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ABSTRACT Within large and growing human communities where interactions occur, trust is a key factor
to consider. Computational trust models have then been widely studied since the 2000s targeting items
ratings (e.g. in e-commerce) or M2M (e.g. in IoT network). Among these models , EigenTrust is today
one of the most popular and studied ones . It provides a global reputation calculation and is efficient in
distributed networks, but not fully satisfactory for human interactions. On the opposite, the Bi-lattice model
is well suited for human networks interactions such as solidarity networks and/or human services exchange
networks but is limited to local trust results. In this paper, we propose a new aggregator that extends the
Bi-lattice model to enable a global reputation calculation. This new aggregator discovers the trust links from
the member whose score is to be evaluated to every other members he is connected to on the trust network.
It then computes the global reputation of this member based on these trust links. Furthermore, it enables
a lightweight approach, as it is able to compute a global reputation based only on a partial knowledge of
the trust network. Throughout the paper, the proposed aggregator is presented, evaluated and compared to
Eigentrust to show its effectiveness.

INDEX TERMS Aggregator, Bi-lattice, confidence, distrust, global model, local model, reputation model,
trust.

I. INTRODUCTION
Since the 2000’s, virtual communities have expanded widely.
The rise of web 2.0 and now 3.0 has placed individual
actors at the heart of digital content creation. Within those
large and growing communities, and in a globalized world,
knowing who you can trust is becoming a crucial issue.
Research on computational trust has therefore increased, and
computational trust models have been proposed. Most of
them are adapted to goods evaluation (e.g. in e-commerce)
or M2M (Machine to Machine) , but few of them effectively
target the evaluation of trust between humans [1] .
In this work, we focus on solidarity human networks with

real life services exchanges. These exchanges are performed
by people who can meet each other in real life to provide
and receive services, collaborate or help each other for
daily life activities . The evaluation of human behaviors is
then essential in this context . In Quebec, the Accorderie
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is connecting for nearly 20 years its members to create a
solidarity network. Members from the same locality can
exchange services, on the basis of their know-how and
availability, without any financial compensation as the base
currency is time. However, one of the problems of scaling
up is the issue of trust. Currently, trust between members
is checked only once before entering the private solidarity
network , but this method is not viable on larger and more
public networks.

To address this issue, we base our work on one of the few
trust models that focuses on human networks which is the
Bi-lattice once. This trust model proposes a good represen-
tation of human trust by jointly integrating the concepts of
trust and distrust to refine the representation of the strength of
trust relationships [2]. In fact, the use of a pair (trust, distrust)
makes it possible to represent new stats such as the absence
of information or information conflicts. Thus, this model
provides a solid basis to implement a computational trust in a
network such as the Accorderie. However, most works only
provides local trust results. One of its main limitation is that

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 15713

https://orcid.org/0009-0005-7882-9382
https://orcid.org/0000-0002-6874-5936
https://orcid.org/0000-0003-0602-5957
https://orcid.org/0000-0003-3804-997X


B. Beltzer et al.: New Aggregators for Global Reputation on Bi-Lattice Based Trust Model

it does not allow the community to agree on a universal score
for each member.

Indeed, although human trust is subject to personal
feelings, prejudices, or interpretations subjective and local
trust models appear to be good representatives, they are
quickly limited in their capacity. For example, local models
generally don’t allow producing results from or to a new
member. Global models solve part of the problem: from new
members to others, by allowing the community to agree on
the reputation of each member. Obviously, the other direction
(from the community to the new member) remains an issue.
Another property of local models is the possibility of clans
emerging. In the context of a solidarity network, we believe
that clan grouping is undesirable, because if one group
becomes the majority, the other clans risk exclusion through
ostracism. On the contrary, the global approach enables to
highlight negatively-judged behaviors, and networkmembers
can then solve the inherent problem.

In the context of the Accorderie, and for human solidarity
networks in general, we believe it is desirable to design a
trust model which use would foster good behavior rather
than pinpoint malicious actors. The Bi-lattice based model
remains a solid basis for the evaluation of human behavior
and will serve as a basis for our own work. In this paper,
we focus on the aggregation phase of the Bi-lattice model and
present a new operator that aggregate the evaluations related
to a member to compute his global reputation. Moreover,
the high configurability of our aggregator makes it extremely
versatile, with three main parameters:

• the size of the subnetwork centered on the candidate we
want to evaluate: to adjust the quantity of information
to be aggregated (a very small subnetwork size enables
very fast calculations, at the risk of lower reliability; and
increasing this parameter tends to the result obtained by
aggregating the whole network).

• the weighting of strongly-convinced people. By empha-
sizing this parameter, we can over- or undervalue
strongly-convinced opinions (‘‘I trust a lot’’ or
‘‘I distrust a lot’’) versus indecisive ones (‘‘I do not
know’’ or ‘‘I am mitigating’’).

• the weighting related to the distance from the candidate
makes it possible to adjust the impact of members close
to the candidate versus distant members.

The first parameter concerns the quantity of information
to be aggregated in order to obtain reliable results with a
lightweight approach, while preserving maximum accuracy.
The second and third parameters are characteristics of
the network to which our aggregator applies. Indeed, the
Bi-lattice model justifies the quality of its results on the
evaluation of only one dataset [3]. But not all human
networks are identical, and their properties can evolve. So, the
configurability of our aggregator makes it more general and
therefore more adaptable to different networks. An extended
discussion on the choice of parameters can be found in the
proposed aggregator evaluation part.

In the remaining of the paper, we focus in part II on the
notion of computational trust by presenting the trust concepts
and different trust models . In part III, we recall the Bi-lattice
based model (based on [2], [3], [4] [5]) that serves as a basis
for our work . Then, in part IV, we present our new highly
configurable aggregator for the Bi-lattice base model. The
goal of this new aggregator is to take advantage of the good
representativeness of the Bi-lattice based model by trying
to add configurability and integrate the strengths of global
reputation models. In part V, we propose to evaluate our new
aggregator against benchmark results proposed by Eigen-
Trust.We based this comparison on the use of the dataset from
a couch-surfing application. We also present a performance
evaluation to search for an optimal configuration. Finally,
we conclude with important results from evaluations and we
present some limitations and future works.

II. COMPUTATIONAL TRUST
In this section, we present the concepts of trust, from social
trust to computational trust. We then present various existing
models.

A. TRUST CONCEPTS
Since the 2000’s, research on reputation models has
increased. Web 2.0 has provided users with new possibilities
for interaction, collaboration or data sharing. Trust and
reputation computational models are used as tools to measure
the trust within these virtual communities.

Computational trust is a relatively recent concept, drawing
on social trust to produce trust management models based
on simulations or algorithms [1]. But social trust is a vague
notion. This field of research is mainly covered by the social
sciences (management, marketing, psychology, sociology,
etc.), and there is no unanimity on the definition of these
concepts. However, they generally include the notions of
socialization, cooperation and risk-taking. In his thesis on
the recommender systems [6], C.A. Haydar presents the
historical aspect from the social sciences and propose a
synthesis of definitions. Social trust generally expresses the
belief of a member (or a group) towards another, in the
will to cooperate. In an analysis of several definitions [7],
S. Castaldo lists many redundant keywords, such as: individ-
ual, behavior, future, expectation, or even trustworthiness or
confidence . . .

Research on computational trust then draws on concepts
of social trust to formalize trust models, mainly in a machine
context. S. Ruohomaa and L. Kutvonen recall in their
survey [1] that the nature of social trust is a complicated
phenomenon and that it is not certain that models should
perfectly mimic human behavior. Indeed, the vast majority
of studies focus on a systemic approach to trust, where
network members are computer devices adopting purely
rational behaviors.

In the following, we base our trust concept definitions on
those proposed by F. Azzedin in his thesis [8] (or in [9],
[10]), adapting them to the human context. In this work,
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we consider that trust expresses the belief that a member will
act as expected. Conversely, distrust expresses the risk that
a member will not act as expected. Finally, the reputation
of a member is an expectation of its behavior based on the
community’s opinions.

In addition, several surveys in recent years have formalized
taxonomies of trust models [9], [11]. These taxonomies
classify trust models according to different dimensions, such
as the trust components used to evaluate trust, computational
constraints (network distribution, trust propagation or aggre-
gation), or information discovery and trust advertisement.
One of the main consequences of computational constraints
(trust propagation and aggregation), information discovery
and advertisement, is to define the scope of the result: global
or local.

• Global trust (or reputation) models generally require a
maximum amount of information to provide an indi-
vidual reputation score, regardless of who is requesting
the information. It is a universal score assigned to
each member of the network. The term ‘‘global’’ has
two meanings. The first meaning is the universality
of the result : the score of each member is universal
and therefore does not depend on who requires the
information. The second meaning relates to the source
of raw data : it means that the result integrates all the
information of the network. This second meaning is not
usually explained in presentations of global confidence
models. This is an important detail in our context, as the
parameters of our aggregator allow us to obtain results
considered as global by aggregating only a subnetwork.

• Local trust models are models where the trust value
exists only from one member to another: from the
requester to the candidate. Each member has a trust level
hat depends on who is requesting it . There are two local
trust approaches: simplest non-collective approach and
more advanced collective approach.
– First, we can consider a ‘‘simple’’ trust approach,

which is the closest to the social definition and
the most subjective approach . Members judge,
apprehend or express their opinions towards the
others. In terms of calculation, the trust that a
member A places in a member B is simply formu-
lated by an aggregation based on the interactions
between A and B . This first approach of local trust
model do not consider the propagation of trust
by transitivity and quickly presents its limits (e.g.
member A cannot have any information about B
before interacting with B if there has not been any
contact yet).

– A second approach, the collective one, uses more
information and allows evaluating the trust of a
member by aggregating my opinion as well as the
opinions of my ‘‘friends’’ and that of my friends’
friends . . . , by using the propagation of trust . The
collective approach of local trust model allows
establishing a trust link between members A and

B who have no yet interacted, if there is at least a
propagation path between A and B.

B. TRUST MODELS
On one hand, one of the most popular global trust model
to date is EigenTrust [12]. It computes an eigenvector of
a normalized trust matrix based on local votes. Eigentrust
has been proposed in the context of file sharing to judge the
reliability of resources in a BitTorrent network. One of its
greatest assets is that it is efficient in distributed networks.
However, EigenTrust suffers from a number of weaknesses,
such as cold startup, the impact of normalization or the belief
in the honest feedback.

Many models have been derived from EigenTrust to
try to solve these issues. Some integrate the similarity to
evaluate the reliability of feedback like SimiTrust [13] or
EigenTrust++ [14]. Others integrate new trust factors such
as contribution quantity or a context and/or quality factors
like PeerTrust [15], [16] or CuboidTrust [17]. Others still
improve the computational efficiency and the cold start with
a dynamic pre-trusted peer set as in HonestPeer [18].
On the other hand, one of the first and simplest local

collective trust model is MoleTrust [19]. This is a lightweight
model that provides local trust results based on a subnetwork
limited to a fixed horizon.

Another approach is the one based on Bi-lattice [2],
by integrating two values of confidence: trust and distrust
simultaneously. This approach allows a better interpretation
of the results by integrating the representation of two new
behaviors: ignorance and contradictory information. More-
over, the authors of the first papers on the Bi-lattice model
propose some new operators to compute the propagation and
the aggregation of trust and distrust values.

III. BI-LATTICE BASED MODEL OVERVIEW
The confidence management model based on Bi-lattice was
first introduced in 2006 [2], its authors present a new model
of confidence and introduce its values space,

BL = [0, 1]2. (1)

They assume that trust and distrust can coexist. This space
is used to represent the different opinions that a member
can attribute to another: (t, d) = (1, 0) for a total trust and
(t, d) = (0, 1) for a total distrust (and all these gradients). The
values (t, d) = (0, 0) and (t, d) = (1, 1) allow representing
respectively the ignorance and the conflict of information.

Moreover, this bivalent representation allows knowing the
level of knowledge

∀(t, d) ∈ BL, k = t + d, and k ∈ [0, 2]. (2)

The level of knowledge is an important tool to highlight
three zones of confidence:

• k < 1 is the area of lack of knowledge.
• k = 1 is the line of perfect knowledge.
• k > 1 is the area of excess knowledge, therefore
contradictory information.
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FIGURE 1. Representation of the knowledge levels.

We can represent these zones in a two-dimensional graph
presented in Fig. 1.

A. PROPAGATION OPERATORS
Reference [2] present the problem of propagation, where: ‘‘if
the opinion of member A in B is (tAB, dAB) and the opinion of
member B in C is (tBC , dBC ), what information can be derived
about the opinion of member A in C ?’’ The propagation
problem has been further developed in [4].
Formally, a propagation operator is an application PR :

BL2
→ BL. This operator is not necessarily commutative or

associative. Here are different propagators among the main
ones proposed:

• The first one exhibits a skeptical behavior like: ‘‘I only
consider the opinions of members I trust’’.

PR1((tAB, dAB), (tBC , dBC ))

= (tAB · tBC , tAB · dBC ) (3)

• The second one present a paranoid behavior: ‘‘If I don’t
know, I don’t trust’’ .

PR2((tAB, dAB), (tBC , dBC ))

= (tAB · tBC , (1 − dAB) · dBC ) (4)

• This operator exhibits a behavior in accordance with the
maxim, ‘‘the enemy of my enemy is my friend’’.

PR3((tAB, dAB), (tBC , dBC ))

= (tAB · tBC + dAB · dBC − tAB · tBC · dAB · dBC ,

tAB · dBC + dAB · tBC − tAB · tBC · dAB · dBC ) (5)

Reference [4] show that PR2 and PR3 can be complemen-
tary, allowing to reflect different confidence behaviors. How-
ever, for the following, we choose to use only PR3 because
it respects the propagation of ignorance (i.e. ∀(t, d) ∈

BL,PR3((0, 0), (t, d)) = PR3((t, d), (0, 0)) = (0, 0) ).
Moreover, as these propagators allow computing chains of

variable length, it will be relevant to keep the length of the

propagation chain in the result. So we can continue our value
space to (t, d, p) ∈ BL × N∗ where p is the length of the
propagation path (p = 1 in the case of a direct opinion). From
here, a score level defined only by (t, d) will be implicitly
either p = 1, or p useless for the further reasoning.

B. AGGREGATION OPERATORS
In addition to propagation, [3] and [5] also questioned the
aggregation problem: ‘‘if the opinion of member A in C is
(tAC , dAC ) and the opinion of member B in C is (tBC , dBC ),
what information can be derived about the general opinion of
members A and B in C ?’’

Formally, an aggregator operator is an application AG :

(BL × N∗)n → BL. This operator must be commutative,
but not necessarily associative. Moreover, some issues due
to non associativity (and non distributivity of PR on AG) are
discussed in the next subsection on the algebraic structure of
the confidence space. Where propagators can be inspired by
the usual multiplication, aggregators cannot be built as simply
from the usual addition. The main risk is to simply increase
the level of knowledge and risk t > 1 or d > 1, or both.
The main operator used to build aggregators is the average.
To help the design of these aggregators, [3] propose some
properties that should be respected:

• The first property of aggregators is that of bounds: if
(t, d) is the aggregation result of (ti, di)i∈[[1,n]], we should
have: min(ti) ≤ t ≤ max(ti); min(di) ≤ d ≤ max(di)
and min(ki) ≤ k ≤ max(ki). The area according to these
properties is shaded on the Fig. 2.

• The aggregators should be monotonous: For the trust
order <t (resp. distrust order <d ), if (ti, di) ≤

(t ′i , d
′
i ), then AG((t1, d1), . . . (ti, di), . . . (tn, dn)) ≤

AG((t1, d1), . . . (t ′i , d
′
i ), . . . (tn, dn)).

• (0, 0) is the neutral element for aggregators.
• If all aggregate scores are (t, d), then the result of the
aggregation is (t, d).

• If the same number of opposite scores (ie. (t, d) and
(d, t)) are aggregated, the result should highlight this
inconsistency. For example, we can have:

AG((1, 0), . . . (1, 0)︸ ︷︷ ︸
n/2

, (0, 1), . . . (0, 1)︸ ︷︷ ︸
n/2

) = (1, 1). (6)

AV is the first simplest aggregator. It’s a standard
arithmetic average, eliminating zero trust values (0, 0) from
the calculation. However, this aggregator is very sensitive to
near zero values (e.g. (0.001, 0.001) has a strong impact).

To improve the aggregation based on the arithmetic
average, [3] propose KAAVg as a smarter average than AV .
It’s a weighted average, where weights are powers of the data
reliability. The g power is called the knowledge reward, and
the data reliability is the distance from the data to the line
k = 1. Note that AV is KAAV0.

A second and more advanced aggregators’ family is based
on OWA operators. An OWA operator is an ordered weighted
average. In aggregation of (s1, . . . , sn), where the score
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FIGURE 2. Example of some aggregation results (red crosses) from
4 arbitrary data (green dots). The shaded area is the area according to the
properties of boundary.

si = (ti, di), the OWA aggregators are defined by two OWA
sub-operators:

OWA(<t ,vt ),(<d ,vd )(s1, . . . , sn)

= (OWA<t ,vt (t1, . . . , tn),OWA<d ,vd (d1, . . . , dn)). (7)

where:
• <t (resp.<d ) is a total order on scores when calculating
the trust (resp. distrust) part of the result.

• vt (resp. vd ) is the associated weight vector for trust
(resp. distrust) part .

K−OWAat ,ad Represent this family of aggregators.<t and
<d are chosen as the standard order, and the two vectors of
weights are generated from the parameters at and ad .
The third family of aggregator is the path length dependent

aggregators. P − WAα is a path length dependent weighted
average. Score weights are built according to the length of
the aggregation path to reduce the impact of long paths.
Another example of path length dependent aggregator is
P − IOWAat ,ad . It’s similar to K − OWAat ,ad but the order
is first induced by the path length and then by the trust (resp.
distrust) values.

Finally, [5] introduce a last aggregator regrouping the
advantages of OWA and path length dependent operators.
KP − OWA is the last proposed operator. It applies a double
weighted average, firstly like K − OWA and secondly like
P−WA.

C. BL ALGEBRAIC STRUCTURE
One of the computational difficulties in the Bi-lattice based
model is due to the weakness of its algebraic structure.
Indeed, PR and AG are generally non-associative, and PR is
generally non-distributive on AG. This observation requires
overcoming situations such as:

• for x, y, z ∈ BL, PR(x,PR(y, z)) is generally different
of PR(PR(x, y), z).

FIGURE 3. Example of some propagation and their final aggregation,
where nodes are users and edges are direct opinion.

• for x, y, z ∈ BL, AG(x,AG(y, z)) is generally different
of AG(AG(x, y), z).

• for x, y, z ∈ BL, PR(x,AG(y, z)) is generally different
of AG(PR(x, y),PR(x, z)).

To avoid these situations, it’s necessary to adopt some
convention:

• Due to the non-associativity of the propagation opera-
tors, it is necessary to define a generalization for the
chains of propagation (if A has an opinion x on B
who has an opinion y on C who has an opinion z on
D). Reference [3] shows the advantages to perform the
propagation in a right-to-left direction (notably, when
there is no centralized database of all direct opinions):
for x, y, z ∈ BL, PR(x, y, z) = PR(x,PR(y, z)).

• Because of the non-associativity of the aggregation
operators, and because these operators are not necessary
binary, it is proposed to not compose this aggregator
with itself but rather to aggregate a list of scores: for
x, y, z ∈ BL, AG(x,AG(y, z)) = AG([x, y, z]).

• Due to the non-distributivity of PR over AG, we can
imagine that we start by computing all the propagation
chains, and finally proceed to a final aggregation.
So, only one final aggregation is calculated. Example:
To compute the result present in Fig. 3, we com-
pute AG([PR(y, z),PR(u,w, z),PR(v,w, z),PR(x, z)]).
So after the aggregation operation, we can not perform
any more calculations. The image space of the
aggregator is then reduced to BL. The length of
the propagation does not generally have any more
sense after an aggregation because the aggregation can
incorporate different length paths.

D. NOTE ON THE OWA OPERATORS
Reference [3] and [5] show that the aggregators based
on OWA operators are the most efficient. This result is
experimentally justified by the capacity of the propaga-
tor/aggregator couple to retrieve a value voluntarily removed
from the dataset. Two directly linked members A and B are
selected, and the opinion (tAB, dAB) is deleted and taken as
reference score. It is then tried to recompute (t ′AB, d

′
AB) using

the remaining indirect paths from A to B. Finally, on many
trials, statistics measure the differences between the reference
values (t, d) and the reconstructed values (t ′, d ′).
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However, a fundamental point remains to be clarified:
the construction of the weight vector for the application
of the OWA operators. In the following, we present the
original definition proposed for the weight vector, and then
we propose another moremodular construction adapted to the
use of global aggregation.

IV. A NEW OPERATOR FOR GLOBAL AGGREGATION
In this section, we focus on the expected property of a global
reputation model compared to a local model. We then present
a new way to use aggregators to achieve global results. The
focus is mainly on the role of the weight vector when using
OWA-based aggregators.

A. LOCAL VS GLOBAL AGGREGATION
Global reputation models allow the emergence of a reputation
score for each individual, independently of who emits the
request. Furthermore, most global models also incorporate
another notion of globality: all the information available in
the network is used to compute individual reputations. In the
following, we choose to use the term of quasi-global to
consider an operator that respects the first property but not
necessarily the second. A quasi-global aggregation allows
generating for each member an individual reputation score
independently of the requester, but that does not necessarily
integrate all the data of the network.

In a cooperative local trust computation approach, we con-
sider who emits the request. The principle is to aggregate the
set of scores from A to B, where A is the requester and B is
the candidate. Each score comes from a propagation chain of
length p, where p ∈ [[1, h]], where h is the search horizon.
This approach has several defects:

• First, if the length of the shortest path from A to B is
greater than h, then this calculation does not give any
results.

• Moreover, this technique, when it gives usable results,
tends to favor clan groupings. Indeed, if A and B
belong respectively to two subgroups G1 and G2, that
each subgroup is strongly connected with score values
globally ‘‘trusting’’, and that the intergroup links are
rare and globally ‘‘distrusting’’, then the local trust
calculation will make emerge a distrust from A to B.
Thus, this tool does not show that B is globally trusted
within his subgroup.

• Finally, if the members of the network have on average
δ opinions about their neighbors, (i.e., δ = |E|/|V | in
graph G(V ,E)), then the exploration of the subnetwork
of A bounded by a horizon h represents the exploration
ofO(δh) paths, of which only a fraction arrive to B. That
is, only a fraction of the recovered information can be
used in the aggregation calculation.

B. GENERAL IDEA
We propose to use a variant of KP − OWA operator and
perform a quasi-global aggregation to allow answering these

three problems. The general idea is to aggregate the set of
paths of length p ∈ [[1, h]] arriving at the candidate B (no
matter where they come from), excluding paths with loop.
Moreover, it is enough that an opinion is expressed towards
B for the computation to give a result (although this result is
not fully relevant if too little information is aggregated).
Finally, since the search for the paths leading to B is

equivalent to the search for the paths from A to B, we show
in the following part that there is a limit of the number of
aggregated paths , beyond which, in depth research brings
very little additional information.
To realize this aggregation centered on the candidate B,

we chose to apply a variant of the most reliable aggregator
presented in [5]. Indeed, we must reconsider the search
horizon in terms of the desired computational efficiency.
For a given horizon h, we will aggregate about δh paths.
But how to define h ? Moreover, the choice of h does not
provide information about a precise bound of the number of
aggregated paths as long as we do not know the topology of
the subnet of candidate B. Our approach proposes to define
an integer γ of significant paths that we wish to aggregate
(i.e., the number of paths that we consider both necessary
and sufficient to appreciate the results). We then deduce h
by a width search. This bound γ can be translated into a
zero setting of the set of weight values wi of the aggregation
weight vector for all i > γ . γ is a personal parameter
chosen by the requester. There is no ‘‘good’’ value for this
parameter. Finally, it may be relevant to perform several
calculations with different values of γ to get information
about the subnetwork close to the candidate, as to observe
clan groupings.

C. OWA WEIGHT VECTORS CONSTRUCTION
Usually, the OWA operator uses a vector of fixed weight as
in [3] and [5]:

wi = max
(
0,

⌈ n
α

⌉
−i

)
. (8)

The vector is then normalized such that
∑
wi = 1.

An important feature of this definition is that the vector has
exactly

⌈ n
α

⌉
non-zero weight. So there will be

⌈ n
α

⌉
regarded

score in the aggregation. Also note thatw is also the definition
of a decreasing arithmetic sequence bounded at 0.

This vector is an arbitrary choice and is not very
configurable. In order to refine our results with respect to
reference reputation algorithms, we choose to redefine this
vector with more modularity. In this regard, we choose to use
an arithmetic-geometric sequence. Moreover, for ease of use,
we set w0 = 1 representing the maximum weight (before
normalization) and apply the bound γ to set the desired
non-zero weight of w. So we have:

• w0 = 1
• ∀k ∈ [[1, γ ]],wk = awk−1 + b
• ∀k ∈ [[γ, n]],wk = 0
On [[0, γ ]], w is an arithmetic-geometric sequence define

by wi = r − air , where r =
b

1−a .
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FIGURE 4. Representation of the weights of a vector of size 100 with the
γ = 70 bound for three β values.

We also define a parameter β ∈ [−∞, γ ] resulting from
a and b to represent the proportions of decrease associated
to the geometric part (β = 0 then represents an arithmetical
sequence only). Then, we propose:

a = 1 and b =
−1
γ

if β = 0

a = 1 −
β

γ
and b = aγ a− 1

1 − aγ
else.

(9)

So, we have:

wi =

max (0, 1 − b) if β = 0

max(0, ai + b
ai − 1
a− 1

) else.
(10)

The vector obtained from (10) is finally normalized.
With this definition, we can have different configurations

of the weight vector (as shown in Fig. 4):
• β < 0, to minimize the difference in weight between the
most relevant scores

• β = 0, to equalize the difference between the scores
• β > 0, to minimize the difference in weight between
less relevant scores

D. PATH LENGTH DEPENDENT WEIGHT VECTORS
CONSTRUCTION
Reference [5] present two constructions of the path length
dependent weight vector: non-starred option and starred
option. The first (non-stared) construction proposes to weight
each score by a power of the inverse of its path length:
ωi =

1
pα
i
, where α is a parameter. The vector is then

normalized. The main criticism of this construction is the
imbalance created when there are many paths of the same
length (example: α = 1, one path of length 2 totalling a
weight of 1/2 and ten paths of length 3 totalling a weight of
10/3: that is to say 3/23 vs 20/23 after normalization).

To balance this, [5] also present the starred option. It fixes
the total weight T (p) of all paths of length p as a function of

the number of paths, and to assign to each path of length p a
fraction of this weight:

T (p) =

(
np

np + 1

)α

·

1 −

p−1∑
q=1

T (q)

 , (11)

where α is a parameter and np is the number of path of
length p. Then, they define ωi =

T (pi)
npi

, and the vector is
finally normalized.

In our case, the only difference with the original definition
is to consider the paths of length 1, paths that are not
considered in [5] because they are taken as references.

E. QUASI-GLOBAL OWA-BASED AGGREGATOR
After having chosen the aggregation parameters (αt , βt ) for
the calculation of the trust (resp. (αd , βd ) for the distrust)
and γ , a width search from candidate B allows retrieving n
distinct non-ignorance paths leading to B, (the search can
be deepened while n < γ 1). Each path is expressed by a
score (t, d, p) representing the propagation chain of the path,
relative to a chosen propagator.We then define two total order
on the set of propagation chains: for s1, s2 ∈ BL × N∗,
s1 > s2 iff t1 > t2 (resp. d1 > d2) for the trust part calculation
(resp. distrust part). In case of equality, we choose to order
them by increasing path length (p1 < p2), and finally by
decreasing knowledge (k1 > k2 where ki is the knowledge as
defined below). Then we obtain the ordered vectors T (resp.
D) of the trust parts (resp. distrust parts) from the scores list
s.

Finally, we construct the result score of candidate B from
these ordered lists as:

(t, d) = (
∑
i

Ti ·
wti · ωti∑
wti · ωti

,
∑
i

Di ·
wdi · ωdi∑
wdi · ωdi

), (12)

where wt is the OWA weight vector for the trust part, wd is
the OWA weight vector for the distrust part, ωt is the path
length dependent weight vector for the trust part and ωd is
the path length dependent weight vector for the distrust part.

V. EVALUATION
In this section, we evaluate our new aggregator for a
quasi-global reputation calculation. We start by presenting
our dataset and the formatting to make it usable. We then
propose two evaluation approaches. The first one consists
in comparing the results with those obtained by a reference
algorithm: EigenTrust. The second one is a performance
evaluation based on the principle of quasi-globality: what
is the minimal and sufficient amount of information to
aggregate to obtain a reputation score that can be considered
as global ?

A. DATA SET
The choice of dataset was motivated by two arguments.
Firstly, we need a representation of a bi-valued weighted

1If we can’t find enough paths, we can return a partial result aggregating
γreal paths, with the percentage γreal/γtarget as trustworthiness information.
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TABLE 1. Trust degree interpretation.

TABLE 2. Knowledge degree interpretation.

directed graph. Indeed, the vast majority of datasets repre-
senting web-of-trust, like epinions ( [20], [21], [22] and [23]),
or from bitcoin network ( [24], [25], [26] and [27]),
are weighted by uni-valued weights. To the best of our
knowledge, the dataset used in [3] and [5] is the only
bi-valued dataset we could use. Secondly, the re-use of this
dataset enabled us to validate the formatting of the raw data
(we get the same statistics on the raw data). However, the
comparison with previous results is impossible because the
aggregators presented in [3] and [5] are local whereas our
proposal concerns quasi-global aggregators.

The dataset is initially formatted as a list of weighted
directed edges of a graph. However, the first sorting is to
eliminate the irrelevant and/or null data. After this first sort,
we obtain a network of 397471 users and 2697705 direct
opinions. Each edge is presented as follows:

• User sending the opinion,
• User receiving the opinion,
• Trust degree, as numeric value in [[1, 6]],
• Knowledge degree, as numeric value in [[1, 7]].

The trust degree and knowledge degree are then interpreted
as shown in Table. 1 and Table. 2 to define τ and k values.
Finally, after defining (τ, k) ∈ [0, 1], we define (t, d) as:

(t, d) = (k · τ, k · (1 − τ )). (13)

The Fig. 5 represents the distribution of all non-zero edges
in the network. The red cross AV is the arithmetic mean
at (0.42, 0.21). This value allows us to notice that direct
opinions are on average twice as positive as negative. This
imbalance in favor of positive opinions helps when applying
Eigentrust because Eigentrust calculations only consider
positive opinions. So, we know that the Eigentrust application
will consider on average 2/3 of the raw data.

B. EIGENTRUST COMPARISON
In this evaluation, we choose to compare our result to
the result obtained by EigenTrust. There are two major
difficulties with this comparison:

FIGURE 5. Raw data representation of the dataset. The size of the disk is
proportional to the square root of the corresponding number of data. The
red cross named AV is the arithmetic mean of all non-zero data.

• EigenTrust generally uses a pre-trusted peer set to
improve its efficiency and permeability. In our case,
we do not have this set. Therefore, we restrict our
graph to its largest strong connected component in order
to ensure the reliability of EigenTrust results without
a pre-trusted peer set. This restriction allows us to
efficiently apply Eigentrust, and thus to use the same
dataset for Eigentrust and Bi-lattice model. However,
this restriction is not necessary for the application of the
Bi-lattice model alone.

• EigenTrust is an algorithm using uni-valued data.
However, the voting information initially received by
EigenTrust is: (+1) for a satisfaction vote and (−1)
for an unsatisfaction vote. The resulting uni-valued
data is then computed as follows: max(sat − unsat, 0)
followed by a normalization. This degradation function
then allows transforming a set of votes into a Markov
process. We then choose to adopt the same degradation
function to our score values: for a score s = (t, d),
we build the value e = max(t − d, 0), then we apply
the same normalization process.

We construct our comparison as follows:

• Eigentrust:We load the raw data by applying univalued
degradation. We then restrict the graph to its largest
strongly connected component (named c). We finally
apply EigenTrust to obtain the global trust list of
members ei.

• Bi-lattice: For comparison purposes, we derive the
Bi-lattice graph from the EigenTrust graph. We then
reload the raw bi-valued data by restricting ourselves to
the strongly connected component c. For the members
of the component c, we are sure that at least one notice
is sent to each member because the component is also
connected in the case of Bi-lattice loading. We can
then search the aggregated score of each member and
build the quasi-global score list of members bl (in the
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FIGURE 6. EigenTrust results (in z) in function of Bi-lattice results (in xy).
Each point represents a member, and the grey points are members where
the score has a knowledge greater than 1.

FIGURE 7. EigenTrust results (in y) in function of trust Bi-lattice results (in
x). Each step is the average of the values belonging to its subdivision.

following, we consider the list of trust values blt and the
list of degraded values blu)

The Fig. 6, 7, and 8, allow visualizing the results obtained
with the simplest configuration : non-stared option with
αt = αd = 0, βt = βd = 0 and γ = 50. γ is
arbitrarily chosen of the order of δ2 to ensure a search horizon
h > 1 while keeping a reasonable computation time (a few
minutes). The Fig. 6 represents only a connected component
of 1000members for readability. The two other figures (Fig. 7
and Fig. 8) are effective on the totality of the dataset, that
is to say a connected component of 250276 members with
2079993 direct opinions (δ = 8.31).
For example, we can interpret the results of Fig. 7 as

follows: ‘‘members with a trust value for Bi-lattice in
[0.9; 0.95[ (second last step) have on average a trust value
of 1.1 · 10−5 for EigenTrust’’.

These first comparisons show that a member with a
‘‘trustworthy’’ score via Bi-lattice results will on average
have a high trust value via EigenTrust. And respectively,
a member with an ‘‘untrustworthy’’ score via Bi-lattice
results will on average have a low trust value via EigenTrust.
At first sight, it seems that the trust value of the Bi-lattice is
more representative of EigenTrust than the degraded value.

FIGURE 8. EigenTrust results (in y) in function of uni-valued degraded
Bi-lattice results (in x). Each step is the average of the values belonging to
its subdivision.

TABLE 3. Bi-lattice vs EigenTrust comparisons synthesis.

To deepen the comparison, we introduce a measure of the
difference between the Bi-lattice and EigenTrust results: after
normalizing the Bi-lattice results (trust value or univalued),
we define cumulative error as the sum of the absolute
differences between two normalized numbers lists f and g:

1f ,g =

∑
i

abs(fi − gi) ∈ [0; 2]. (14)

The lists used in Fig. 7 and 8 have respectively 1blt ,ei =

0.779 and 1blu,ei = 0.750. Indeed, the histogram repre-
sentation hides the number of members represented in each
step. The measure 1 finally allows us to show that the
univalued degradation gives results slightly closer to those
of EigenTrust. In addition, we define a variant of 1 (named
110

∈ [0, 1.8]) that excludes the last decile from the list.
Then, we obtain 110

blt ,ei = 0.465 and 110
blu,ei = 0.439. This

variant allows us to show that about 1/3 of the cumulative
error is contributed by the 10% most erroneous. The Table. 3
summarizes these results.

In this evaluation, we do not address the issue of
configuration . The results are always obtained with the
simplest configuration (non-stared option with αt = αd = 0,
βt = βd = 0 and γ = 50). Indeed, different configurations
does not allow to get significantly closer to the results of
EigenTrust (in general, 1blt ,ei is around 0.8 and 1blu,ei is
between 0.7 and 0.9). The goal of this comparison is not to
find an optimal configuration , but to show that the Bi-lattice
results are consistent with those obtained with EigenTrust.

C. PERFORMANCE EVALUATION AND OPTIMAL
CONFIGURATION
In this evaluation, we are interested in the impacts of the γ

parameter and the associated optimal configuration . The goal
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is to highlight the concept of quasi-globality: ‘‘What is the
necessary and sufficient search depth around a candidate B
to extract the majority of information about B ?’’

We want to compare the results obtained for different
values of γ and thus define a ‘‘good’’ configuration .
We define blα,β,γ (possibly blα∗,β,γ ) the scores list of
members obtained with the configuration α = (αt , αd )
(starred or non-starred option), β = (βt , βd ) and γ .
We can approach the definition of a ‘‘good’’ configuration

in several different ways:

• (α, β, γ ) is a ‘‘good’’ configuration if, for any γ ′ greater
than γ , the results obtained for γ ′ are close to those of
γ . This definition best represent the principle of quasi-
globality. However, it has one major defect: it highlights
an edge effect of the α parameter. Indeed, for large
values of α (resp. small values of α∗), the associated
weight vector will tend to overvalue the paths of length
1 and to neglect all the others. Thus, if all paths of length
1 are considered for γ = γ1 of the order of δ, then
the results for larger γ will be similar. According to
this definition, all configurations with α > 10 (resp
α∗ < 0.1) are ‘‘good’’ configurations (all the better as
α is large (resp. α∗ small)).

• (α, β, γ ) is a ‘‘good’’ configuration if, as a function of
γ , the results converge quickly to a reference distribution
of score. This definition seems the most reliable, but
its application is complicated. Indeed, the dataset used
does not have any reference distribution.Moreover, if we
try to build a reference distribution with other operators
(via other aggregators, uniform distribution, random
distribution . . . ) the configuration will only try to mimic
this other operator. This behavior seems desirable, but
only in the case where the reference distribution is an
absolute truth.

• To compensate for the lack of any reference distribution,
we choose to use the dataset dating. Each dataset entry
is dated from 2004 to 2009 (outliers are ignored).
We choose to separate our dataset in two sub-set:
from 2004 to 2005 to build a computational network
named g, and from 2006 to 2009 to build a reference
network named gref . Thus, we define a ‘‘good’’ config-
uration as follows: (α, β, γ ) is a ‘‘good’’ configuration
if, as a function of γ , the results computed on g converge
quickly to the results computed on gref with a large γ .
Thereafter, we choose to use this definition because it
integrates the principle of quasi-globality (with respect
to a reference distribution considered as global) and
avoids the problems of the first definition.

In this evaluation, three new difficulties arise: the con-
struction of the g and gref networks, the choice of reference
distribution on gref , and the choice of measurement tools.

• To build the networks g and gref , we have to respect
several constraints:

– The two networks must be strongly connected.2

To do this, we start to build two large graphs and
restrict the larger one to the connected component
of the smaller one, and so on until the graphs
have the same members. The chosen graphs for
this evaluation are restricted to 1000 members by
computational constraints.

– The two networks must not have common edges:
this constraint is ensured by the choice of the dates.
Graph g has only opinion before 2006 and gref has
only opinions after 2007.

– The two graphs must have similar topology: we
want δg ≈ δgref and the average of the shortest
path between all members to be similar. We define
l the average of all the shortest paths (excluding the
paths of length 0) and lmax the longest of the shortest
paths.

• To establish the reference distribution on gref , we rely
on two assumptions:

– The opinions issued between 2006 and 2009 are
dependent on the existing opinions from 2004
to 2005.

– A quasi-global aggregation calculation with a large
γ is close to a global aggregation calculation (i.e.
a large γ allows integrating the opinions of all the
members of the network).

Thus, we define γmax = ⌈δl⌉. This value of γ

allows on average to aggregate at least one notice
from all members of the network. So, the aggregation
parameterized by (α, β, γ ) calculated on g will then
be compared to the aggregation parameterized by
(α, β, γmax) on gref .

• To compare the results on g to the reference on gref ,
we choose to use one of the measures proposed by [3]
and [5]: mean absolute error (MeanAE) in [0; 2], define
by (15). In addition, we choose to introduce two other
measures to better understand the distribution of errors:
max absolute error (MaxAE) in [0; 2], define by (16),
and the average excluding the ten most erroneous
percent (MeanAE10) in [0; 1, 8].

MeanAE =

∑p
i=1 |ti − t ′i | + |di − d ′

i |

p
(15)

MaxAE = maxpi=1(|ti − t ′i | + |di − d ′
i |) (16)

The first observation focuses on the variations between
the starred and non-starred options, Fig. 9 shows some
examples. The starred options were quickly eliminated from
the comparison process because they present on average
(i.e. relative to MeanAE) less convergent results than the

2The connection of our graph is appreciated but not necessary, indeed, it is
enough that the members are receivers to compute their score. However, the
connection guarantees that there are many different paths to each member
and thus that all computations remain successful (i.e. γreel = γtarget ) even
for large values of γ .
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FIGURE 9. Example of measures with MeanAE of some configurations
with two starred options and two non-starred options.

FIGURE 10. Results obtained with MeanAE measure.

FIGURE 11. Results obtained with MaxAE measure.

non-starred options.3 Although their results can be better for
small γ , the results are chaotic and the relevance of the α

parameter is very limited when γ is very small. For these
different reasons, the following evaluation only concerns the
non-starred options.

3In fact, the starred option converges quickly, but to a more distant value
than the non-starred option.

FIGURE 12. Results obtained with MeanAE10 measure.

TABLE 4. Synthesis of measures for the best configuration (lower blue
curve on Fig. 10, 11, and 12).

To draw the resulting curves, many configurations have
been tested: α ∈ [0, 15] with smalls steps close to zero
(α = 15 is considered as limit case representing all the
α > 15 cases); β ∈ [−40, 40] with a step of 5 (β =

−40 or β = 40 are considered as limit cases in terms of
computational capacity). We have tested several thousand
of configurations , and the Fig. 10, 11, and 12 show some
different results for the three measurements. The blue curve
with configuration α = (0, 6) and β = (−40, −40) achieves
the best performance in almost all measures.4 The Table. 4
below summarizes this curve values for several γ .

Because of the construction of the measures, the impacts of
αt and βt are independent of αd and βd . The results can thus
be analyzed independently for the trust and for the distrust:

• Trust analysis: αt = 0 and βt = −40
These results are both limit cases. They can be
interpreted as follows: α = 0 implies that there is no
weighting of the trust values according to the length of
the path with the candidate. A small value of α confirms
an already well known idea: trust is transitive (e.g., even
if A is far from B in the network, if A attributes trust to
B, then this trust is perceptible in the aggregation of B’s
score). β = −40 represents a case where the sub OWA
operator assigns the same weight to all aggregated trust
values. Synthetically, the most relevant aggregator for
the trust part is very similar to AV , it is an unweighted
arithmetic average. However, there is a small difference
with AV because, in our aggregation, the search for γ

4αd = 6 is a rounded value. The tests revealed that αd = 5.9 proposed
a very slight improvement of the results when γ is small, against αd =

6.2 when γ increases.
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non-ignoring paths ensures that there will be no (0,0)
in average calculation, and thus the aggregation really
represents γ distinct opinion.

• Distrust analysis: αt = 6 and βt = −40
α = 6 implies that there is a strong weighting of
the distrust according to the length of the path with
candidate B. This is a strong value of α which favors
very much the paths of length 1 (the paths of length 2
have a small impact and higher lengths are almost
neglected). This value gives distrust a different status
than trust: distrust would not be transitive or not very
transitive. Direct distrust opinions have a strong impact
on the calculation of the score whereas indirect opinions
are strongly diminished. The analysis of β is the same
as for trust.

VI. CONCLUSION
The use of multivalued reputation models is still underdevel-
oped in the literature. Moreover, the notion of quasi-global
reputation is, to our knowledge, never used yet. The concept
of globality itself still lacks some formalism because of its
double meaning.

In this paper, based on commonly accepted definitions
for the notions of local trust and global trust, we propose
a formalization of the concept of quasi-global trust. In the
first evaluation, we chose to compare this concept to a global
reputation reference model. We have developed a protocol
to compare the bivalued Bi-lattice model to the univalued
Eigentrust model. We have chosen to consider several
interpretations of the couple (t, d) and have shown that the
comparison of the distributions ei (obtained with Eigentrust
model) and blu (obtained by t − d subtraction with Bi-lattice
model) produces consistent results: a member with a high
value in ei has, on average, a high value in blu.
In a second evaluation, we choose to focalize on the

Bi-lattice model for several purposes. On the one hand,
we extend the notion of the quantity of information
(knowledge of score), and thus of reliability, to the idea of
quasi-globality and to its associated error. We show that it is
possible to approach results considered as global by strongly
minimizing the calculations, while keeping a good reliability.
On the other hand, the interpretation of the results of several
configuration allowed us to highlight an important difference
between trust and distrust: trust would be transitive whereas
distrust would not.

In summary, we propose a new operator for the Bi-lattice
based model to evaluate reputations in human network
contexts. Moreover, the high configurbility of our operator
allows for lightweight computational options that highlight
the advantages of quasi-globality.

This article then proposes a first approach to the concept
of quasi-globality, but it can be improved. One of the
most important aspects is the relevance of the used dataset.
The dataset has a large amount of middle data (see on
Fig. 5), as much in the conviction of opinions (value
of k), as in the proportion of trust/distrust. Moreover, the

reference distribution is built from a subset of the dataset.
Thus, the results are highly dependent on this dataset.
In addition, the first tests were performed on graphs of
200 members and the final evaluation was confirmed on
graphs of 1000 members (the main motivation is to save
computing time). However, the dataset contains information
about 397471 users, and the largest common components
found for g and gref is 53436 users.

A. FUTURE WORKS
This work also suggests a number of avenues for future work,
particularly with regard to the choice of path calculation and
potential applications to distributed networks.

In the path search, we chose not to consider paths with
loops as in [19]. The main goal is to avoid the obvious
malicious coalition attack. However, it could be interesting
to deepen the results by measuring the impact of these loops,
notably by distinguishing loops containing the candidate
from those that do not.

Before the score aggregation, we choose to use the
PR3 propagator to propagate our scores along the path.
This propagator tends to make the knowledge drop quickly
(k(PR3(x, y)) = k(x) · k(y) − 2 · tx · dx · ty · dy). This
decrease is moreover accentuated by the fact that our dataset
contains only few convinced opinions (i.e. t = 0 or
d = 0). Other propagators, more stable concerning the
evolution of knowledge, could give different results and will
be investigated in future work.

A new dimension of the work could focus on the
development of multivaluation and its adapted propagators.
Particularly adapted when using the model for various
cases, it would be interesting to differentiate several val-
ues of trust and/or distrust (for example, a score like
(t1, t2, t3, . . . , d1, d2, d3, . . .) where (ti, di) is a bi-value
relative to a given theme).

Finally, we do not address the issue of decentralization
in this paper. Indeed, some networks, like BitTorrent file
exchange or blockchain-based networks, do not depend on a
centralized unit. The usability of a trust model is then directly
linked to their distributivity. EigenTrust is one of the reference
of efficiently distributable reputation model. Its principle is
to allocate the responsibility of a computation to members
who have no interest in it (with redundancy), and that each
member transmits these results to the next to perform the
computation. The responsibility of ‘‘who calculates what’’ is
then stored in a distributed hash table (DHT) accessible by
everyone. In our case, we suggest that each member takes
the responsibility of storing some score value of the network
(only the direct opinions, the chains of propagation are always
recalculated). The main problem to solve is to know ‘‘who
have given an opinion to whom ?’’ To do this, we assign
storage responsibilities: each member stores all the opinions
converging to a small sub-list of members (this sub-list being
deduced from a public DHT). Thus, when a requester is
interested in the opinions converging to a candidate B, the
DHT tells him who is responsible for storing these score
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values. The propagation and aggregation calculations are then
his responsibility. We think that the use of a quasi-global
aggregator is well suited to a decentralized network, as the
γ parameter (chosen by the requester) limits the amount of
raw information required to perform the aggregation. In this
way, our aggregator offers good synergy with the concept
of decentralization, by limiting the number of exchanges
required between members.
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