modulus of E0 = 1.0 (MPa), Poisson ratio of ν0 = 0.3, and
density of ρ0 = 2000 · 10−12 (kgmm−3). The reduced-order
model for each soft finger in interaction with a rigid object,
denoted by 6SR,i, is described by the following equation:

6SR,i : M (qi)q̈i + h(qi, q̇i) = G(qi)ui + . . .

+

∑
j∈S�env

J⊤v,j(qi)
[
Fn,j(qi)+ F t,j(qi, q̇i)

]
, (30)

where h(qi, q̇i) represents the collection of nonlinear internal
forces, ui is the prescribed pressure input, J v(q) :=

⌊J (L, q)⌋3 is the linear velocity part of the generalized
Jacobian matrix of the tip, S�env represents the nodal indices
that are considered ‘‘in contact’’, and Fn,j = −µedj · en
and F t,j = −µv|Fn,j| sgn(ḋj) · et denoting the normal and
tangent contact forces between the i-th finger and the rigid
object, respectively. The parameters µe, µv > 0 represent
the contact coefficients. The distance between the finger and
the object is given by dj = max

{
0,sdf�env(γ j(q))− rj

}
,

where sdf�env(·) represents the signed distance function of
the inelastic contact object, γ j(q) the finger’s center-curve
position, and rj the radius of the soft finger.
In this study, we utilize a third-order Chebyshev polyno-

mial basis to model the deformation of the pneumatic soft
robot’s finger. The basis is sampled over Np = 100 uniform
nodes and is assembled into a matrix using the command
pod = Basis(100,3,’chebyshev’). It is assumed
that only free strains occur in the bending, while elongation
and torsion are neglected. Each strain mobility vector is char-
acterized by three modes of the Chebyshev basis, specified as
dof = [0,3,3,0,0,0], leaving the κx and κy curvatures
free. The dynamic model for each finger is constructed
using the command shp = Shapes(pod,dof). The
material properties are assigned using shp.Material =
NeoHookean(1.0, 0.3). To set the geometry of each
finger, we call shp.setLength(80) to set its length,
and shp.setGeometry(sCircle(6)) to set a circular
cross-section of radius 6 mm. Each finger of the soft gripper
model is equipped with three fluidic chambers that are
radially distributed along its circumference. As such, the
input map G for each finger becomes a nonlinear, non-
square matrix. We assume that these distributed forces can
be represented by a tangent bundle of linear forces that

are positioned 3 mm away from the center axis. To assign
these forces, the shp.addFluidic(@p) command can
be utilized, which requires an anonymous function @p that
describes the desired motion path of the soft actuator (feed-
forward).

The full soft gripper model, composed of four identical
finger Shapes classes, can be assembled using a for-loop
routine. In this process, a class representing each finger is
copied and assigned a unique SE(3) base frame to each
instance. Each finger is placed in a circular array with a radius
of 37.5 mm relative to the center axis of the gripper body.
The contact domain for each finger is specified using the
method shp.addContact(sdf), where sdf denotes the
signed distance field of the contact object. For the beaker
example, a cylindrical SDFwith dimensions 40×40×60mm
is considered, while for the wrench, a rectangular SDF with
dimensions 5 × 10 × 100 mm is used. Subsequently, each
instance of the Shapes class is appended to the Model class
constructor using the mdl.addSystem(shp).

Once the full model has been assembled, it can be
controlled using a feed-forward controller. In the case of
a static grasping scenario with a glass beaker and wrench,
we apply pressure ramps to each pressure chamber of
the soft gripper through an auxiliary anonymous function,
@(mdl) Control(mdl). The function takes in a time
variable and outputs a column vector of pressure signals,
represented by u = (p1, p2, p3)⊤. The controller is
then assigned to the Model class using the command
mdl.addControl(@Control), which is executed at
each simulation step. The forward dynamics of the soft
gripper’s interaction with the object are implicitly solved
through the mdl.simulate routine. The simulated grasp-
ing configurations are shown in Figure 27. It is evident that
there is close agreement with the experiments in [4] and [5].
Subsequently, we aim to reproduce the hexagonal bolt

screwing experiment of [4] and [5], which involves a more
complex simulation than the previous scenario due to the
dynamic interaction between the environment and the soft
robot. To accurately depict this interaction, we must also
incorporate contact dynamics where we employ signed
distance field to describe the space occupied by the hexagonal
bolt. We assume the bolt’s rotational dynamics can be
described by a mass-damper system, represented by the
following equation:

I� θ̈ = −µ�θ̇ −

Nfinger∑
i=1

∑
j∈S�

r j(qi)× F t,j(qi, q̇i) · e3, (31)

where I� = is the inertia of the hex-bolt,µ� = 2.5 its friction
coefficient, and r the relative position vector from the point
of contact and the central turning axis of the screw. Note that
we only include the tangential force components F t that are
responsible for motion, as the normal forces are assumed to
have a net zero-torque contribution. The model described in
equation (31) is incorporated into the simulation by using the
command mdl.addSystem(@f), where @f(x,u,t) is

17630 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 28. (top) Snapshots of the bolt screwing experiment with the soft gripper, as presented in the work of Suzumori et al. [4], [5]. The soft gripper
periodically switches through a predefined set of configurations, enabling the holding and manipulation of a hexagonal bolt screw. In the experiment,
a bolt turning rate of 0.25 rps was achieved. (bottom) The bolt screwing experiment is reproduced using Sorotoki. In the simulation, each finger is
modeled utilizing the class Shapes and assembled together into Model. The contact interaction with the bolt is modeled using signed distance functions,
and a rotational mass-damper model is used to describe the dynamics of the bolt. By utilizing solely the frictional interaction between the fingers and
the screw, the experiment of Suzumori et al. is successfully reproduced.

an anonymous function that represents the state space. The
required input u for equation (31) is connected to the soft
gripper by utilizing the mdl.addControl(@Control)
command, which inputs tangential reaction forces into the
screw model. The controller also includes the prescribed
pressure profile p1,2,3 for each of the four soft fingers.

The qualitative comparison between the experiments
conducted by Suzumori et al. [4], [5] and our surrogate
model made using Sorotoki is depicted in Figure 28.
In the simulation of the Suzumori soft gripper’s screwing
experiment, similar to the simulation of the static object
grasping scenario, we observe that the qualitative behavior
reflects the real-world experiment conducted in the 1980s.
The soft finger exhibits similar deformation characteristics,
and we also observe the step-like turning of the bolt screw,
as reported in [5]. To highlight these rotational trajectories,
we present the rotation angle θ (t) in Figure 29, which shows
that an average bolt-screwing speed of 0.16 rps is achieved.
Although this rate is slightly slower than the reported rate
of 0.25 rps, it is believed that the underlying morphological
characteristics are accurately captured. Note that although the
system is of highly complex nature, the simulation program
contains less than 100 lines of code (including visualization).

D. IMPEDANCE CONTROL OF SOFT ROBOT WITH STATIC
ENVIRONMENT INTERACTIONS
The subsequent section will focus on the development of
controllers utilizing the Model and Shapes classes. In prior
experiments, the Suzumori et al. gripper was governed in
an open-loop fashion, with complications arising from the
interplay between the model and dynamic object. Our inves-
tigation will now examine the feasibility of model-derived
controllers in the Sorotoki scenario, drawing upon
Della Santina et al.’s work [118] as a prospective case study.
Their work presents the design of model-based con-

trollers for soft robot manipulators, highlighting two control

FIGURE 29. The evolution of the hexagonal bolt angle θ(t) is depicted,
where the stair-like trajectory of the screwing motion, as observed in
Suzumori’s experiment, is apparent. Through careful parameter and input
shaping, a bolt-screwing motion of 0.16 rps was achieved. This is slightly
slower than the reported rate of 0.25 rps, however, the underlying
morphological characteristics (stair-case pattern) are accurately captured.

architectures: dynamic tracking and surface tracking. The
authors proposed a Cartesian impedance controller for the
latter architecture, which actively regulates the desired
compliance behavior of the soft robot’s end-effector in a static
environment. Additionally, the work presented a contact path
planning algorithm that initially brings the robot close to
a desired setpoint on the surface (Phase 1: Approach), and
then adjusts the setpoint to maintain contact with the surface
(Phase 2: Explore). The proposed controller was evaluated
both numerically and experimentally on a six-link soft robot
manipulator. They demonstrated that model-based control
can significantly improve the soft robotic performance
compared to open-loop.

To maintain high computational bandwidth, the impedance
controllers used in Della Santina et al.’s study [118] incor-
porate an augmented rigid body model. This model employs
Constant-Curvature (i.e. PCC) kinematics to approximate
the center of mass of the continuously deformable robot
by projecting its mass distribution into a lumped mass

VOLUME 12, 2024 17631

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 30. (top) Original experimental results presented in the work of Della Santina et al. [118] show a six-link soft manipulator controlled by
the control law described in (32). The manipulator is in contact with a static environment. The controller first ensures that the soft robot
approaches the environment (Phase 1: Approach) and then follows the rigid wavy surface (Phase 2: Explore). (bottom) The numerical simulations
performed using the Sorotoki toolkit are inspired by the work of Santina et al. [118]. In the simulation, the active setpoints are denoted by (•) and
the de-activated setpoints are denoted by (•). The end-effector trajectory is shown in (--) and the environment is shown in (--). The results of the
simulation truthfully reflect the approaching and surface tracking behavior as seen in the experiments. Used with copyright permission with rights
belonging to Sage Journals.

description. This leads to an Euler-Lagrangian representation
similar to the commonly used Denavit-Hartenberg (DH)
parametrization models in rigid robotics. Moreover, this
approach maintains classical properties, such as positive
semi-definiteness of the inertia matrix and passivity proper-
ties, which are highly sought after for stability analysis.

Our aim in this section is to replicate the results of
the closed-loop controlled multi-link soft robot during
dynamic contact that were presented in the study by Della
Santina et al. [118]. Instead of employing the augmented rigid
body model used in their work, we explore a reduced-order
beam model, in which each link is represented as an inexten-
sible, distributed-mass PCC segment. Our approach extends
their work to a distributed mass robotic system. As a template
for the soft manipulator model, we use a Shapes tem-
plate underpreset.shapes.katzschmann. According
to [118], each CC segment of the soft manipulator has
an intrinsic length of δL0 = 60 mm and a mass of
m0 = 334 g. The robot has a rounded rectangular
cross-section of 60 × 20 mm, which is described using
sdf = sSquircle. The density of the soft robot manip-
ulator, given its length and geometry, is approximated to be
ρ0 = 1200 · 10−12 (kgmm−3).

A crucial aspect of the simulation is the dynamic interac-
tion with the environment. Therefore, a static environment
must be assigned to the dynamic model. While [118] presents
multiple examples of line contact, this study focuses on the
experiment with a 40◦ slanted surfacewithwave indentations,
as shown in Figure 30. The surface features were extracted
from the image data presented in [118] and the env =
sPolyLine(V) function was used to generate the SDF
environment, where V is a polyline vector. The environment

is then added using Shapes.addContact(env). Once
all settings are assigned to the class Shapes, the model is
constructed by mdl = Model(Shapes).

Given the Model class, we can now start deriving a
contact-aware control law. For conciseness, let J (q) :=
J (L, q) be the geometric Jacobian of the end-effector.We also
introduce the Cartesian inertia matrix as3 := (J⊤M−1J⊤)−1.
Then, the proposed Cartesian stiffness controller given
in [118] can be written as:

τ = J⊤
[
J+⊤M f e + f g + J⊤ηC (I − J

+⊤

M J)q̇+ . . .

+ J⊤(K c(γ d − γ L)− DcJ q̇)
]
, (32)

where γ d and γ L represent the desired and true end-
effector positions, respectively; and K c and Dc are the
desired stiffness and damping of the end-effector. The
closed-loop controller employs a so-called ‘‘dynamically
consistent pseudo-inverse’’ of the Jacobian, denoted as J+M ,
which is defined as J+M := M−1J⊤3. The controller also
utilizes the Cartesian Coriolis terms, denoted as ηC (q, q̇),
which are expressed in the Cartesian frame and given by:

ηC = 3(JM−1C − J̇). (33)

The closed-loop controller, implemented as an anonymous
function, is derived from four system matrices: the inertia
matrix M (q), the Coriolis matrix C(q, q̇), the Jacobian J ,
and its time derivative J̇ . In Sorotoki, these matrices
are automatically computed at each solver step and stored
in a data structure under shp.system. The closed-loop
controller can access this data structure at any time.

It is noteworthy that the controller above uses the
command shp.system.fContact (i.e., contact forces)

17632 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 31. The end-effector trajectories of the six-link soft manipulator,
where {--, --} denote the horizontal and vertical position, respectively.
The setpoints assigned by the controller are indicated by the dashed
lines. Note that at t ≈ 0.88 s, the point of contact, the controller switches
setpoint.

FIGURE 32. State evolutions of the six-link soft manipulator, where the
states represent the planar curvature of each individual soft link.

to detect if the robotic system is in contact. Similar to path
planning in [118], upon contact, a new desired equilibrium
position is adopted. These desired equilibrium positions for
the end-effector are in line with the approach presented
in [118]. Subsequently, the implicit solver is invoked by
calling mdl.simulate to solve the closed-loop dynamics.
Snapshots of the dynamics have been presented in Figure 30
which are produced by calling the function shp.render.
Figure 31 shows the trajectory of the end-effector (dashed
lines are the desired setpoints), Figure 32 shows the evolution
of the states, and Figure 33 shows the control action τ

from (32).
When comparing the experimental results reported by

Della Santina et al. [118] and the numerical simulations
produced by Sorotoki, we observe qualitative similarities
in the deformation characteristics. Most notably, the numer-
ical implementation of the impedance Cartesian stiffness
controller also follows the inclined surface until the setpoint
is reached. These similarities highlight the reliability of
Sorotoki in accurately reflecting true soft robotic systems,
even in closed-loop scenarios.

E. CONTACT ROBUST SHAPE SENSING OF SOFT PNEUNET
USING A FEM-BASED MODAL BASIS
In the next section, our focus shifts from simulation to the
experimental domain. Our primary focus will be on the

FIGURE 33. The control inputs τ in mNm produced by the control law
in (32) exhibit a significant peak at the point of contact. This is due to two
factors: (i) the sudden change of setpoint and (ii) the switch in control
strategy to accommodate for compliance.

Vision and Control classes, and we aim to provide
experimental validation for the Data-driven Variable Strain
(DVS) basis approach detailed in Section V-D3. The objec-
tives of this study case are (i) to derive a finite-dimensional
Cosserat beam model of the PneuNet actuator and (ii) to
implement a real-time shape sensing algorithm that is robust
against external forces through the exploration of model
information.

We begin our investigation by conducting a nonlinear
dynamics analysis of a soft PneuNet actuator, the geometry
of which has been selected to match that described in
the work of Mosadegh et al. [92]. The soft actuator is
suspended vertically in order to produceminimal deformation
under zero-input conditions. In pursuit of high-accuracy
simulation, we first perform a Finite Element simulation.
The generation of the mesh is performed using the preset
library msh = preset.mesh.pneunet, which utilizes
an image of a PneuNet cross-section for mesh generation.
The finite element model is then formed using fem =
Fem(msh), and the appropriate material properties (i.e.,
Dragonskin10) and boundary conditions are assigned. The
system is subjected to a linearly increasing and decreasing
pressure ramp of 40 (kPa), and the dynamics are solved using
fem.simulate. In accordance with the procedure outlined
in Section V-D3, a third-order DVS basis for pure bending is
then constructed, which are used to construct the Shapes
class. The curvature-bending modes are shown in Figure 34.

To implement a real-time estimation algorithm, we can
utilize the Shapes class. This can be achieved by
employing the inverse kinematics algorithm described in
Section V-D6. The algorithm can be invoked using the
function Shapes.solveIK(pos, q0), where pos rep-
resents the measured tip position, and q0 is an optional
initial estimate. The inverse kinematics solver is then called
repeatedly within the real-time control loop. To ensure that
the inverse kinematics solution aligns with the true system
behavior, we also incorporate a null-space subtask projection.
In this case, the gradient of the subtask is assumed to be
∇9sub(q) = Kq+ fg(q)− G(q)u, where u = 30 · sat [sin(t)]
(kPa) represents the prescribed pressure input assigned by

VOLUME 12, 2024 17633

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

FIGURE 34. (top) The first three DVS modes of the soft PneuNet actuator
in vertical hanging condition, where the ordering is {--,--,--}. (bottom)
The respective deformation for each strain mode of the PneuNet actuator.
Note that these differ from the DVS basis in Section V-D3.

FIGURE 35. Real-time shape estimation using the Shapes inverse
kinematics algorithm in combination with the Data-driven Variable Strain
(DVS) basis. The reconstructed backbone curve is depicted in (--). Despite
the presence of substantial contact forces on the soft actuator, the shape
estimation algorithm accurately reflects the behavior of the real soft
robotic system. Due to the relatively small state dimension of dim(q) = 3,
the algorithm achieves a bandwidth of +60 Hz.

the open-loop controller. This subtask serves to minimize
the internal residual forces and can be seen as a quasi-static
deformation solver guided by camera measurements; and
is added to Shapes.system.SubTask. It is important
to note that the model parameters have been pre-tuned to
align with the experimental system presented in Figure 35.
However, certain initial estimates of the system parameters
have been used, which are derived from the finite element
model.

To instantiate the camera class, we call cam =
Vision(‘realsense’) and establish a Secure Shell
(SSH) connection with the control platform through
brd = Control(‘ip’,’pwd’). Once the connection
with the control platform is established, an online while-
loop containing the necessary shape estimation algorithms
is executed.

Figure 35 shows the experiment and overlayed on top are
the real-time shape estimations from the inverse kinematics

FIGURE 36. Evolution of the state estimations during the PneuNet
experiment, where the ordering is given by {--,--,--}. Note that the
joint variables represent the modal coefficients of the DVS basis related
to curvature-bending.

algorithm that uses the Data-driven Variable Strain (DVS)
basis. Figure 36 shows the state trajectories and the time
instance of contact. Despite the significant impact of contact
forces on the soft actuator, the shape estimations qualitatively
matches the deformation profile of the real soft robotic
system. This is due to its low state dimension of dim(q) = 3,
enabling it to achieve a bandwidth of +60 Hz with ease.

VII. CONCLUSION AND FUTURE WORK
This paper introduces Sorotoki, an open-source toolkit
in MATLAB, that provides a comprehensive and modular
programming environment to address the complex interde-
pendencies associated with the design and control of soft
robots. The toolkit consists of seven Object-Oriented classes
that work together to solve a wide range of soft robotic
problems. We hope that the versatility and flexibility of
Sorotoki make it a valuable resource for researchers
and practitioners in the field of soft robotics. The toolkit’s
effectiveness has been demonstrated through various case
studies covering a broad range of soft robotics issues,
including inverse design of soft actuators, passive and active
soft locomotion, object manipulation with soft grippers,
meta-materials, model reduction, model-based control of soft
robots, and shape estimation.

A unique aspect of this software package is that it does
not follow the traditional linear relationship between the
complexity of soft robotics systems and the length of code
required to represent them. Instead, complex system behavior
can be effectively modeled using a minimal number of
lines of code. The Sorotoki software package stands out
for its ability to succinctly represent complex soft robotics
systems. Despite the intricacy of soft robotics, the accom-
panying software package is highly effective in modeling
complex system behavior with minimal code, making it
accessible even to individuals with limited programming
knowledge. Furthermore, the toolkit provides access to
four open-hardware soft robotic systems that can be easily
fabricated using commercially available 3D printers.

Nevertheless, the Sorotoki framework presents oppor-
tunities for improvement and expansion to enhance its com-
prehensiveness, extensiveness, and achieve faster simulation

17634 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

times. This is particularly crucial in the field of control and
optimization, where computational performance is often a
challenge. The current software package addresses this chal-
lenge by converting MATLAB code to its equivalent in c++
using mex compilation. This enables real-time computation;
however, the resulting .mex functions may have limitations
due to inadequate memory allocation and a lack of parallel
processing, leading to subpar performance. To overcome
these limitations, an alternative solution worth exploring
could be to utilize other programming languages known
for better computational performance, such as Python (via
pybind) and Julia. These languages have a strong open-
access community, which may provide enhanced support
and resources for optimizing the framework’s computational
performance.

On a concluding note, we would like to emphasize that any
form of contribution is greatly appreciated. Our framework
is envisioned as a collaborative effort between and for the
soft robotics community. Researchers who are interested
in contributing are welcome to reach out to the authors.
Different forms of contributions are possible and more
information can be found on the repository. Additionally,
while we strive to maintain the framework to be as error-free
as possible, in case of exceptions during execution or any
concerns regarding accuracy or implementation, please do not
hesitate to contact us directly or through the issue tracker on
the repository.

ACKNOWLEDGMENT
The authors would like to extend their gratitude to M. Meyer
for her support with the preparation of the STLmodels for the
soft hand, B. Proper for his support and expertise on Additive
Manufacturing, and I. Kuling for the resources regarding soft
material 3D printing through the ReShape Lab resources.

REFERENCES
[1] J. F. Wilson and U. Mahajan, ‘‘The mechanics and positioning of highly

flexible manipulator limbs,’’ J. Mech., Transmiss., Autom. Des., vol. 111,
no. 2, pp. 232–237, Jun. 1989.

[2] S.Weisburd, ‘‘The muscular machinery of tentacles, trunks and tongues,’’
Sci. News, vol. 133, no. 13, p. 204, Mar. 1988.

[3] J. F. Wilson and N. Inou, ‘‘Bellows-type springs for robotics,’’ in
Proc. Adv. Spring Technol. JSSE 60th Anniversary Int. Symp, 2007,
pp. 109–119.

[4] K. Suzumori, S. Iikura, and H. Tanaka, ‘‘Development of flexible
microactuator and its applications to robotic mechanisms,’’ in Proc. IEEE
Int. Conf. Robot. Autom., Jan. 1991, pp. 1622–1627.

[5] K. Suzumori, S. Iikura, and H. Tanaka, ‘‘Applying a flexible microac-
tuator to robotic mechanisms,’’ IEEE Control Syst. Mag., vol. 12, no. 1,
pp. 21–27, Feb. 1992.

[6] C. Della Santina, M. G.Catalano, and A. Bicchi, ‘‘Soft robots,’’ in
Encyclopedia of Robotics, M. H. Ang, O. Khatib, and B. Siciliano, Eds.
Berlin, Germany: Springer, 2020, pp. 1–15.

[7] D. Rus and M. T. Tolley, ‘‘Design, fabrication and control of soft robots,’’
Nature, vol. 521, no. 7553, pp. 467–475, May 2015.

[8] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida,
‘‘Soft manipulators and grippers: A review,’’ Frontiers Robot. AI, vol. 3,
p. 69, Nov. 2016.

[9] A. D. Marchese, R. K. Katzschmann, and D. Rus, ‘‘A recipe for soft
fluidic elastomer robots,’’ Soft Robot., vol. 2, no. 1, pp. 7–25, Mar. 2015.

[10] N. R. Sinatra, C. B. Teeple, D. M. Vogt, K. K. Parker, D. F. Gruber, and
R. J. Wood, ‘‘Ultragentle manipulation of delicate structures using a soft
robotic gripper,’’ Sci. Robot., vol. 4, no. 33, Aug. 2019, Art. no. eaax5425.

[11] K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov,
R. J. Wood, and D. F. Gruber, ‘‘Soft robotic grippers for biological
sampling on deep reefs,’’ Soft Robot., vol. 3, no. 1, pp. 23–33, Mar. 2016.

[12] S. Li, D. M. Vogt, D. Rus, and R. J. Wood, ‘‘Fluid-driven origami-
inspired artificial muscles,’’ Proc. Nat. Acad. Sci. USA, vol. 114, no. 50,
pp. 13132–13137, Dec. 2017.

[13] N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver,
B. Mosadegh, K. Bertoldi, G. M. Whitesides, and R. J. Wood, ‘‘A 3D-
printed, functionally graded soft robot powered by combustion,’’ Science,
vol. 349, no. 6244, pp. 161–165, Jul. 2015.

[14] E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura,
‘‘A soft robot that navigates its environment through growth,’’ Sci. Robot.,
vol. 2, no. 8, Jul. 2017, Art. no. eaan3028.

[15] X. Chen, F. Zhou, G. Li, X. Cao, and T. Li, ‘‘Self-powered soft robot
in the Mariana trench,’’ Chin. Sci. Bull., vol. 67, no. 23, pp. 2697–2699,
Aug. 2022.

[16] M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner,
M. Karpelson, R. J. Wood, and G.M.Whitesides, ‘‘A resilient, untethered
soft robot,’’ Soft Robot., vol. 1, no. 3, pp. 213–223, Sep. 2014.

[17] T. J. Wallin, J. Pikul, and R. F. Shepherd, ‘‘3D printing of soft robotic
systems,’’ Nature Rev. Mater., vol. 3, no. 6, pp. 84–100, May 2018.

[18] M. S. Xavier, C. D. Tawk, A. Zolfagharian, J. Pinskier, D. Howard,
T. Young, J. Lai, S. M. Harrison, Y. K. Yong, M. Bodaghi, and
A. J. Fleming, ‘‘Soft pneumatic actuators: A review of design, fabrica-
tion, modeling, sensing, control and applications,’’ IEEE Access, vol. 10,
pp. 59442–59485, 2022.

[19] J. D. Hubbard, R. Acevedo, K. M. Edwards, A. T. Alsharhan, Z. Wen,
J. Landry, K. Wang, S. Schaffer, and R. D. Sochol, ‘‘Fully 3D-printed soft
robots with integrated fluidic circuitry,’’ Sci. Adv., vol. 7, no. 29, Jul. 2021,
Art. no. eabe5257.

[20] M.Wehner, R. L. Truby, D. J. Fitzgerald, B.Mosadegh, G.M.Whitesides,
J. A. Lewis, and R. J. Wood, ‘‘An integrated design and fabrication
strategy for entirely soft, autonomous robots,’’Nature, vol. 536, no. 7617,
pp. 451–455, 2016, doi: 10.1038/nature19100.

[21] F. Renda, F. Boyer, J. Dias, and L. Seneviratne, ‘‘Discrete cosserat
approach for multisection soft manipulator dynamics,’’ IEEE Trans.
Robot., vol. 34, no. 6, pp. 1518–1533, Dec. 2018.

[22] X. An, Y. Cui, H. Sun, Q. Shao, and H. Zhao, ‘‘Active-cooling-in-the-
loop controller design and implementation for an SMA-driven soft robotic
tentacle,’’ IEEE Trans. Robot., vol. 39, no. 3, pp. 2325–2341, Jan. 2023.

[23] G. Vantomme, L. C. M. Elands, A. H. Gelebart, E. W. Meijer,
A. Y. Pogromsky, H. Nijmeijer, and D. J. Broer, ‘‘Coupled liquid
crystalline oscillators in Huygens’ synchrony,’’ Nature Mater., vol. 20,
pp. 1702–1706, Dec. 2021.

[24] J. Fras and K. Althoefer, ‘‘Soft biomimetic prosthetic hand: Design,
manufacturing and preliminary examination,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 1–6.

[25] V. Falkenhahn, T. Mahl, A. Hildebrandt, R. Neumann, and O. Sawodny,
‘‘Dynamic modeling of bellows-actuated continuum robots using the
Euler–Lagrange formalism,’’ IEEE Trans. Robot., vol. 31, no. 6,
pp. 1483–1496, Dec. 2015.

[26] J. Tapia, E. Knoop, M. Mutný, M. A. Otaduy, and M. Bächer,
‘‘MakeSense: Automated sensor design for proprioceptive soft robots,’’
Soft Robot., vol. 7, no. 3, pp. 332–345, Jun. 2020.

[27] L. Teng, K. Jeronimo, T. Wei, M. P. Nemitz, G. Lyu, and A. A. Stokes,
‘‘Integrating soft sensor systems using conductive thread,’’ J. Micromech.
Microeng., vol. 28, no. 5, May 2018, Art. no. 054001.

[28] Y.-L. Park, B.-R. Chen, and R. J. Wood, ‘‘Design and fabrica-
tion of soft artificial skin using embedded microchannels and liq-
uid conductors,’’ IEEE Sensors J., vol. 12, no. 8, pp. 2711–2718,
Aug. 2012.

[29] T. Baaij, M. K. Holkenborg, M. Stölzle, D. van der Tuin, J. Naaktgeboren,
R. Babuška, and C. Della Santina, ‘‘Learning 3D shape proprioception
for continuum soft robots with multiple magnetic sensors,’’ Soft Matter,
vol. 19, no. 1, pp. 44–56, 2023.

[30] E. H. Skorina, M. Luo, W. Tao, F. Chen, J. Fu, and C. D. Onal,
‘‘Adapting to flexibility: Model reference adaptive control of soft bending
actuators,’’ IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 964–970,
Apr. 2017.

VOLUME 12, 2024 17635

http://dx.doi.org/10.1038/nature19100

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

[31] K. C. Galloway, Y. Chen, E. Templeton, B. Rife, I. S. Godage, and
E. J. Barth, ‘‘Fiber optic shape sensing for soft robotics,’’ Soft Robot.,
vol. 6, no. 5, pp. 671–684, Oct. 2019.

[32] C. Armanini, F. Boyer, A. T. Mathew, C. Duriez, and F. Renda, ‘‘Soft
robots modeling: A structured overview,’’ IEEE Trans. Robot., vol. 39,
no. 3, pp. 1728–1748, Jan. 2023.

[33] C. Della Santina, C. Duriez, and D. Rus, ‘‘Model-based control of soft
robots: A survey of the state of the art and open challenges,’’ IEEEControl
Syst., vol. 43, no. 3, pp. 30–65, Jun. 2023.

[34] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. New York, NY, USA: Wiley, 2006.

[35] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation, vol. 29. Boca Raton, CA, USA: CRC Press, 1994.

[36] E. Milana, F. Stella, B. Gorissen, D. Reynaerts, and C. Della Santina,
‘‘Model-based control can improve the performance of artificial cilia,’’ in
Proc. IEEE 4th Int. Conf. Soft Robot. (RoboSoft), Apr. 2021, pp. 527–530.

[37] C. Della Santina and D. Rus, ‘‘Control oriented modeling of soft robots:
The polynomial curvature case,’’ IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 290–298, Apr. 2020.

[38] M. Trumic, C. Della Santina, K. Jovanovic, and A. Fagiolini, ‘‘Adaptive
control of soft robots based on an enhanced 3D augmented rigid robot
matching,’’ IEEE Control Syst. Lett., vol. 5, no. 6, pp. 1934–1939,
Dec. 2021.

[39] A. Kazemipour, O. Fischer, Y. Toshimitsu, K. W. Wong, and
R. K. Katzschmann, ‘‘Adaptive dynamic sliding mode control of soft
continuum manipulators,’’ in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2022, pp. 3259–3265.

[40] M. Hofer, L. Spannagl, and R. D’Andrea, ‘‘Iterative learning control for
fast and accurate position tracking with an articulated soft robotic arm,’’
2019, arXiv:1901.10187.

[41] E. Franco and A. Garriga-Casanovas, ‘‘Energy-shaping control of soft
continuum manipulators with in-plane disturbances,’’ Int. J. Robot. Res.,
vol. 40, no. 1, pp. 236–255, Jan. 2021.

[42] E. Franco and A. Astolfi, ‘‘Energy shaping control of underactuated
mechanical systems with fluidic actuation,’’ Int. J. Robust Nonlinear
Control, vol. 32, no. 18, pp. 10011–10028, Dec. 2022.

[43] H.-S. Chang, U. Halder, C.-H. Shih, N. Naughton, M. Gazzola, and
P. G. Mehta, ‘‘Energy-shaping control of a muscular octopus arm moving
in three dimensions,’’ Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 479,
no. 2270, Feb. 2023, Art. no. 20220593.

[44] P. Borja, A. Dabiri, and C. Della Santina, ‘‘Energy-based shape regulation
of soft robots with unactuated dynamics dominated by elasticity,’’ inProc.
IEEE 5th Int. Conf. Soft Robot. (RoboSoft), Apr. 2022, pp. 396–402.

[45] P. Schegg, E. Ménager, E. Khairallah, D. Marchal, J. Dequidt, P. Preux,
and C. Duriez, ‘‘SofaGym: An open platform for reinforcement learning
based on soft robot simulations,’’ Soft Robot., vol. 10, no. 2, pp. 410–430,
Apr. 2023.

[46] A. Tekinalp, S. H. Kim, Y. Bhosale, T. Parthasarathy, N. Naughton,
I. Nasiriziba, S. Cui, M. Stölzle, C.-H. Shih, and M. Gazzola, ‘‘Gaz-
zolaLab/pyelastica: v0.3.1,’’ Zenodo, May 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7931429

[47] P. Hyatt, C. C. Johnson, and M. D. Killpack, ‘‘Model reference predictive
adaptive control for large-scale soft robots,’’ Frontiers Robot. AI, vol. 7,
Oct. 2020, Art. no. 558027.

[48] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, ‘‘Data-
driven control of soft robots using Koopman operator theory,’’ IEEE
Trans. Robot., vol. 37, no. 3, pp. 948–961, Jun. 2021.

[49] S. Kriegman, D. Blackiston, M. Levin, and J. Bongard, ‘‘A scalable
pipeline for designing reconfigurable organisms,’’ Proc. Nat. Acad. Sci.
USA, vol. 117, no. 4, pp. 1853–1859, Jan. 2020.

[50] C. Duriez, ‘‘Control of elastic soft robots based on real-time finite
element method,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2013,
pp. 3982–3987.

[51] E. Coevoet, T. Morales-Bieze, F. Largilliere, Z. Zhang, M. Thieffry,
M. Sanz-Lopez, B. Carrez, D. Marchal, O. Goury, J. Dequidt, and
C. Duriez, ‘‘Software toolkit for modeling, simulation, and control of soft
robots,’’ Adv. Robot., vol. 31, no. 22, pp. 1208–1224, Nov. 2017.

[52] N. H. Kim, Introduction Analysis Finite Element to Nonlinear. Cham,
Switzerland: Springer, 2018.

[53] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach
for Engineering Science, vol. 37, no. 4. Heidelberg, Germany: Kluwer,
Jul. 2002.

[54] O. Goury and C. Duriez, ‘‘Fast, generic, and reliable control and
simulation of soft robots using model order reduction,’’ IEEE Trans.
Robot., vol. 34, no. 6, pp. 1565–1576, Dec. 2018.

[55] P. Benner, E. Sachs, and S. Volkwein, ‘‘Model order reduction for PDE
constrained optimization,’’ Int. Ser. Numer. Math., vol. 165, pp. 303–326,
Jan. 2014.

[56] P. Astrid, S. Weiland, K. Willcox, and T. Backx, ‘‘Missing point
estimation in models described by proper orthogonal decomposition,’’
IEEE Trans. Autom. Control, vol. 53, no. 10, pp. 2237–2251, Nov. 2008.

[57] M. Thieffry, A. Kruszewski, T.-M. Guerra, and C. Duriez, ‘‘Trajectory
tracking control design for large-scale linear dynamical systems with
applications to soft robotics,’’ IEEE Trans. Control Syst. Technol., vol. 29,
no. 2, pp. 556–566, Mar. 2021.

[58] K.Wu and G. Zheng, ‘‘FEM-based gain-scheduling control of a soft trunk
robot,’’ IEEERobot. Autom. Lett., vol. 6, no. 2, pp. 3081–3088, Apr. 2021.

[59] J. I. Alora,M. Cenedese, E. Schmerling, G. Haller, andM. Pavone, ‘‘Data-
driven spectral submanifold reduction for nonlinear optimal control of
high-dimensional robots,’’ 2022, arXiv:2209.05712.

[60] S. Tonkens, J. Lorenzetti, and M. Pavone, ‘‘Soft robot optimal control via
reduced order finite element models,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2021, pp. 12010–12016.

[61] R. K. Katzschmann,M. Thieffry, O. Goury, A. Kruszewski, T.-M. Guerra,
C. Duriez, and D. Rus, ‘‘Dynamically closed-loop controlled soft robotic
arm using a reduced order finite element model with state observer,’’
in Proc. 2nd IEEE Int. Conf. Soft Robot. (RoboSoft), Apr. 2019,
pp. 717–724.

[62] K.MMoerman, ‘‘GIBBON: The geometry and image-based bioengineer-
ing add-on,’’ J. Open Source Softw., vol. 3, no. 22, p. 506, Feb. 2018.

[63] S. A. Maas, B. J. Ellis, G. A. Ateshian, and J. A. Weiss, ‘‘FEBio: Finite
elements for biomechanics,’’ J. Biomechanical Eng., vol. 134, no. 1,
Jan. 2012, Art. no. 011005.

[64] L. Smith, J. Haimes, and R. MacCurdy, ‘‘Stretching the boundary: Shell
finite elements for pneumatic soft actuators,’’ in Proc. IEEE 5th Int. Conf.
Soft Robot. (RoboSoft), Apr. 2022, pp. 403–408.

[65] L. Smith, T. Hainsworth, J. Haimes, and R. MacCurdy, ‘‘Automated
synthesis of bending pneumatic soft actuators,’’ in Proc. IEEE 5th Int.
Conf. Soft Robot. (RoboSoft), Apr. 2022, pp. 358–363.

[66] V. G. Kamble, J. Mersch, M. Tahir, K. W. Stöckelhuber, A. Das,
and S. Wießner, ‘‘Development of liquid diene rubber based highly
deformable interactive fiber-elastomer composites,’’ Materials, vol. 15,
no. 1, p. 390, Jan. 2022.

[67] L. Smith and R. MacCurdy, ‘‘SoRoForge: End-to-end soft actuator
design,’’ IEEE Trans. Autom. Sci. Eng., 2023.

[68] J. Hiller and H. Lipson, ‘‘Dynamic simulation of soft multimaterial 3D-
printed objects,’’ Soft Robot., vol. 1, no. 1, pp. 88–101, Mar. 2014.

[69] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, ‘‘Unshackling
evolution: Evolving soft robots with multiple materials and a powerful
generative encoding,’’ in Proc. GECCO 15th Annu. Conf. Genetic Evol.
Comput. New York, NY, USA: Association for Computing Machinery,
2013, pp. 167–174.

[70] J. S. Bhatia, H. Jackson, Y. Tian, J. Xu, and W. Matusik, ‘‘Evolu-
tion gym: A large-scale benchmark for evolving soft robots,’’ 2022,
arXiv:2201.09863.

[71] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu,
D. Rus, and W. Matusik, ‘‘ChainQueen: A real-time differentiable
physical simulator for soft robotics,’’ in Proc. Int. Conf. Robot. Autom.
(ICRA), May 2019, pp. 6265–6271.

[72] M. A. Graule, T. P. McCarthy, C. B. Teeple, J. Werfel, and R. J. Wood,
‘‘SoMoGym: A toolkit for developing and evaluating controllers and
reinforcement learning algorithms for soft robots,’’ IEEE Robot. Autom.
Lett., vol. 7, no. 2, pp. 4071–4078, Apr. 2022.

[73] C. Duriez, E. Coevoet, F. Largilliere, T. Morales-Bieze, Z. Zhang,
M. Sanz-Lopez, B. Carrez, D. Marchal, O. Goury, and J. Dequidt,
‘‘Framework for online simulation of soft robots with optimization-based
inverse model,’’ in Proc. IEEE Int. Conf. Simulation, Modeling, Program.
Auto. Robots (SIMPAR), Dec. 2016, pp. 111–118.

[74] J. M. Bern and D. Rus, ‘‘Soft IK with stiffness control,’’ in Proc. IEEE
4th Int. Conf. Soft Robot. (RoboSoft), Apr. 2021, pp. 465–471.

[75] A. T. Mathew, I. M. B. Hmida, C. Armanini, F. Boyer, and F. Renda,
‘‘SoRoSim: AMATLAB toolbox for hybrid rigid-soft robots based on the
geometric variable-strain approach,’’ IEEE Robot. Autom. Mag., vol. 30,
no. 3, pp. 106–122, Sep. 2022.

17636 VOLUME 12, 2024

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

[76] M. Gazzola, L. H. Dudte, A. G. McCormick, and L. Mahadevan,
‘‘Forward and inverse problems in the mechanics of soft filaments,’’ Roy.
Soc. Open Sci., vol. 5, no. 6, Jun. 2018, Art. no. 171628.

[77] M. Stölzle and C. Della Santina, ‘‘Piston-driven pneumatically-actuated
soft robots: Modeling and backstepping control,’’ IEEE Control Syst.
Lett., vol. 6, pp. 1837–1842, 2022.

[78] B. Caasenbrood, A. Pogromsky, and H. Nijmeijer, ‘‘Control-oriented
models for hyperelastic soft robots through differential geometry of
curves,’’ Soft Robot., vol. 10, no. 1, pp. 129–148, Feb. 2023.

[79] Z.Wang, G.Wang, X. Chen, and N.M. Freris, ‘‘Dynamical modeling and
control of soft robots with non-constant curvature deformation,’’ 2022,
arXiv:2203.07929.

[80] F. Boyer, V. Lebastard, F. Candelier, and F. Renda, ‘‘Dynamics of
continuum and soft robots: A strain parameterization based approach,’’
IEEE Trans. Robot., vol. 37, no. 3, pp. 847–863, Jun. 2021.

[81] F. Renda, C. Armanini, V. Lebastard, F. Candelier, and F. Boyer,
‘‘A geometric variable-strain approach for static modeling of soft
manipulators with tendon and fluidic actuation,’’ IEEE Robot. Autom.
Lett., vol. 5, no. 3, pp. 4006–4013, Jul. 2020.

[82] P. Pustina, P. Borja, C. Della Santina, and A. De Luca, ‘‘P-satI-D shape
regulation of soft robots,’’ IEEERobot. Autom. Lett., vol. 8, no. 1, pp. 1–8,
Jan. 2023.

[83] O. Fischer, Y. Toshimitsu, A. Kazemipour, and R. K. Katzschmann,
‘‘Dynamic task space control enables soft manipulators to perform
real-world tasks,’’ Adv. Intell. Syst., vol. 5, no. 1, Jan. 2023,
Art. no. 2200024.

[84] S. M. H. Sadati, S. E. Naghibi, A. Shiva, B. Michael, L. Renson,
M. Howard, C. D. Rucker, K. Althoefer, T. Nanayakkara, S. Zschaler,
C. Bergeles, H. Hauser, and I. D. Walker, ‘‘TMTDyn: A MATLAB
package for modeling and control of hybrid rigid–continuum robots based
on discretized lumped systems and reduced-order models,’’ Int. J. Robot.
Res., vol. 40, no. 1, pp. 296–347, Jan. 2021.

[85] A. T. Mathew, C. Armanini, A. A. S. A. Alshehhi, I. M. B. Hmida,
and F. Renda, ‘‘Multifunctional underwater soft robots: A simulation
essay,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 1261, no. 1, Oct. 2022,
Art. no. 012008.

[86] N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary, and
M. Gazzola, ‘‘Elastica: A compliant mechanics environment for soft
robotic control,’’ IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3389–3396,
Apr. 2021.

[87] X. Zhang, F. K. Chan, T. Parthasarathy, and M. Gazzola, ‘‘Modeling and
simulation of complex dynamic musculoskeletal architectures,’’ Nature
Commun., vol. 10, no. 1, pp. 1–12, Oct. 2019, doi: 10.1038/s41467-019-
12759-5.

[88] H.-S. Chang, U. Halder, C.-H. Shih, N. Naughton, M. Gazzola, and
P. G. Mehta, ‘‘Energy shaping control of a muscular octopus arm moving
in three dimensions,’’ 2022, arXiv:2209.04089.

[89] T. Wang, U. Halder, E. Gribkova, R. Gillette, M. Gazzola, and
P. G. Mehta, ‘‘A sensory feedback control law for octopus arm move-
ments,’’ in Proc. IEEE 61st Conf. Decis. Control (CDC), Dec. 2022,
pp. 1059–1066.

[90] (2023). MPM File Exchange MATLAB CentralFile Exchange
MATLAB Central. Accessed: Sep. 11, 2023. [Online]. Available:
https://nl.mathworks.com/matlabcentral/fileexchange/54548-mpm

[91] B. W. B. Proper, B. J. Caasenbrood, and I. A. Kuling, ‘‘Easy cleaning
of 3D SLA/DLP printed soft fluidic actuators with complex internal
geometry,’’ in Proc. IEEE Int. Conf. Soft Robot. (RoboSoft), Apr. 2023,
pp. 1–6.

[92] B. Mosadegh, P. Polygerinos, C. Keplinger, S.Wennstedt, R. F. Shepherd,
U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. Whitesides,
‘‘Pneumatic networks for soft robotics that actuate rapidly,’’ Adv. Funct.
Mater., vol. 24, no. 15, pp. 2163–2170, Apr. 2014.

[93] L. C. van Laake, J. de Vries, S. Malek Kani, and J. T. B.
Overvelde, ‘‘A fluidic relaxation oscillator for reprogrammable sequential
actuation in soft robots,’’ Matter, vol. 5, no. 9, pp. 2898–2917,
Sep. 2022.

[94] T. Reiner, G. Mückl, and C. Dachsbacher, ‘‘Interactive modeling of
implicit surfaces using a direct visualization approach with signed
distance functions,’’ Comput. Graph., vol. 35, no. 3, pp. 596–603,
Jun. 2011.

[95] Z. Chen and H. Zhang, ‘‘Learning implicit fields for generative shape
modeling,’’ 2018, arXiv:1812.02822.

[96] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and
M. Mukadam, ‘‘ISDF: Real-time neural signed distance fields for robot
perception,’’ 2022, arXiv:2204.02296.

[97] P. Liu, K. Zhang, D. Tateo, S. Jauhri, J. Peters, and G. Chalvatzaki,
‘‘Regularized deep signed distance fields for reactive motion generation,’’
2022, arXiv:2203.04739.

[98] W. E. Lorensen and H. E. Cline, ‘‘Marching cubes: A high resolution
3D surface construction algorithm,’’ ACM SIGGRAPH Comput. Graph.,
vol. 21, no. 4, pp. 163–169, Aug. 1987.

[99] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes,
‘‘PolyTop: A MATLAB implementation of a general topology opti-
mization framework using unstructured polygonal finite element
meshes,’’ Struct. Multidisciplinary Optim., vol. 45, no. 3, pp. 329–357,
Mar. 2012.

[100] S. Lloyd, ‘‘Least squares quantization in PCM,’’ IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[101] B. Smith, F. D. Goes, and T. Kim, ‘‘Stable neo-Hookean flesh
simulation,’’ ACM Trans. Graph., vol. 37, no. 2, pp. 1–15, Mar. 2018,
doi: 10.1145/3180491.

[102] K. Bertoldi, M. C. Boyce, S. Deschanel, S. M. Prange, and T. Mullin,
‘‘Mechanics of deformation-triggered pattern transformations and
superelastic behavior in periodic elastomeric structures,’’ J. Mech. Phys.
Solids, vol. 56, no. 8, pp. 2642–2668, Aug. 2008.

[103] J. T. B. Overvelde, S. Shan, and K. Bertoldi, ‘‘Compaction through
buckling in 2D periodic, soft and porous structures: Effect of pore shape,’’
Adv. Mater., vol. 24, no. 17, pp. 2337–2342, May 2012.

[104] N. M. Newmark, ‘‘A method of computation for structural dynamics,’’
J. Eng. Mech. Division, vol. 85, no. 3, pp. 67–94, Jul. 1959.

[105] Y. Malitsky and K. Mishchenko, ‘‘Adaptive gradient descent without
descent,’’ 2019, arXiv:1910.09529.

[106] L. Marechal, P. Balland, L. Lindenroth, F. Petrou, C. Kontovounisios, and
F. Bello, ‘‘Toward a common framework and database ofmaterials for soft
robotics,’’ Soft Robot., vol. 8, no. 3, pp. 284–297, Jun. 2021.

[107] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes,
A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, ‘‘Multigait soft
robot,’’ Proc. Nat. Acad. Sci. USA, vol. 108, no. 51, pp. 20400–20403,
Dec. 2011.

[108] M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory,
Methods, and Applications, no. 724, 2nd ed. Berlin, Germany: Springer,
2003.

[109] K. Svanberg, ‘‘The method of moving asymptotes—A new method for
structural optimization,’’ Int. J. Numer. Methods Eng., vol. 24, no. 2,
pp. 359–373, Feb. 1987.

[110] K. Svanberg, ‘‘MMA and GCMMA-two methods for nonlinear optimiza-
tion,’’ KTH, Stockholm, Sweden, Tech. Rep., 2007, pp. 1–15, vol. 1.

[111] B. Caasenbrood, A. Pogromsky, and H. Nijmeijer, ‘‘A computational
design framework for pressure-driven soft robots through nonlinear
topology optimization,’’ in Proc. 3rd IEEE Int. Conf. Soft Robot.
(RoboSoft), May 2020, pp. 633–638.

[112] F. Boyer, M. Porez, and A. Leroyer, ‘‘Poincaré–Cosserat equations for
the lighthill three-dimensional large amplitude elongated body theory:
Application to robotics,’’ J. Nonlinear Sci., vol. 20, no. 1, pp. 47–79,
Feb. 2010.

[113] J. C. Simo and L. Vu-Quoc, ‘‘A three-dimensional finite-strain rod model.
Part II: Computational aspects,’’ Comput. Methods Appl. Mech. Eng.,
vol. 58, no. 1, pp. 79–116, Oct. 1986.

[114] J. Till, V. Aloi, and C. Rucker, ‘‘Real-time dynamics of soft and
continuum robots based on cosserat rod models,’’ Int. J. Robot. Res.,
vol. 38, no. 6, pp. 723–746, May 2019.

[115] G. S. Chirikjian and J. W. Burdick, ‘‘A modal approach to hyper-
redundant manipulator kinematics,’’ IEEE Trans. Robot. Autom., vol. 10,
no. 3, pp. 343–354, Jun. 1994.

[116] G. S. Chirikjian and J. W. Burdick, ‘‘A geometric approach to hyper-
redundant manipulator obstacle avoidance,’’ J. Mech. Design, vol. 114,
no. 4, pp. 580–585, Dec. 1992.

[117] B. Caasenbrood, A. Pogromsky, and H. Nijmeijer, ‘‘Energy-based control
for soft manipulators using cosserat-beam models,’’ in Proc. 18th Int.
Conf. Informat. Control, Autom. Robot., 2021, pp. 311–319.

[118] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, ‘‘Model-
based dynamic feedback control of a planar soft robot: Trajectory tracking
and interaction with the environment,’’ Int. J. Robot. Res., vol. 39, no. 4,
pp. 490–513, Mar. 2020.

VOLUME 12, 2024 17637

http://dx.doi.org/10.1038/s41467-019-12759-5
http://dx.doi.org/10.1038/s41467-019-12759-5
http://dx.doi.org/10.1145/3180491

B. J. Caasenbrood et al.: Sorotoki: A Matlab Toolkit for Design, Modeling, and Control of Soft Robots

[119] H. Li, L. Xun, and G. Zheng, ‘‘Piecewise linear strain cosserat
model for soft slender manipulator,’’ IEEE Trans. Robot.,
2023.

[120] C. Della Santina, ‘‘The soft inverted pendulum with affine curva-
ture,’’ in Proc. 59th IEEE Conf. Decis. Control (CDC), Dec. 2020,
pp. 4135–4142.

[121] F. Stella, Q. Guan, C. Della Santina, and J. Hughes, ‘‘Piecewise affine
curvature model: A reduced-order model for soft robot-environment
interaction beyond PCC,’’ inProc. IEEE Int. Conf. Soft Robot. (RoboSoft),
Apr. 2023, pp. 1–7.

[122] G. S. Chirikjian, ‘‘Theory and applications of hyper-redundant
robotic manipulators,’’ Ph.D. dissertation, 1992. [Online]. Available:
https://www.researchgate.net/publication/41482361_Theory_and_
applications_of_hyper-redundant_robotic_manipulators

[123] A. L. Orekhov and N. Simaan, ‘‘Solving cosserat rod
models via collocation and the Magnus expansion,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020,
pp. 8653–8660.

[124] F. Bullo and R. M. Murray, ‘‘Proportional derivative (PD) control on
the Euclidean group,’’ California Inst. Technol., Pasadena, CA, USA,
Tech. Rep. 95-010, 1995. [Online]. Available: https://authors.library.
caltech.edu/28018

[125] V. Sonneville, A. Cardona, and O. Brüls, ‘‘Geometrically exact beam
finite element formulated on the special Euclidean group,’’ Comput.
Methods Appl. Mech. Eng., vol. 268, pp. 451–474, Jan. 2014, doi:
10.1016/j.cma.2013.10.008.

[126] A. Loría, ‘‘Observers are unnecessary for output-feedback control of
Lagrangian systems,’’ IEEE Trans. Autom. Control, vol. 61, no. 4,
pp. 905–920, Apr. 2016.

[127] B. J. Caasenbrood, F. E. van Beek, H. K. Chu, and I. A. Kuling, ‘‘A
desktop-sized platform for real-time control applications of pneumatic
soft robots,’’ in Proc. IEEE 5th Int. Conf. Soft Robot. (RoboSoft),
Apr. 2022, pp. 217–223.

[128] J. Illingworth and J. Kittler, ‘‘The adaptive Hough transform,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, no. 5, pp. 690–698,
Sep. 1987.

[129] K. Suzumori and F. Saito, ‘‘Micro rubber structure realizing multi-legged
passive walking,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2008, pp. 445–450.

[130] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M.
Whitesides, ‘‘Soft robotics for chemists,’’ Angew. Chem., vol. 123, no. 8,
pp. 1930–1935, Feb. 2011.

[131] M. Raeisinezhad, N. Pagliocca, B. Koohbor, and M. Trkov, ‘‘Design
optimization of a pneumatic soft robotic actuator using model-based
optimization and deep reinforcement learning,’’ Frontiers Robot. AI,
vol. 8, May 2021, Art. no. 639102.

BRANDON J. CAASENBROOD received the
M.Sc. degree from the Eindhoven Univer-
sity of Technology (TU/e), in 2017, and the
Ph.D. degree (cum laude), in 2024, under
the supervision of Prof. Henk Nijmeijer and
Dr. Alexander Pogromsky within the Dynamics
and Control group. The project was embedded
within the wearable robotics program, which is
funded by the Dutch Research Council (NWO).
During his Ph.D. studies, he also undertook a role

as a Junior Researcher and an Educator. His research interests include the
area of soft robotics, with a particular emphasis on model-based control and
design optimization of soft robotic systems.

ALEXANDER Y. POGROMSKY received the
M.Sc. degree (Hons.) from Baltic State Technical
University, Russia, in 1991, and the Ph.D. degree
from Saint Petersburg Electrotechnical University,
in 1994. From 1995 to 1997, he was with the
Laboratory Control of Complex Systems, Institute
for Problems of Mechanical Engineering, Saint
Petersburg, Russia. From 1997 to 1998, he was a
Research Fellow with the Department of Electri-
cal Engineering, Division on Automatic Control,

Linkoping University, Sweden. He has been a Visiting Researcher with the
Department of Control Systems and Industrial Robotics, Saint-Petersburg
National Research University of Information Technologies, Mechanics and
Optics.

HENK NIJMEIJER (Life Fellow, IEEE) is cur-
rently an Emeritus Full Professor with the Eind-
hoven University of Technology (TU/e) and the
Chair of the Dynamics and Control Group. His
current Project is Extremum Seeking Control
in Large-Scale Information Systems. He is also
the Program Leader of TU/e Research Pro-
gram ‘‘Integrated Cooperative Automated Vehi-
cles’’ (i-CAVE). This focuses on development of
autonomous vehicles that can drive independently

on non-public roads and drive together on public roads. His research
interests include control systems engineering, mechanical engineering, and
automotive engineering. His areas of expertise include (advanced) control
theory and systems, robotics, mechatronics, (system) dynamics, and control
systems engineering.

17638 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.cma.2013.10.008

