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ABSTRACT We propose Nebula, a computational method for combinatorial optimization and stochastic
sampling. The proposed method is designed for a generic local search engine utilized for digital annealing
in an optimization system for multidimensional binary variables, and it can handle a variety of cost
functions of multidimensional binary variables with multi-body interactions in a unified manner. In addition
to optimization, the method can be used to perform sampling to reproduce the Boltzmann distribution.
To achieve this, we extend the network of conventional Boltzmann machines or Ising machines to
include dependent variables mediating various interactions. The extended network enables fast operation
by predicting the total energy change due to state transitions in all one-flip neighborhoods. The energy
function, which is limited to the quadratic form in conventional Ising machines, is extended here to represent
inequality constraints and higher-order products. The ability to handle higher-order spin products enables
the implementation of arbitrary energy functions with k-body interactions based on the Walsh transform.
We conducted numerical experiments to demonstrate the concept of our proposed method and show that
it can solve problems with inequality constraints and higher order terms, which are difficult to solve
with conventional Ising machines. The numerical experiments also show that our method can exploit the
expansion of the energy landscape by the Walsh function and reproduce the Boltzmann distribution by
sampling.

INDEX TERMS Boltzmann machine, combinatorial optimization, higher-order interaction, HOBO, Ising
machine, MCMC, parallel tempering, quantum-inspired computing, QUBO, Walsh transform.

I. INTRODUCTION
The evolution of modern information processing technology
has been driven by processor performance improvements
through the miniaturization of CMOS devices. At the same
time, the search for computing paradigms other than proces-
sors has been underway since before the advent of integrated
circuit processors [1], [2]. Now that processor performance
improvements through CMOS device miniaturization have
reached their limit [3], research into various problem-
specific computational methods is becoming increasingly
important [4].

Representative methods of such alternative paradigms
are those that utilize artificial spins inspired by physical
phenomena [5] or artificial neurons inspired by brain func-
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tions [6], followed by different circuit implementations [7],
[8]. Among these proposals, Boltzmann machines have
an important position in the integration of the physical
phenomena and inference and learning mechanisms of the
brain [6]. The Boltzmann machine is a neural network
of recursively coupled binary neurons capable of both
learning and inference operations. The learning capability
of Boltzmann machines was improved by the Restricted
Boltzmann machine (RBM) [9], [10], which has connections
only between the visible and hidden layers. Historically,
making the RBM multi-layered opened the door for the
emergence of deep learning.

A similar line of research is that of artificial-spin
computing, which has been brought back into prominence by
D-Wave’s quantum annealing machines [11], [12]. Breaking
away from technologies that utilize real physical spin,
artificial spins have evolved in a direction that does not
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necessarily reproduce the analog or quantum behavior of
real spin due to simplification and idealization based on
digital technology. This direction of technology is known as
quantum-inspired computing.

The goal of quantum-inspired computing is touted as
instantly optimizing the cost function of a wide range of
problems. This recognition is what many people outside
of quantum computing and quantum annealing expect from
quantum technology. While the desire for high-performance
computing is legitimate, there are still many obstacles to
achieving this goal, whether quantum technology or anything
else. Therefore, our vision for quantum-inspired computing is
to get as close as possible to this expectation while simultane-
ously achieving the goal of high speed (i.e., faster than con-
ventional computing schemes) to obtain solutions with prac-
tical accuracy and the flexibility to handle diverse problems.

Examples of such ‘‘quantum-inspired’’ computing include
various classical (i.e., non-quantum) circuits designed to
optimize the energy functions given by the quadratic
functions of binary variables [5], [6], [7], [8]. To achieve the
desired speedups, various parallel processing schemes have
been proposed, such as Hitachi’s CMOS Annealer [13], [14],
Toshiba’s Simulated Bifurcation Machine (SBM) [15], [16],
[17], and Fujitsu’s Digital Annealer [18], [19].
To cope with the variety of problems to be handled,

we need to enhance the problem-solving performance so
that it can address higher-order binary optimization (HOBO)
problems [20], [21], which are not limited to quadratic
unconstrained binary optimization (QUBO). Our observation
is that while regular QUBO has high expressive power
for formulating a wide range of combinatorial optimization
problems [22], it has difficulties when it comes to problems
involving inequality constraints and higher-order products:
specifically, the size of the problem tends to increase when
expressed in ancillary bits [23], and they are often intractable
when formulated in slack variables [24]. As a possible
extension of the Digital Annealer, the extended Isingmachine
has been proposed to add higher-order terms and rectified
linear unit (ReLU)-type inequality constraint functions to the
binary quadratic form [25].
Expanding on this basic idea, we propose a network-

enhanced Boltzmann (or Ising) machine with a universally
applicable local search method, coined Nebula, which fea-
tures an architecture with k-body interactions implemented
using an additional network of dependent variables. The value
of k and the number of interactions m are limited only by
the processing power and memory capacity of the computing
platform. Within this limit, k is as large as the dimension of
the problem, n, and m can be beyond n.

Our proposal utilizes an algorithm that takes parallel
processing into account to improve the performance when
dedicated circuits are used. However, our goal is to achieve a
sufficient performance using not only dedicated hardware but
also the latest processors with excellent parallel processing
capabilities, thus enabling early deployment on various
platforms according to market demand.

We should brieflymention a note on terminology here. Our
goal is to extend the energy functions of conventional Ising
andBoltzmannmachines in the binary quadratic form tomore
general functions. Since Boltzmann machines are initially
named for networks that include a learning mechanism, and
we do not discuss learning in this paper, we refer to them as
Ising machines, regardless of whether the variables are spin
or 0/1 binary.

Section II of this paper presents the dependent variable-
based extension technique that forms the basis of our proposal
and explains how to represent energy of an arbitrary order.
In Section III, we describe Nebula’s expressiveness for
different energy landscapes, and in Section IV, we present
numerical experiments as a proof of concept. We conclude in
Section V with a brief summary and mention of future work.

II. ARCHITECTURE FOR EXTENDED FUNCTIONALITY
A. ENERGY FORMULATION
Conventional Ising machines with quadratic energy are rep-
resented as networks with bidirectional two-body coupling
Wij = Wji (Fig. 1(a)). Adding dependent-variable networks
mediating various many-body couplings in addition to two-
body couplings yields an extended Ising machine archi-
tecture, Nebula, with improves the problem representation
power (Fig. 1(b)). Here, both the conventional Ising machine
and Nebula’s network assume a fully connected network
of arbitrary topology within the limits imposed by memory
capacity and the number of processing elements, thereby
enabling various problems to be mapped.

FIGURE 1. Network extension by additional couplings. (a) Conventional
Ising machines use two-body coupling to represent the binary quadratic
energy of the decision spins. (b) In contrast, the proposed architecture
implements k-body coupling by adding coupling through dependent
variables. k-body coupling enables inequality constraints and
higher-order products to be added, thereby improving the expressive
power of energy functions.

Let the energy H (x) of the system be a function
of n-dimensional 0/1 binary decision variable x =

(x1, · · · , xn) ∈ {0, 1}n that represents the value of artificial
spin in Fig. 1.H (x) is composed of E(x), the binary quadratic
form of x, and additional energy functions G(x):

H (x) = E(x)+ G(x), (1)

E(x) = −
n∑
i=1

bixi −
1
2

n∑
i=1

n∑
j=1

Wijxixj, (2)
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G(x) =
m∑
k=1

λkGk (x), (3)

where bi andWij are the linear and second-order coefficients
of the quadratic energy of the system. G is the summation of
m additional functions Gk multiplied by a factor λk , which is
a coefficient to balance the linear and quadratic energy E with
the additional functionGk and is positive for constraints such
as inequality constraints. We assume thatWij = Wji,Wii = 0,
as in conventional Ising machines.

When using a formulation with the spin variable σi ∈

{−1,+1} instead of xi ∈ {0, 1}, we convert the coefficients of
the quadratic energy bi andWij accordingly and use the same
basic algorithm in both representations. In contrast, for cases
where higher-order products of spin variables are needed,
we use a function Gk that represents the spin product, as
described in Section II-C.

The method we propose is aimed at energy-based models,
where energy (1)–(3) is defined as a univalent function
of multidimensional binary variables. Note that π (x), the
occupancy probability of the state x of the system, is given
by the Boltzmann distribution:

π (x) = exp (−βH (x)) /Z , (4)

where Z =
∑

x exp (−βH (x)) is the normalization constant.
Since the energy function is univalent, its value is uniquely

determined independent of the path by starting from the
initial-state energy and integrating the energy change at each
motion step. This simple fact guarantees that we can construct
a network of artificial spins that produce energy differences
for reproducing the total given energy. If we can efficiently
calculate the energy difference for varying variables, we can
apply diverse local search methods based on the energy
difference.

To allow as much parallel processing as possible,
we restrict the form of Gk to be a univalent function of the
weighted linear sum rk of the variables xj rather than an
arbitrary function of x. Even with this restriction, Gk can
in principle be any computable function and can handle a
variety of functions useful for optimization, thus providing
high problem representation power thanks to handling higher-
order interactions. Hence, we have

Gk (x) = Gk (rk ), (5)

rk =
n∑
j=1

Zkjxj + ck , (6)

where rk is regarded as a resource variable that contributes to
the total energy through the functionGk , or the kth dependent
variable. Gk can be utilized as a penalty function that
generates a positive penalty if rk violates a certain condition.
The coefficient Zkj is used to represent the contribution
of variable xj to resource rk , while Zik is used for the
coefficient representing the influence fromGk (rk ) to variable
xi. Coefficient ck is used, for example, to bias rk to give an
inequality constraint threshold.

FIGURE 2. Comparison of proposed method and conventional Ising
machine with parallel calculation of the energy difference.
(a) Conventional method: A single-layer network predicts the change in
energy H when the decision variable xi is reversed. (b) Proposed method:
An additional one-layer network of dependent variable Gk is connected
to the decision spin through a state-dependent coupling S, which
calculates gik , or the contribution of Gk to the local field hi .

B. NETWORK FOR ENERGY DIFFERENCE CALCULATION
We perform a local search guided by the energy differences,
not by the energy values themselves. Calculations based on
energy differences are the traditional method used in Markov
chain Monte Carlo (MCMC) for binary quadratic forms [26],
[27]. The energy calculation using (1) through (3) requires
O(n2) + O(nm) operations per search iteration, while the
difference calculation requires much less.

Therefore, we derive from (1)–(3) a network that operates
on the basis of the energy difference with artificial spins in
a parallelizable and easy to implement form with modern
digital circuit technology. The main objective of this network
is to calculate and output the energy difference 1Hi for all
i assuming that only one decision variable xi is reversed.
In other words, this network predicts the energy of all n
possible futures generated by a one-flip variable inversion.
It has been applied in [18] for conventional Ising machines
(Fig. 2(a)) and in [25] for Ising machines with extended
energy functions (Fig. 2(b)).

We calculate the incremental energy 1Hi when the
variable xi changes as xi → xi +1xi, where 1xi = 1− 2xi.
1Hi is expressed as the sum of the changes in the quadratic
energy E and the additional energy G (denoted as 1Ei and
1Gi, respectively).

1Hi = 1Ei +1Gi (7)

From (1) through (7), we obtain the value of 1Hi as follows.

1Hi = −hi1xi (8)

hi =
n∑
j=1

Wijxj + bi −
m∑
k=1

λkgik (9)

gik =
[Gk (rk + Zki1xi)− Gk (rk)]

1xi
(10)

The energy change 1Hi is proportional to 1xi with the
proportionality constant −hi. hi represents the sum of forces
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acting on the artificial spin xi from the other interacting spins
and the bias term bi, and is called the local field [25]. gik
represents the contribution of the dependent variable Gk to
the local field hi and can be interpreted as the force exerted
by Gk on the spin xi, i.e., the equivalent signal strength.

FIGURE 3. State-dependent coupling. (a) The effect of the kth constraint
on the energy increment depends on the decision variable xi . (b) gik as a
contribution of the kth constraint to the local field hi is shown in the
graph of gik versus rk .

As rk varies by a finite value of Zki1xi, gik varies piecewise
linearly with respect to rk . Note that the slope of the Gk -rk
characteristic varies stepwise, as in a rectified-linear type
penalty function with inequality and equality constraints.
Also, gik has different values depending on the value of xi,
even for the same input value rk . Therefore, the effect of
Gk on spin xi depends on the state of the spin receiving
the signal and thus requires state-dependent coupling. The
state-dependent coupling results from the different slopes of
the Gk (rk ) property depending on whether the reversal of the
variable xi increases (Zki1xi > 0) or decreases (Zki1xi < 0)
the resource variable rk . The graph of the gik -rk characteristic
for an inequality constraint is shown in Fig. 3.

The energy-based model expressed in (1)–(6) is equivalent
to the network model in (8)–(10). Note that the total energy
H is obtained by integrating 1Hj each time the variable xj
is reverted. Since the values of 1Hi are obtained for all i,
various local search algorithms can be run on these values.
We will discuss the local search algorithmwe used in the next
subsection, but for now, let us assume that the inversion of
variable xj was chosen by some local search algorithm based
on the available 1Hi information.

Once the variable xj to be flipped is determined, the state
variables x, hi, and rk are updated by a difference calculation.
The update is performed by propagating the influence of 1xj
through the network to obtain the final value of hi. For the
direct path from 1xj, hi and rk are updated using 1xj = 1−
2xj with the following formula:

H ← H − hj1xj
hi← hi +Wij1xj
rk ← rk + Zkj1xj. (11)

After updating H , hi, and rk using (11), xj is changed to
xj + 1xj and we perform a differential update of gik in the
second pass for k where rk was updated:

hi ← hi − λk

[
gik (rk)− gik

(
r (old)k

)]
(i ̸= j),

hi : no change (i = j). (12)

Here, r (old)k is the value just before rk is updated in (12). If rk
is updated, gik is calculated only for index i with Zik ̸= 0.
The variable update described above requires a total of

O(nm) multiply-accumulate operations. Doing this in a single
pass of parallel operations requires O(nm) of parallelism,
which becomes difficult to implement when n and m number
several hundred or more. Therefore, we take the approach
of performing O(n) and O(n + m) parallel updates in two
passes. To take full advantage of the two-pass update method,
the computing platform must be configured so that when one
of the decision or dependent variables is updated, all of the
coupling coefficients associated with that variable are read,
and rk and hi can be updated in parallel.

This configuration allows a complex problem structure
(such as the one in Fig. 1(b)) to be achieved in a shallow
recurrent network (such as the one in Fig. 2(b)), where the
dependent variable part is a two-layer network added in
parallel to the single-layer network of the conventional Ising
machine. Compared to the implementation of Ising machines
based on the so-called ‘‘natural computing’’ concept, there
is an advantage in that embedding is not required due to
the high degree of freedom of the problem topology. To be
fair, we should emphasize that our approach is limited to one
variable inversion at a time and has the potential to create a
bottleneck in accessing the coefficient memory in exchange
for the problem-topology flexibility. Natural computing,
in contrast, allows for O(n) parallelism of operations but may
lack flexibility in the problem topology.

C. IMPLEMENTATION OF VARIOUS ENERGY FUNCTIONS
In this section, we present several useful Gk (rk ) functions
and the form of gik derived from them. To treat the different
forms ofGk in a unified manner, after computing the resource
variable rk using the matrix [Zkj], the intermediate variable
yk is generated using the appropriate activation function
yk = fk (rk ). The activation function fk can be an identity
function with real inputs and outputs for an additional energy
function Gk representing inequality and equality constraints.
Depending on the nature of Gk , the amount of data can be
reduced by using integers instead of real numbers for the input
and output of fk or by restricting the output range (Fig. 4).
If the computing platform allows it, the processing

elements that generate the resource variable rk run in parallel
to receive the change in xj and compute rk . The coefficients
Zkj needed for this calculation are assumed to be stored in
a memory that can be quickly accessed by the arithmetic
circuit that generates the resource variables rk . Note that ck
is utilized only for the initialization of rk and does not need
to be stored in memory.

The intermediate variables yk calculated from rk are sent
en masse to the decision variable xi side. In the calculation of
the value of the spin xi, gik is computed by (10) using the
information Zik and xi stored in local memory that can be
quickly accessed from the xi side. In this case, Zik stores the
same value as Zki to use (10) (Fig. 5).
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FIGURE 4. Use of intermediate variable yk . (a) The resource value rk is
calculated with a weighted sum of the decision variables xj with weight
Zkj , and the intermediate variable yk is generated with the activation
function fk and sent to the processing element for the decision variable.
The activation function can be (b) an identity function with the output
range restricted as needed or (c) various discrete functions, depending on
the type of the dependent variable Gk .

FIGURE 5. Memory configuration for calculating changes in different
variables. The memory of Zkj is placed in the neighborhood of the
processing element (PE) that generates the resource variable rk to obtain
the coefficients needed for the calculation, and the memory of Zik is
placed in the neighborhood of the PE that calculates the local field hi of
the decision variable xi .

1) INEQUALITY AND EQUALITY CONSTRAINTS
When the coefficients Zkj determining the resource variable
rk are various different real numbers, the additional energy
function Gk that represents inequality constraints is given by

Gk (rk) = max (0, rk) , (13)

yk = f (rk) = rk , (14)

where the activation function fk is an identity function. From
(10), (13), and (14), and refering to Fig. 3(b), considering
that we should use Zik , which is identical to Zki but quickly
accessible from the dependent variable, gik is calculated for
Zik1xi < 0 by

gik = sign (Zik)min [max (yk , 0) , |Zik |] . (15)

If Zik1xi > 0, gik is computed by shifting the argument of
(15) to yk ← yk+|Zik |. We use a method in which an equality
constraint is expressed as a combination of two inequality
constraints.

From (14) and (15), the value of gik is constant if rk
exceeds the maximum value of |Zik |. Therefore, we can use
an activation function that limits the absolute value of rk to
within |Zik |, as in Fig. 4(b).

On the other hand, there are also many inequality
constraints where the change in the constraint resource
variable rk is limited to an increase or decrease of a constant

value. For example, an inequality constraint may be imposed
on the number of items that can be selected. In this case, the
constraint resource variable rk is an integer, and the change
in rk by inverting the decision variable is either+1, 0, or−1.
In such cases, the three-step quantization function shown in
Fig. 4(c) can be used.

2) HIGHER-ORDER AND PRODUCTS
The AND product of the positive and negative literals of a
0/1 binary variable produces 1 when all literals in the product
are True, and 0 otherwise. Such a product can be utilized to
provide a positive or negative energy bias for combinations
of multiple variables, giving complex constraints that cannot
be expressed in quadratic form without ancillary bits. Gk is
expressed as

Gk =
∏
j∈Sk

zj, (16)

where Sk is the set of variable indices j contained in the kth
product and zj is xj if xj is a positive literal in the product and
1− xj if it is a negative literal.
We generate the AND product (16) by using the inequality

constraint (13). For this purpose, rk is computed as aweighted
sum with a weight of Zkj = 1 if the variable xj is a positive
literal and Zkj = −1 if it is a negative literal. If the bias
coefficient ck is 1 minus the number of positive literals in
the product, then rk = 1 only when all literals in the product
are 1. Since the value of Zkj is +1/0/ − 1, we can use the
intermediate variable yk with rk quantized to three values:

y k =


−1 rk ≤ −1
0 rk = 0
+1 rk ≥ 1.

(17)

3) HIGHER-ORDER XOR PRODUCTS
We include higher-order XOR products to enrich the
expressiveness of the energy function H . The XOR product
corresponds to the product of spin variables. Let Gk be the
value of the kth higher-order XOR product and λkGk be its
contribution to the Hamiltonian:

Gk =
∏
j∈Sk

σj, (18)

where Sk is the set of variable indices j contained in the kth
higher-order product. We assume the spin representation of
xi is σi = (−1)xi = 1− 2xi. The spin product Gk is −1 if the
number of σj that is−1 in the product is odd and 1 if it is even.
Therefore, Gk is determined from the even and odd values of
rk , which is calculated from (6) by assuming Zkj = 1 if xj is
included in the spin product Gk , Zkj = 0 if xj is not included,
and ck equals zero.

Gk = yk =

{
+1 even rk
−1 odd rk .

(19)
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If the variable σi is contained in the kth product, i.e., Zki(=
Zik ) ̸= 0, then Gk →−Gk . Therefore gik is expressed as

gik = −2Zikyk1xi. (20)

Many higher-order spin products can be made by mul-
tiplying a common product of the lower order by several
different spins. In such cases, the dependent variable and
the required memory space can be reduced by formulating
yq = yki = yk1xi instead of yk as the dependent variable and
the index pair (k, i) as a one-dimensional index q.

D. LOCAL SEARCH ALGORITHM
1) REJECTION-FREE SELECTION
The energy change 1Hi(i = 1, · · · , n) output by the network
of artificial spins is used to guide the local search. For the
lowest-level local search, we use the rejection-free MCMC
method [28], [29], which utilizes the following selection rule:

j = argmin
i

[max (0, 1Hi)+ T log (−log (ri))] , (21)

where T is the temperature and ri is a random number
uniformly distributed with 0 < ri < 1, independent for
each variable xi. This selection rule reduces the time to
reach the optimum value for problems with small acceptance
probabilities of proposed moves because the transition from
a state happens without rejection.

In rejection-free MCMC, the probability distribution of
the transition-destination state is identical to a normal serial
selection MCMC continued until the transition is accepted.
As suggested by this, the MCMC chain that implements
the rejection-free selection rule is equivalent to a stochastic
process for the original chain with the repetition of the same
state removed. The probability that a bit flip is accepted by
the original chain is given by

Ai = min
[
1, exp (−β1Hi)

]
. (22)

The probability of transitioning to a state different from the
current one for each trial in the original chain, i.e., the escape
probability, α, is given by

α =

(
1
n

) n∑
i=1

Ai. (23)

Escape probabilities are needed to compute the importance
weights of the samples obtained from the rejection-free
MCMC, i.e., the weights to be multiplied on the samples in
formulas such as expectation calculations, as will be shown
later.

2) PARALLEL TEMPERING (EXCHANGE MONTE CARLO)
As modern processing hardware designs have shifted heavily
toward multi-core systems, there are many methods available
for running multiple local search instances in parallel and
combining their results via a higher-level algorithm, such as
genetic algorithms [30] or population annealing [31]. Among
these methods, we utilize the replica-exchange Monte Carlo

methods, also known as Parallel Tempering (PT) [32], [33],
with multiple replicas to improve the efficiency of the search
in addition to rejection-free MCMC.

FIGURE 6. Parallel tempering (Exchange Monte Carlo). Parallel tempering
runs multiple searches (replicas) with different temperatures on the same
problem instance. Each time a variable is inverted a certain number of
times, the replicas exchange temperatures between neighboring
temperatures. Since the replicas with relatively higher energy move to a
higher temperature, the temperature exchange increases the likelihood of
escaping the local solution and reaching a better solution.

In the PT system, P parallel stochastic local search
instances or replicas each run at a different inverse temper-
ature β from βmin to βmax in a ladder, as shown in Fig. 6.
Let p(= 1, 2, · · · ,P) be the index of the replicas and xp and
βp be the state and inverse temperature of the pth replica.
After running MCMC operations for a certain number of
time steps (iterations) for each replica, temperatures are
exchanged between neighboring temperature replicas with a
probability determined by the difference between the energy
and the inverse temperature. In the case of rejection-free
selection, the ratio of the escape probability α(x, β) at inverse
temperature β and state x appears in the exchange probability
Ap:

Ap = min
[
1,Rα exp

[
1βp1Hp

] ]
, (24)

Rα =
α
(
xp, βp+1

)
α
(
xp+1, βp

)
α
(
xp+1, βp+1

)
α
(
xp, βp

) , (25)

where 1βp = βp+1 − βp and 1Hp = Hp+1 − Hp [29].
As far as we have experienced, approximating Rα

appearing in (24) as 1 between nearby temperatures does
not cause any major problems when solving optimization
problems [34]. However, this approximation introduces
errors in the probability distribution obtained by sampling.
Therefore, when reproducing the probability distribution by
sampling, it is necessary to use (25) without approximating
Rα as 1.

III. EXPRESSIVE POWER OF NEBULA ARCHITECTURE
A. ENERGY FUNCTION WITH MANY-BODY INTERACTIONS
In the previous section, we showed that Nebula can have
an additional energy function Gk with a weighted sum of
decision variables as arguments. The number of additional
functions, or dependent variables Gk , is only limited by
the number of coupling coefficients the system can handle.
Since the functional form of Gk is arbitrary, in principle the
proposed extended Ising machine can implement interactions
of any order (up to problem size n). Note that the scheme is
expressive enough even when restricting the functional form
of Gk to that described above.
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In addition to the convenience of ReLU-type additive
energy functions in formulating various optimization prob-
lems, AND and XOR products (i.e., spin products) can
be used to produce arbitrary energy landscapes, or pseudo
Boolean functions, subject to certain constraints, as shown
below.

1) EXPANSION USING AND PRODUCTS
The AND product of a positive or negative literal will be
1 only for a certain bit pattern in the product, and zero
otherwise. Therefore, if the number of such interactions
mediated by the bit group is q, q · 2K dependent variables are
needed to express an arbitrary energy landscape with K -body
higher order interactions.

If there is no bound on the value of K , which can be
equal to the size of the problem n, an exponential number of
2n dependent variables is needed to implement an arbitrary
interaction. Note, however, that if K ≪ n and there are q K -
bounded couplings and q is O(n), the number of dependent
variables required, q · 2K , is much less than 2n.

2) EXPANSION USING WALSH FUNCTIONS
Another example of where arbitrary functions can be
constructed is the XOR product, or spin product, as discussed
in II-C. The XOR product Gk can be written as

Gk = ϕk (x) = (−1)
∑n−1

j=0 kjxj , (26)

k =
n−1∑
j=0

kj2j, (27)

kj = Zkj =

{
1 j ∈ Sk
0 j /∈ Sk .

(28)

The value of Gk is equal to the Walsh function ϕk (x)
characterized by two parameters n and k , where k is an
integer with the value of Zkj as the coefficient kj of the
binary expansion (27). Thanks to the orthogonality and
completeness of the Walsh function, any energy landscape
can be expanded. Also, as in the case of the AND product,
if there are q K -bounded interactions, the number of
dependent variables required is just q · 2K .

Note that the linear and quadratic terms formulated in 0/1
binary variables can also be formulated in spin variables if
the coefficients Wij and bi are appropriately transformed.
Therefore, the entire energy function can be expanded by
using Walsh functions.

Walsh transforms and Walsh analysis are useful in evo-
lutionary computation for analyzing the energy landscapes
of many well-known combinatorial optimization problems
and real-world models [35]. For example, Walsh analysis can
be utilized to derive algebraically closed expressions for the
various statistical moments (i.e., expectation and variance)
of various combinatorial optimization problem landscapes
[36], [37], [38]. Such an approach enables us to derive
useful information about the structure of the landscape of
combinatorial problems without having to sample the entire

objective function of the problem in the neighborhood of
interest.

Our proposed method can directly treat the Walsh function
as a component of the energy function to be used in the
optimization algorithm. It has the potential to not only
analyze the nature of the problem but also implement efficient
optimization algorithms based on the analysis.

3) SAMPLING FROM BOLTZMANN DISTRIBUTION
Since the rejection-free MCMC method does not reject
proposed transitions to the next state, it yields a jump chain
that stays in the same state only once [29]. This gives the
possibility of speeding up the optimization, but the samples
must be properly weighted to reproduce the probability
distribution by sampling.

The number of times to stay in the same state in the original
chain is called the multiplicity and is denoted by M , where
M is a random variable that follows a geometric distribution
defined by the escape probability α from the state. Using the
samples obtained from the jump chain, the expected value
of the state function can be obtained as a sample average
with sample weights M . Thus, the extended Ising machine
can be utilized not only as an optimization solver but also as
a sampler under the target distribution π (x) [29]. If Jk is the
kth sampled state and s(Jk ) is an arbitrary function of state Jk ,
the expected value of s(Jk ) is given by the following weighted
sampling:

Eπ (h) = lim
L→∞

∑L
k=1Mks (Jk)∑L

k=1Mk
(29)

Here, Mk is the number of stays calculated from the escape
probability αk for the transition from the kth state to the next
state. Note that (29) is also valid when 1/αk is used instead of
the random numberMk that follows a geometric distribution.

The possibility of sampling provides a potential application
of the proposed scheme to learning. Since the expression for
H (x) is explicitly given, the gradient of H (x) with various
parameters (e.g., Wij and bi) is also explicitly obtained, and
its expected value can be obtained by sampling. Thus, the
ability to perform sampling can be applied to various types
of learning. We leave this topic to future research.

4) COMPARISON WITH TWO-BODY BOLTZMANN MACHINE
The proposed method has an overhead associated with the
dependent variable that is not present in the two-body
Boltzmann machine. However, considering the increase in
problem size and the complexity of handling higher-order
interactions with only two-body coupling, our experience
shows that the proposed method outperforms the two-
body Boltzmann machine in many situations, as shown in
Section IV. To prove this with high confidence by theory and
experiment is our future work. Instead, we briefly discuss
the difference in the expressiveness between the proposed
method and the Boltzmann machine.

Since the proposed method is based on n-bit fully coupled
decision variables connected to a one-layer dependent
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variable network with m units, the comparison is made
between a Boltzmann machine with fully coupled n visible
units and a single-layer m hidden units added. The energy of
this Boltzmann network is as follows:

H
(
x, x(h)

)
= E (x)−

m∑
k=1

ckx
(h)
k −

n∑
i=1

m∑
k=1

xiZikx
(h)
k , (30)

where x is the visible variable, x(h) is the hidden variable, E
is the quadratic energy term of the fully coupled Boltzmann
machine, Zik is the coupling coefficient between the visible
and hidden units, and ck is the bias constant of the kth
hidden unit. From (30), the state occupancy probability
P
(
x, x(h)

)
is calculated assuming the Boltzmann distribution

and marginalized by x(h) to obtain P (x)

P (x)

∝ exp

{
−βE +

M∑
k=1

ln

[
1+ exp

[
β

(
ck +

N∑
i=1

Zikxi

)]]}
.

(31)

Letting the exponential part of (31) be −βHeff and approxi-
mating Heff at β →∞, we obtain

Heff (x) ≈ E (x)−
m∑
k=1

max

[
0, ck +

n∑
i=1

Zikxi

]
. (32)

The second term on the right side of (32) is the sum of
the rectified-linear type functions, which can represent any
function if the number of neurons in the hidden layer is
sufficiently large. Note that the sign attached to the max
function in the second term of the right-hand side of Heff (x)
in (32) is limited to negative. To reproduce the penalty
function for inequality constraints, which is often used
in optimization problems, this limitation requires a larger
number of hidden layer neurons per inequality constraint.
The method proposed in this paper has the advantage that the
penalty function resulting from an inequality constraint can
be expressed in a single dependent variable, which simplifies
the formulation.

IV. NUMERICAL RESULTS
This section presents numerical experiments as a proof of
concept for the proposed scheme. All numerical experiments
were performed on a 3.60 GHz Intel@Core i9-10850K CPU
with ten CPU cores and the cache size of 20408 kB. For all
problem instances, 16 threads were used. The value of the
time to reach the optimal solution (Time-to-Solution: TtS) is
the average value for ten different random-number seeds.

A. QPLIB INSTANCES
We selected eight instances from the QPLIB [39] that
consisted of binary variables, had quadratic cost terms,
and contained multiple inequality linear constraints (but no
equality constraints). The energy H to be minimized is given

TABLE 1. Value of time-to-solution (TtS) for the selected QPLIB instances.
These instances have quadratic costs and multiple linear inequality
constraints. Note that TtS was compared to Gurobi in Mittelmann’s list.

in the form (1), (2), (3), and Gk is expressed as

Gk = max

(
0,
∑
i∈D

wkixi − wmax

)
. (33)

The value of λk is a fixed value determined by

λk = 2max
i

(
bi +

∑n
j=1

∣∣Wij
∣∣

|Zki|

)
. (34)

The instance ID, number of variables n, number of
constraints m, and TtS in seconds are listed in Table 1. The
number of replicas was 32, and the parallel temperatures
ranged from T = 0.01 to 64 for 3803 and from T =
0.01 to 16 for the remaining instances. The ratio of adjacent
temperatures was kept constant. All instances reached the
correct answer with ten random seeds.

For comparison, Gurobi’s solution times from Mittel-
mann’s list [40] are given in the format a/b (sec), where a is
the time to obtain a solution with guaranteed correctness and
b is the time until the incumbent solution matches the best
known solution. Comparison with these times shows that our
method is about the same or slightly better than Gurobi’s in
the time it takes for the incumbent solution to match the best
known value.

None of the QPLIB instances shown in Table 1 could
be solved using a pure QUBO formulation, which does
not utilize dependent variables in the proposed method and
represents inequality constraints in slack variables. Instances
with as few as 5–11 inequality constraints in QPLIB (10043,
10044, 10048, 10058, 10067, 10069) were also tried. The
QUBO formulation did not solve those instances even with
107 iterations, but the proposed method solved all of them in
less than a second.

B. WEIGHTED MaxSAT PROBLEMS
In this subsection, as a typical example of a problem
with higher-order terms, we solve weighted maximum
satisfiability (MaxSAT) problems with higher-order products
of different orders.

Note that the purpose of this numerical experiment is not to
show that the proposed method can compete with dedicated
SAT solvers but rather to demonstrate that it can provide
formulation freedom for optimization problems involving
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TABLE 2. TtS of the weighted MaxSAT instances, which are formulated by
an energy function involving higher-order AND products.

cost terms represented by various logic functions with orders
well beyond 3.

MaxSAT is the problem of finding a set of Boolean
variables {x1, · · · , xn} that maximizes the number of
satisfied clauses {C1, · · · , CM } in a conjunction normal
form 9 = C1 ∧ C2 · · · ∧ CM , where

Ci = zi1 ∨ · · · ∨ zik , 1 ≤ i ≤ M . (35)

The variables zi1 , · · · , zik in (35) are selected from
another set of Boolean variables x1, · · · , xn, x1, · · · , xn.
The weighted MaxSAT problem is a generalization of the
maximum satisfiability problem in which each clause Ci is
assigned a positive weight wi. The goal of the problem is to
determine the variables x1, · · · , xn that maximize the sum
of the weights of the satisfied clauses.

When solving the weighted MaxSAT problem with the
proposed extended Ising machine, the positive and negative
literals that make up the clauses are inverted to create AND
products, which are additional energy functions Gk . Since
each AND product takes the value of 1 if the corresponding
clause is not satisfied, the weighted sum of satisfied clauses
can be maximized by minimizing the weighted sum of Gk . H
in this problem is given in the following form with constraint
terms only:

H (x) =
m∑
k=1

λk
∏
j∈Sk

zj. (36)

The problem instances solved were yagi10b, yagi10b,
yagi20b, and yagi40b (available at [41]), and jnh1.sat, which
is one of the random SAT instances with variable length
clauses [42]. These are problems with decision variables in
the range of ten to 100, number of clauses in the range of
133 to 850, and number of literals per clause, k , in the range
of two to 14. Using the AND product of the proposed scheme,
these problems are formulated directly with decision spins
equal to the number of decision variables n and the number of
dependent variables equal to the number of clauses m. Here,
the order of the AND product is equal to k , and even the 14th
order can easily be handled.

For these problems, we used 16 replicas. The temperature
of the replicas was set to a power of 2 in the range T= 0.125–
4096. As shown in Table 2, the proposed scheme reached the
best known values of these problems within 8 msec to 2.3 sec.

C. WALSH TRANSFORM AND BOLTZMANN SAMPLING
Here, we show an example of how our proposed scheme
can generate arbitrary energy landscapes. For this pur-

pose, we generated a 10-bit pseudo-Boolean function, i.e.,
an energy landscape, using yagi10b, one of the weighted
MaxSAT instances listed in Table 2. Under the hypothetical
situation that we only know the value of the generated energy
landscape H (x), we generated from this energy landscape
a problem defined as a weighted sum of higher-order spin
products by a Walsh transform:

wk =
1
2n

∑
x∈{0,1}n

H (x) · ϕk (x), (37)

H (x) =
2n−1∑
k=0

wkϕk (x) =
2n−1∑
k=0

wk
∏
j∈Sk

σj. (38)

We then performed optimization and Boltzmann sampling
from the energy landscape re-formulated by (38) in terms of
the higher-order spin products (Fig. 7).

The results of Boltzmann sampling from this problem by
our proposed method for the top 20 occupancy probabilities
are shown in Fig. 8. As we can see, the theoretical value
of the probability of occurrence of the state and the value
obtained from the sampling mean (29) with the sampling
weight as 1/αk are in good agreement. The value of the
total variation distance is less than 0.01 when the number of
iterations is 106. The CPU time required to sample 106 times
from this problem instancewas about 20 seconds for theAND
product formulation and 70 seconds for the Walsh expansion
formulation. Not surprisingly, the optimization and sampling

FIGURE 7. Setup for the energy landscape synthesis experiment, where
the energy landscape is generated from the yagi10b instance. By Walsh
transforming this energy landscape, we obtained a problem instance
formulated as a weighted sum of higher-order spin products, which was
sampled and optimized by an extended Ising machine.

FIGURE 8. Sampling from energy landscape synthesized from yagi10b’s
landscape via Walsh transform. (a) Comparison of theoretical and
measured top 20 state occupancy probabilities. (b) Dependence of total
variation distance on the number of iterations.

results were exactly the same for the formulation using
the AND products of the Boolean variables and for the
formulation using the spin products obtained by the Walsh
transform. Moreover, the number of variable inversions that
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reach the correct solution in the two formulations when
starting from the same initial values is also exactly the same.
This is because the MCMC search in our proposed method is
guided by the energy change due to the decision-variable flip,
and the energy change is designed to be independent of what
type of dependent variables are used.

V. CONCLUSION
We have proposed an algorithm and a computational
architecture called Nebula for constructing Ising machines
with the higher-order interactions needed to handle inequality
constraints and higher-order energy terms. Specifically,
a network of dependent variables is added to express an
extended energy function with interactions mediated by these
variables, and a recursive network composed of the decision
spins and dependent variables computes the energy change
when a decision spin is reversed for all variables in parallel.
The energy change is then utilized to minimize the energy
function by local search or for sampling to reproduce the
Boltzmann distribution.

Although the dependent-variable network for higher-order
interactions is a modest addition, it has the effect of
expanding the range of problems that the Ising machine can
handle. Since the dependent variable mediating the various
interactions is uniquely determined by the decision spins,
there is no increase in the problem dimensions due to the
addition of dependent variables, so it does not complicate the
problem as usual ancillary spins do. Numerical experiments
on inequality constraints and higher-order products confirm
that the use of dependent variables enables a straightforward
formulation of these problems, thus increasing the value of
the Ising machines in both solving and sampling a wider
range of problems.

The primary contribution of this work is, as stated above,
to extend the energy functions available in the Ising machine
to facilitate the formulation of optimization problems. The
flexibility of the energy function opens up a wide range of
possibilities. Since Nebula can handle higher-order products,
arbitrary energy functions with k-body interactions can
be implemented within the computational elements and
memory capacity of the platform. Since the higher-order spin
product corresponds to the Walsh function, it is expected to
have applications such as extracting information from the
energy landscape based on the Walsh expansion and using
it to implement efficient optimization methods. While the
Nebula architecture is capable of fast sampling as well as
optimization, which could be effectively used for learning,
this paper only points out the possibility. It is also necessary to
compare how the dependent variable extension of the energy
function compares to the well-known restricted Boltzmann
machine in terms of the learning and flexibility of the
resulting energy function. These are topics for future work.
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