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ABSTRACT In this paper, we propose a data-shifting neural network (DSNN) for the detection of abnormal
heartbeats. Our study aims to identify six types of electrocardiogram (ECG) signals using the deep learning
network. In order to enhance the detection accuracy, the DSNN is devised by doubling the input signal using
a data shifting scheme so that the amount of information for training may be adequately sufficient. Although
the computational time doubles, the accuracy can be improved. When implemented using the Taiwan
Semiconductor Manufacturing Company (TSMC) 0.18 − µm complementary metal oxide semiconductor
(CMOS) process, the proposed DSNN chip has an operating frequency at 20 MHz with chip area of
0.619 mm2 and maximum power dissipation 0.75 mW . As a result, the proposed DSNN can substantially
increase detection accuracy for the task of ECG heartbeat classification. Results obtained after applying the
proposed circuit to the ECG signals drawn from the MIT-BIH arrhythmia database showed that it achieved
a detection rate of 97.17% with a small chip area, suggesting that it may be suitable for wearable or portable
devices in healthcare.

INDEX TERMS Very-large-scale integration implementation (VLSI), electrocardiogram (ECG), convolu-
tional neural network (CNN), data-shifting neural network (DSNN).

I. INTRODUCTION
The human body produces a variety of physiological signals
that can be diagnostically useful. Among all the physiological
signals of interest, an electrocardiogram (ECG) has been
considered a simple, reliable, well-known, and well-defined
one. Since an ECG signal provides vital information about
the heart’s electrical activity resulting from the cardiac
muscle conduction and abnormal ECG signals can be
indicative of various cardiac disorders, it can be employed for
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identifying abnormal cardiac rhythms and for investigating
cardiac diseases or heart rate variability (HRV) [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].
In particular, the prevention of sudden cardiac deaths (SCD)
essentially requires quick and accurate identification of the
arrhythmias from ECG recordings since arrhythmias are
often the underlying cause of SCD, and thus making their
early detection is crucial for timely intervention. In fact,
in order to achieve the goal of efficient and accurate
classification of cardiac arrhythmias using ECG data, there
are a number of previous researches in literature proposing
a variety of approaches for the task of arrhythmia detection
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[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17]. Among these, some were developed for the
detection of life-threatening arrhythmias, such as premature
ventricular contractions (PVCs), ventricular fibrillation (VF)
and ventricular tachycardia (VT) [5], [6], [7], [8], [9], [10],
[11], [12], [13], but only software simulation results were
reported in their studies.

In general, real-time detection with high accuracy helps
cardiologists classify the abnormality correctly on a timely
basis, leading to targeted and effective treatment strate-
gies. In this aspect, some researchers have proposed
very large-scale integration (VLSI) circuit design-based
approaches aiming at detecting the abnormal ECG signals
in a real-time manner [14]- [17]. Lee et al. have proposed
a low-power system-on-chip (SoC) platform for ECG signal
acquisition and classification system [14]. Their design
focuses on low-power operation, with long battery life for
body-end circuits and low power consumption for receiving-
end circuits. It achieves high accuracy in beat detection and
ECG classification. Another example of VLSI chip design is
proposed for the prediction of ventricular arrhythmia using a
unique set of ECG features and a naive Bayes classifier [15].
It is a fully integrated ECG signal processor with adaptive
techniques and a naive Bayes classifier. It offers reasonable
power consumption and area, but only achieves a modest
accuracy of 86% for ventricular arrhythmia prediction.
In addition, in recent years deep learning networks have
attracted great attention and thus increasingly applied in the
field of ECG analysis, including the detection of abnormal
ECG signals. One common approach for ECG analysis
using deep learning is to use convolutional neural networks
(CNNs) to automatically learn relevant features from the
ECG signal. The CNN can be trained on a large dataset of
ECG signals with labeled abnormalities, allowing it to learn
to recognize patterns in the signals that are indicative of
cardiac arrhythmias. As a result, once a deep learning model
is trained, it can be used to classify ECG signals into a number
of arrhythmic events. In such aspects of applications, VLSI
implementations of CNN-based techniques for abnormal
heartbeat detection were proposed in previous studies in
literature [16] and [17]. The results obtained from these
works have shown that the hardware realization of CNN
for ECG heartbeat classification may achieve high speed,
small area, and low power dissipation with a high detection
rate, thus improving early detection and timely treatment of
cardiac disorders. Ultimately, it is important to note that the
choice among all these chip designs would depend on specific
requirements such as power constraints, accuracy targets,
available process technology, and the trade-offs between
accuracy and implementation complexity.

In fact, the motivation behind researching VLSI chip
design for ECG-based abnormal heartbeat detection is driven
by the perpetual quest to enhance medical diagnostics’
efficiency and precision. While a number of researchers
have made commendable strides in the past, the continuous
evolution of technology and the rising demand for compact,

energy-efficient, and accurate solutions necessitate ongoing
exploration of novel techniques. The significance of this
study lies in the critical role VLSI chip design plays in
healthcare technology, crucial for seamlessly integrating
abnormal heartbeat detection into portable and wearable
devices, potentially revolutionizing healthcare by enabling
continuous monitoring and timely interventions. The pursuit
of miniaturization aligns with personalized medicine’s trend,
accommodating unobtrusive health monitoring and potential
implantable solutions, expanding continuous cardiac mon-
itoring. Emphasizing accuracy, researchers aim to develop
chips that not only meet clinical accuracy requirements but
also surpass existing solutions, advancing the state-of-the-
art. In a broader context, the societal impact is substantial,
promising effective treatment, lives saved, reduced healthcare
costs, and contributing to sustainability through power-
efficient designs. In essence, this research embodies an
unwavering commitment to technological innovation, aiming
to usher in a new era of efficient, accurate, and accessible
cardiac monitoring for individual well-being and the broader
healthcare ecosystem.

In this study, we propose a novel data-shifting neural
network (DSNN) that can provide a real-time detection
of abnormal heartbeat with high accuracy. In general, our
proposed work offers several advantages over the previous
works. First, the proposed work achieves high classification
accuracy while occupying a relatively smaller area, making it
more compact compared to the previous works as proposed
by [16] and [17]. In addition, the proposed DSNN circuit
consumes only 0.75mW of power, which is significantly
lower than both circuits as proposed by [16] and [17].
Also, although the proposed work operates at a lower
frequency of 20MHz compared to [16] and [17], it still
offers a reasonable operating frequency for ECG abnormal
heartbeat classification. On the other hand, this work fits
into the framework of translational medicine [18], [19].
In the context of translational medicine, the novel DSNN
represents a significant breakthrough since it is designed to
revolutionize the real-time detection of abnormal heartbeats
by offering accuracy and speed. The proposed DSNN
leverages deep learning techniques to swiftly analyze vast
amounts of medical data, instantly identifying irregular
cardiac rhythms. This innovation holds tremendous potential
for early diagnosis and intervention in cardiac conditions,
ultimately improving patient outcomes and paving the way
for more effective healthcare practices. DSNN exemplifies
the seamless integration of technology into the medical field,
translating scientific advancements into tangible benefits for
patients and healthcare providers.

In summary, the main contributions of this study involve
introducing a novel DSNN for real-time detection of abnor-
mal heartbeat with high accuracy. This innovation provides
several advantages over previous works, such as notably
achieving superior classification accuracy within a more
compact design and exhibiting remarkable energy efficiency.
Also, despite operating at a lower frequency of 20 MHz, the
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FIGURE 1. The proposed data-shifting scheme. Here, a shifted sequence
results from shifting the original detection sequence of length n to the
right by one sample. As a result, both the detection and shifted
sequences are used as inputs into the DSNN for training and testing.

proposed DSNN circuit maintains a reasonable operating fre-
quency for ECG abnormal heartbeat classification. Overall,
the study presents a novel and efficient approach to real-time
abnormal heartbeat detection, offering advancements in
accuracy, compactness, and power efficiency compared to
existing methods. This paper is organized as follows. The
proposedDSNNand its architecture is described in Section II.
Section III provides descriptions of a performance evaluation
and discussion. Finally, this paper is briefly concluded in
Section IV.

II. PROPOSED DATA-SHIFTING NEURAL NETWORK
(DSNN) AND ITS ARCHITECTURE
The DSNN architecture is a scheme designed for the
classification of ECG heartbeats. The flowchart of the
proposed DSNN is illustrated in Figure 2. In general,
it utilizes a data-shifting technique to enhance detection
accuracy while minimizing the increase in circuit area. The
architecture mainly consists of several key components,
including a data-shifting scheme to expand the training and
testing signals, a CNN as themain structure of the DSNN, and
a voting circuit for making the decision at the classification
stage of the ECG heartbeat detection. All these components
and their functions are described as follows.

Here, we presented a data-shifting scheme, referred to as
DSNN as described previously, that doubles the number of
training and testing signals, as depicted in Fig. 1. Observing
Fig. 1, one may see that a 2-lead ECG signal is separated
into a number of n-point detection sequences. In this study,
n was set to 24. A shifted sequence can result from shifting
the original detection sequence either to the right or to the
left by one or more samples. The number of right shifts can
be adjusted to an arbitrary number (typically 1), and left shifts
can also be accepted. Finally, both the detection and shifted
sequences are then used as inputs into the DSNN for training
and testing. Although this would cause the computational
time to be doubled, due to the slow sampling rate of the
ECG signal the requirement of real-time analysis can be still
adequately met. In addition, for the hardware part in our
proposed study, we only added a voting circuit to the end
of the CNN circuit so the overall circuit area only increases
slightly. Note that there are three convolutional layers and

two fully connected (FC) layers included to form the main
structure of the CNN, as depicted in Fig. 3. Also, it is revealed
from Fig. 3 that the second FC layer is followed by a voter.
Note that here the voter would compare the two maximal
probabilities of the softmax outputs obtained by applying
the detection and shifted sequences as inputs into the CNN,
respectively, and then vote for the type of the ECG heartbeat
corresponding to the higher probability of the two. As a result,
a higher detection accuracy may be thus achieved by the
proposed DSNN at the expense of a little bit of increase in
circuit area.

In addition, the size of the input ECG data is 2 × 24 since
there are two ECG leads and the ECG sequence length is 24.
It should be noted that when an ECG sequence is input into
the CNN, two-dimensional (2D) convolution calculations
of three 1 × 7 filters in the first layer are performed and
then followed by the 1 × 2 max pooling process. Then, a
1 × 1 filtering process in the second layer is performed.
Afterward, similar to the first layer, in the third layer, 2D
convolution calculations of three 1 × 7 filters are performed
and then followed by a 1×3 max pooling. Finally, the learned
feature maps are flattened as 6 nodes and then fed into a fully
connected neural network with an input layer consisting of
14 nodes and an output layer of 6 nodes (since there are six
types of ECG heartbeats to be classified). Table 1 provides a
listing of the total number of filter coefficients or parameters
required for each layer of the CNN as proposed in our study.

Details about the network layers, activation functions,
loss function, and training methodology are listed in the
following.

• The neural network architecture comprises three con-
volutional layers interspersed with two max-pooling
layers, followed by a flattening layer and two dense
layers.

• The activation functions used in the convolutional
and dense layers are ‘ReLU’, while the final output
layer employs a ‘softmax’ activation for multi-class
classification.

• The model’s loss function is categorical cross entropy,
suitable for multi-class categorization tasks.

• For training, the model uses the Adam algorithm
optimizer, running for 2, 000 epochs with a batch size
of 48.

• A 20% validation split is incorporated during training
to assess model performance on unseen data while
shuffling ensures diverse data exposure in each epoch.

This study utilizes the MIT-BIH database [20] for neural
network training and testing. The MIT-BIH Arrhythmia
Database is a widely-adopted dataset for studying car-
diac arrhythmias. It encompasses ECG recordings from
48 subjects, each approximately 30 minutes long. Expert
cardiologists have annotated this dataset, identifying various
arrhythmia types. We specifically selected normal heartbeats
and those showing five different arrhythmias. Each ECG was
extracted with two leads and 24 sample points at a sampling
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FIGURE 2. The flowchart of the proposed DSNN.

FIGURE 3. The schematic block diagram of the proposed DSNN.

frequency of 360Hz. Thus, if our neural network is applied
to another database with a different sampling frequency or
real-time ECG measurements, it only requires re-sampling to
a 360Hz frequency and extracting based on the R-peak for
24 sample points for compatibility.

Fig. 4 illustrates the comprehensive architecture of the
proposed DSNN. Upon examining Fig. 4, it is evident that the
1 × 7 filters were efficiently implemented using a singular
multiplier and one adder, resulting in substantial savings in
the circuit area. The Fully Connected (FC) layer similarly
employs a single multiplier and adder to perform the 6 × 14

TABLE 1. A listing of the total number of filter coefficients or parameters
required for each layer of the proposed CNN.

and 14 × 6 matrix multiplications, leading to a further
reduction in circuit footprint. Moreover, each layer of the
circuit operates using a single multiply-accumulate (MAC)
unit, which adds significantly to its compactness. The entire
architecture, consisting of five convolutional layers and two
fully connected layers, only requires five multipliers, five
adders, and five registers, fulfilling the design objective of
a small circuit area. The MaxPooling module is implemented
by utilizing registers and comparators, as shown in Figure 5.
Specifically, a 1× 2 MaxPooling configuration employs one
register and one comparator, whereas a 1 × 3 MaxPooling
setup necessitates two registers and two comparators to
function effectively. The final stage introduces a voting
circuit, which decides between the two maximum results
derived from the softmax outputs of the detection and
shifted sequences, respectively, thereby casting a vote for the
ECG heartbeat type. The addition of this voter circuit can
effectively enhance overall detection accuracy. This concept
could be extended to the identification processes in all similar
signal-processing scenarios. This design approach allows
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FIGURE 4. The circuit architecture of the proposed DSNN.

FIGURE 5. The architecture of the proposed MaxPooling module.

FIGURE 6. The architecture of the proposed SoftMax module.

the proposed DSNN architecture to markedly minimize the
circuit area while significantly boosting detection precision.
The architectures of the SoftMax and Voter circuits are
illustrated in Figures 6 and 7, respectively.

III. RESULTS AND DISCUSSION
A. VLSI IMPLEMENTATION
To verify performance, the chip of the proposed DSNN
core was implemented using the TSMC 0.18 − µm CMOS
process technology. The Synopsys Design Compiler was
used to synthesize the RTL code, and the Cadence Innovus
was then used for placement and routing. The proposed
DSNN core was operated at a frequency of 20MHz with a

FIGURE 7. The architecture of the proposed Voter module.

TABLE 2. Chip Characteristics of the proposed DSNN chip.

power consumption of 0.75 mW . The gate count was 8.6K .
Fig. 8 provides both the core layout and photomicrograph
of the proposed DSNN core, and the chip characteristics are
addressed in Table 2.

This study has discussed both circuit efficiency and recog-
nition accuracy. Table 3 presents the data from simulations
of our designed DSNN network, indicating the impact of
adding varying numbers of FC layers after the Flatten layer.
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FIGURE 8. The core layout and photomicrograph of the proposed DSNN
chip.

TABLE 3. A comparison of different FC layers between circuit
performance and accuracy.

TABLE 4. A comparison between the characteristics of circuits obtained
from the designs with and without the use of the data-shifting scheme.

Table 3 shows that as the number of FC layers increases, the
circuit area, power consumption, and the required network
parameters all increase. However, the recognition accuracy
does not improve correspondingly. This could potentially be
due to an excessive number of neural network parameters.
Thus, the neural network adopted in this research can be
deemed efficient in terms of circuit performance.

B. PERFORMANCE EVALUATION AND COMPARATIVE
ANALYSIS
In order to understand the contribution of the data-shifting
scheme, a simple performance comparison between the
characteristics of circuits obtained from the designs with
and without the use of the data-shifting scheme is shown
in Table 4. It is revealed from Table 4 that the data-shifting
scheme design achieves a classification accuracy over
97.17%, which is a bit superior to the accuracy of 96.73%
achieved by the designwithout the scheme. This indicates that
the data-shifting scheme contributes to improved accuracy in
abnormal heartbeat classification by only slightly increasing
the number of gate counts. Meanwhile, incorporating the
data-shifting schememay not significantly impact power effi-
ciency; that is, the data-shifting scheme design demonstrates
clear advantages in terms of achieving higher classification
accuracy while maintaining comparable power consumption.
Therefore, the data-shifting scheme proves to be an effective
approach for enhancing the performance of the circuit in ECG
abnormal heartbeat classification.

In addition, Table 5 provides a performance comparison
among a number of existing works, including the proposed
DSNN. From this comparison, it is evident that the proposed
work offers several advantages over the previous works.
First, the proposed work achieves the highest classification
accuracy of 97.17% compared to the other works, indicating
better performance in abnormal heartbeat classification. Note
that the results were produced by applying the proposed
DSNN circuit to the ECG data drawn from the MIT-BIH
arrhythmia database. Secondly, the proposed work occupies a
relatively smaller area of 0.619mm2, making it more compact
compared to the works as proposed by [16] and [17]. This
is advantageous for integration and overall system design.
Thirdly, the proposed DSNN circuit consumes only 0.75mW
of power, which is significantly lower than both circuits as
proposed by [16] and [17]. This lower power consumption
can contribute to energy efficiency and extended battery life
in practical applications. Also, it should be noted that the
smallest chip area and power dissipation are both achieved
by the circuit as proposed by [15], but this might be because
it was implemented using 65 − nm technology. On the other
hand, it can achieve only a modest detection accuracy at
86% which is the lowest of all these works. Furthermore,
while the proposed work operates at a lower frequency
of 20MHz compared to [16] and [17], it still offers a
reasonable operating frequency for ECG abnormal heartbeat
classification. Higher frequencies may not be necessary for
this specific application, making the proposed work more
power-efficient.

According to the performance evaluation as described
above, one may see that the DSNN represents a significant
advancement in the field of abnormal heartbeat detection,
offering several potential advantages when compared to all
the previously established methods [14], [15], [16], [17].
To establish the superiority of the DSNN approach and its
potential benefits, a comparative analysis is further conducted
as follows. While being able to provide real-time detection of
abnormal heartbeats with comparably high accuracy, in com-
parison to Lee et al.’s SoC platform [14], the proposed DSNN
achieves minimal hardware overheads so it may bemore cost-
effective, easily deployable, and suitable for integration into
existing healthcare infrastructure. In addition, the DSNN also
outperforms existing methods, especially the naive Bayes
classifier used in the VLSI chip design for ventricular
arrhythmia prediction [15]. This is because DSNN leverages
deep learning techniques, allowing it to automatically learn
intricate features from ECG signals. This surpasses the
traditional naive Bayes classifier’s limitations and can adapt
to a broader range of arrhythmia patterns and patient profiles.
Moreover, DSNN’s hardware efficiency, even after being
fabricated into a real chip, promises high-speed process-
ing, small area utilization, and low power consumption,
potentially outperforming existing VLSI implementations as
proposed in [16] and [17]. To sum up, the proposed DSNN
stands out from a number of existing studies by offering
real-time abnormal heartbeat detection with high accuracy,
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TABLE 5. A performance comparison of the proposed abnormal heartbeat detection chip with a number of other existing works.

TABLE 6. The numbers of ECG segments used for training and testing processes for each type of ECG heartbeats.

minimal hardware overheads, and cost-effectiveness. Not
only ensure easy deployment and integration into existing
healthcare infrastructure, DSNN surpasses existing methods
by employing deep learning, enabling automatic learning
of intricate ECG features, and adapting to a broader range
of arrhythmia patterns. Also, DSNN’s hardware efficiency
promises superior speed, compact area utilization, and low
power consumption, potentially outperforming existing VLSI
implementations.

C. ACCURACY ANALYSIS AND DISCUSSION
Table 6 provides the numbers of ECG segments used for
training and testing processes, respectively, for each type of
ECG heartbeat. To assess the efficiency of the proposed chip
in ECG classification, we implemented a 6 × 6 confusion
matrix, as demonstrated in Table 7. Generally, this confusion
matrix juxtaposes the actual labeled values against the
predictions made by our suggested DSNNmodel, where each
row represents the predicted values for the heartbeat label
corresponding to that row. Table 7 displays the detection
outcomes acquired from the chip for all six labeled ECG
heartbeats. A glance at Table 7 reveals that the detection
results achieved by our proposed chip across all ECG events
could substantially exceed 90% accuracy. This suggests that
our CNN chip might be effectively utilized in wearable
healthcare monitoring devices.

Moreover, note that in the DSNN circuit architecture of
this study, although recognition accuracy can be effectively
improved with a slight increase in the circuit area, the
computation time is doubled. However, this increase in
computation time has minimal impact on ECG signals. Given
that the operating frequency of the circuit is 20MHz, and
the sampling frequency of the ECG signal is approximately
360Hz, a single DSNN computation can be completed before
capturing the next 24 sample points of the ECG. This

TABLE 7. Detection results for all the six labeled ECG heart beats.

suggests that the DSNN does not compromise computational
efficiency.

Furthermore, it should be also noted that real-world
deployment of wearable ECG-based arrhythmia detectors
faces challenges like variations in ECG signal quality due
to factors like electrode placement, motion artifacts, and
skin conditions. Noise, including environmental interference
and muscle artifacts, can affect signal accuracy. Ensuring
adaptability to diverse patient populations, as ECG patterns
vary among individuals, is crucial. Overcoming these chal-
lenges necessitates robust signal processing techniques, noise
reduction algorithms, and machine learning models trained
on diverse datasets. Additionally, achieving user comfort,
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data security, and efficient power management are essential
for successful adoption and reliable arrhythmia detection.

Overall, the proposed work demonstrates a balance among
power consumption, circuit area, operating frequency, and
classification accuracy, making it a promising advancement
in VLSI circuit design for abnormal heartbeat classification.

IV. CONCLUSION
In this paper, a novel DSNN for the detection of abnormal
heartbeats is proposed. It is revealed from our study that
the DSNN employs a data-shifting scheme to improve
abnormal heartbeat detection accuracy. By utilizing shifted
sequences and incorporating a CNN structure, FC layers,
and a voting circuit, it achieves an enhanced classification
performance. The architecture optimizes the circuit area by
utilizing specific optimizations for the filters and matrix
multiplications, ensuring efficient hardware implementation
while maintaining high detection accuracy. The proposed
DSNN chip was implemented using the TSMC 0.18 − µm
CMOS process. According to the chip characteristics our
proposed DSNN chip manifests itself as a substantially
small-area and high-speed design, in comparison to a number
of previous works. In addition, it is also revealed from the
numerical experimental results that the proposed chip can
achieve 97.17% in overall detection accuracy for identifying
six types of ECG heartbeats drawn from the MIT-BIH
arrhythmia database. We believe our design would empower
cardiologists to provide timely interventions, make precise
diagnoses, assess risk levels, monitor treatments effectively,
and plan long-term care strategies. These advantages make
it an attractive proposition for improving cardiac healthcare
and addressing the growing need for reliable, efficient, and
accessible solutions in this domain, ultimately leading to
improved patient outcomes, better quality of life, and reduced
risks associated with cardiovascular events.
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