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ABSTRACT In this paper, we consider an unmanned aerial vehicle (UAV)-enabled orthogonal frequency
division multiplexing (OFDM) network where the UAV acts as an aerial base station and employs the OFDM
to transmit individual data to multiple users on the ground. We propose a K -means clustering-aided power
control algorithm to maximize the sum-rate of the network under the total transmit power and the minimum
rate constraints. The proposed algorithm categorizes Ns subcarriers into K clusters and optimizes the transmit
power for the clustered subcarriers with a power splitting factor to decompose the multi-user power allocation
problem. Since the number of clusters is far less than the number of subcarriers, the proposed algorithm
requires low-computational complexity compared to the conventional water-filling algorithm. Simulation
results show that the proposed algorithm provides near-optimal performance with K = 4 clusters even for a
large number of subcarriers Ns = 1024.

INDEX TERMS Unmanned aerial vehicle-enabled network, K -means clustering, power control, sum-rate
maximization.

I. INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) are
promising technologies for future wireless networks [1], [2],
[3], [4]. Recently, the IEEE 802.11 working group approved
the formation of a topic interest group (TIG) for the AI/ML
use in the IEEE 802.11 [5]. The TIG describes use cases
for the AI/ML applicability in the IEEE 802.11 standards
and investigates the technical feasibility of the AI/ML [6].
In addition, the 3GPP is studying the AI/ML for a new
radio (NR) air interface to achieve the requirements for
key performance indicators such as latency, reliability, user
experience, and others [7], [8].
Generally, the ML algorithms are categorized as super-

vised learning, unsupervised learning, and reinforcement
learning [9]. Supervised learning learns a function that maps
an input to an output with labeled data [10]. Unsupervised
learning learns a function that represents a hidden structure
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of an input with unlabeled data [11]. Reinforcement learning
learns a function that maximizes a long-term reward with an
environment and a set of actions [12]. The K -means clustering
is one of the simplest unsupervised learning algorithms
that groups unlabeled data into K clusters. Specifically, the
K -means clustering algorithm maps data into the nearest
cluster centers and finds K cluster centers to minimize
the sum of squared distances from data to K cluster
centers [9], [11].
To extend the transmission coverage of wireless networks,

unmanned aerial vehicles (UAVs) have been employed for
various applications such as aerial base stations, relaying
stations, and wireless power transfer [13], [14], [15]. Since
the UAVs utilize most of their electrical energy to fly [16],
the resource allocations should be optimized to maximize
communication performance and prolong flight time for the
UAV-enabled wireless networks [15], [17], [18], [19], [20].
The joint trajectory design and the transmit power

control algorithm were proposed to minimize the outage
probability in the UAV relay network [15]. In the mobile
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edge computing (MEC) network with multiple UAVs, the
sum-power minimization algorithm was designed by jointly
optimizing user association, power control, computation
capacity allocation, and location planning [17]. In the
UAV-enabled orthogonal frequency division multiple access
(OFDMA) networks, the joint trajectory design and the
resource allocation algorithm were proposed to maximize
the minimum rate of ground users while guaranteeing their
specified minimum-rate constraints [18].
In the UAV-aided wireless-powered communication net-

works (WPCN), a multi-objective optimization problem
(MOOP) which optimizes the UAV’s 3D position, the transmit
power, the time splitting ratio, the uplink transmission time,
and the beamwidth angle of the UAV, was proposed to
maximize the achievable sum-rate in the uplink and minimize
the downlink transmit power simultaneously [19]. In the
UAV-enabled MEC, a constrained MOOP which optimizes
the transmit power of the devices, computing resource,
flying velocity, and 3D path of the UAV was investigated
to simultaneously reduce the energy consumption and ensure
the safe flight for the UAV [20].
In the multi-UAV-aided MEC networks, the deep rein-

forcement learning (DRL) based UAV movement, mobile
user (MU) association, and MU transmit power control
algorithm was proposed to decrease the system latency and
the energy consumption [21]. In the UAV-aided WPCN, the
DRL-based framework for joint UAV placement and resource
allocation was proposed to maximize the long-term federated
learning performance considering the limited resources in
the network [22]. Since the computing capacity of the UAV
is limited, we consider the K -means clustering algorithm
that requires lower computational complexity than the DRL
algorithm.
The orthogonal frequency division multiplexing (OFDM)

divides the data stream into multiple substreams and transmits
multiple substreams over different subcarriers. The OFDM
eliminates inter-symbol interference because the symbol time
on each substream is much greater than the delay spread of
the channel [23], [24]. The OFDM data rate can be improved
by optimizing the power allocation for subcarriers with a total
transmit power constraint [25]. However, the power allocation
algorithm for the OFDM with many subcarriers requires high
computational complexity since the power allocation executes
on a per-subcarrier basis [26], [27].
Several studies have proposed using subcarrier clustering

to reduce the complexity of the resource allocations and
the beamforming in the OFDMA networks [28], [29],
[30]. The cluster, also called the chuck, consists of the
adjacent subcarriers. The subcarriers in the same cluster
allocate an equal modulation level under an average bit-error-
rate (BER) constraint [28] and apply a common transmit
beamformer to reduce the number of feedback bits [29].
The joint chunk, power, and bit allocations were proposed
to maximize the throughput under the total transmit power
constraint [30].

In this paper, we consider a UAV-enabled wireless network
where the UAV transmits individual data to multiple users
on the ground. The UAV employs the OFDM to mitigate
inter-symbol interference in addition to time division multiple
access (TDMA) to avoid inter-user interference. We propose
a K -means clustering-aided power control algorithm to
maximize the sum-rate of the network. The proposed
algorithm is composed of subcarrier clustering and power
allocation for clustered subcarriers with power splitting.
In the UAV-enabled wireless network, the K -means clustering
algorithm was employed to cluster users [31], [32]. On the
contrary, we apply the K -means clustering algorithm to cluster
subcarriers. Unlike existing subcarrier clustering algorithms
in [28], [29], and [30], the proposed algorithm can assign
non-adjacent subcarriers to the same cluster, which can
significantly improve the flexibility and performance of
proposed algorithm. The major contributions of this paper
are summarized as follows.

• We design the subcarrier clustering to represent the signal-
to-noise ratio (SNR) of Ns subcarriers into K cluster
centers. The clustered subcarriers are used in the transmit
power allocation algorithm to reduce computational
complexity.

• We propose the training phase and the test phase of the
subcarrier clustering based on the K -means clustering
algorithm.

• We propose the power allocation for clustered subcarriers
with power splitting to decompose the multi-user power
allocation problem into multiple single-user power
allocation problems.

• We derive a closed-form expression of the optimal
transmit power for clustered subcarriers and the optimal
power splitting factor that maximize the sum-rate of the
network under the total transmit power and the minimum
rate constraints.

• We analyze the computational complexity and the
convergence of the proposed algorithm.

• Simulation results show that the proposed algorithm
provides near-optimal performance, although the num-
ber of clusters is much less than the number of
subcarriers.

The remainder of this paper is organized as follows. The
system model is described in Section II. The proposed K -
means clustering-aided power control algorithm is presented in
Section III. Simulation results are given in Section IV. Finally,
we conclude this paper in Section V.

II. SYSTEM MODEL
As shown in Fig. 1, we consider a UAV-enabled wireless
network where a UAV with Nt antennas acts as an aerial
base station to transmit individual data to Nu users with a
single antenna on the ground. The horizontal distance from
the UAV to the u-th user is du, and the maximum transmission
coverage of the UAV is dm. Since the UAV consumes most
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FIGURE 1. UAV-enabled wireless network.

of the electrical energy to fly [16], [33], we set the UAV to
hover at the center of users1 with an altitude A to prolong
the flight time. Low-complexity algorithms are suitable for
the UAV-enabled network by considering the computational
capability of the UAV [34], [35], [36]. We employ the OFDM
scheme with Ns subcarriers and the TDMA scheme for data
transmission to avoid inter-symbol interference and inter-user
interference, respectively.

The channel response vector from the UAV to the u-th user
is represented as

hu,s =
[
hu,s,1, hu,s,2, · · · , hu,s,Nt

]T
, (1)

where

hu,s,t =
1

√
Ns

L−1∑
l=0

√
νu,lgu,l,t exp

[
−j

2π ls
Ns

]
(2)

denotes the channel frequency response on the s-th subcarrier
at the t-th transmit antenna with L paths. In (2), the complex
channel gain for the l-th path between the t-th transmit
antenna of the UAV and the receive antenna of the u-th user is
represented as

gu,l,t =

√
KR

KR + 1
g+

√
1

KR + 1
ḡ (3)

where g is the deterministic line-of-sight (LoS) term with
|g| = 1, ḡ is the random scattered term which is distributed
as a zero-mean unit-variance circularly symmetric complex
Gaussian (CSCG) random variable, and KR denotes the Rician
factor of the channel. The average channel power from the
UAV to the u-th user for l-th path is given by

νu,l = δl10−ℓu/10, (4)

where δl is the channel power coefficient for the l-th path
with

∑L
l=1 δl = 1, and ℓu is the air-to-ground (A2G) path-loss

from the UAV to the u-th user [37], [38]. The A2G path-loss

1Since the A2G path-loss of the u-th user (5) is related to the squared
distance between the UAV and the u-th user, we set the position of the UAV
to the center of users to minimize the sum of squared distances from the UAV
to the users.

between the UAV and the u-th user is expressed as

ℓu =
ηLoS − ηNLoS

1 + a exp
[
−b

(
arctan

(
A
du

)
−a
)]

+ 10 log
(
d2u + A2

)
+ 20 log

(
4π fc
c

)
+ ηNLoS, (5)

where ηLoS and ηNLoS are the mean additional losses for LoS
and non-line-of-sight (NLoS) terms, respectively, and a and b
are constants depending on the type of environment such as
suburban, urban, dense-urban, and high-rise urban. The carrier
frequency is fc, and the speed of light is c. Here, we omit a time
index in the channel response and assume that the channel
response vector information is available at the UAV.

The received signal on the s-th subcarrier at the u-th user is
represented as

yu,s =
√
pu,shHu,sfu,sxu,s + wu,s, (6)

where pu,s indicates the transmit power of the UAV on the s-th
subcarrier for the u-th user, fu,s = hu,s/

∥∥hu,s∥∥ denotes the
maximum ratio transmission (MRT) beamformer of the UAV
on the s-th subcarrier for the u-th user, xu,s is the transmission
signal on the s-th subcarrier for the u-th user with average
power E

[
|xu,s|2

]
= 1, and wu,s is an additive white Gaussian

noise (AWGN) on the s-th subcarrier at the u-th user with
average power E

[
|wu,s|2

]
= σ 2

u,s. The data rate between the
UAV and the u-th user is expressed as

Ru =

Ns∑
s=1

log2
(
1 + pu,sγu,s

)
, (7)

where γu,s =
∥hu,s∥

2

σ 2
u,s

is the normalized SNR on the s-th
subcarrier at the u-th user. Using (7), we represent the sum-rate
of the network as

R =

Nu∑
u=1

Ru. (8)

In this paper, we consider the transmit power control of the
UAV to maximize the sum-rate of the network under the total
transmit power and the minimum rate constraints. The optimal
transmit power of the UAV on the s-th subcarrier for the
u-th user is obtained by solving the following optimization
problem:

max
pu,s

R

s.t.
Nu∑
u=1

Ns∑
s=1

pu,s ≤ Pt,

Ru ≥ Rt, u = 1, · · · ,Nu, (9)

where Pt is the total transmit power for the UAV, and
Rt is the minimum rate constraint for each user. It is
known that a conventional water-filling algorithm obtains
the optimal transmit power of the UAV by solving (9) with
O (NuNs) computational complexity [23], [39]. However, the
conventional water-filling algorithm is infeasible when the
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FIGURE 2. Block diagram of the training phase for the subcarrier clustering.

number of subcarriers or the number of users in the network
is too large. Therefore, we propose a K -means clustering-
aided power control algorithm that provides near-optimal
performance with low-complexity.

III. PROPOSED ALGORITHM
In this section, we propose the K -means clustering-aided
power control algorithm. The proposed algorithm is composed
of subcarrier clustering and power allocation for clustered sub-
carriers. The subcarrier clustering categorizes Ns subcarriers
into K clusters using the K -means clustering algorithm. The
power allocation optimizes the transmit power for clustered
subcarriers with a power splitting factor to maximize the
sum-rate of the network.

A. SUBCARRIER CLUSTERING
The subcarrier clustering employs the K -means clustering
which is one of an unsupervised learning algorithms, and
maps Ns subcarriers to K cluster centers. Considering the
fact that the computing capacity of the UAV is limited, the
K -means clustering is adequate for the subcarrier clustering in
the UAV-enabled OFDM network since it is relatively simple
to implement [40], [41].
The subcarrier clustering consists of a training phase

and a test phase. In the training phase, the subcarrier
clustering learns K cluster centers with the training dataset
to minimize distortion due to clustering. In the test phase,
the subcarrier clustering assigns Ns subcarriers to the nearest
cluster according to the SNR of Ns subcarriers and K cluster
centers.

1) TRAINING PHASE FOR SUBCARRIER CLUSTERING
Fig. 2 shows the block diagram of the training phase for the
subcarrier clustering. During the training phase, T users are
randomly selected among Nu users to generate the training
dataset. The SNR vector of the ti-th user in the training dataset
is represented as

γ ti =
[
γti,1, γti,2, · · · , γti,Ns

]T
, (10)

where γti,s denotes the SNR on the s-th subcarrier of the ti-th
user. The average SNR of the user depends on the A2G path-
loss related to the location of the user. We apply normalization
to adjust the range of the SNR of users from 0 to 1 because
the users are randomly distributed within the maximum
transmission coverage dm. The normalized SNR vector of

the ti-th is represented as

γ̄ ti =
γ ti

γ̂ti
, (11)

where γ̂ti = maxs γti,s is the maximum SNR of the ti-th user
among Ns subcarriers. The training dataset is obtained by
vertically stacking the normalized SNR vectors of T users as

γ̄ t = vec
([

γ̄ t1 , γ̄ t2 · · · , γ̄ tT

])
, (12)

which becomes a TNs × 1 column vector.
We represent K cluster centers as

µ̄ = [µ̄1, µ̄2, · · · , µ̄K ]T , (13)

where 0 ≤ µ̄k ≤ 1 is the k-th cluster center. To obtain the
optimal K cluster centers, we introduce the binary indicator
variables rm,k ∈ {0, 1}which denote the assigned cluster of the
m-th element for m = 1, 2, . . . , TNs in the training dataset [9].
The binary indicator variables are given by

rm,k =

 1 if k = arg min
q=1,··· ,K

∣∣γ̄t,m − µ̄q
∣∣2 ,

0 otherwise,
(14)

where γ̄t,m is the m-th normalized SNR in the training dataset.
For the loss function, we adopt the distortion of the training
phase, which is defined as

Jt =
1

2TNs

TNs∑
m=1

K∑
k=1

rm,k
∣∣γ̄t,m − µ̄k

∣∣2 . (15)

The optimal K cluster centers minimize the distortion of the
training phase. We can derive the closed-form expression of
the optimal k-th cluser center since the distortion in (15) is
a quadratic function of µ̄k with given rm,k . To obtain the
closed-form expression of the optimal k-th cluster center, we
differentiate the distortion with respect to µ̄k as

∂Jt
∂µ̄k

=
1
TNs

TNs∑
m=1

rm,k
(
γ̄t,m − µ̄k

)
. (16)

Since the optimal k-th cluster center satisfies

TNs∑
m=1

rm,k
(
γ̄t,m − µ̄⋆

k
)

=

TNs∑
m=1

rm,k γ̄t,m −

TNs∑
m=1

rm,k µ̄
⋆
k = 0,

(17)

the optimal k-th cluster center is represented as

µ̄⋆
k =

∑TNs
m=1 rm,k γ̄t,m∑TNs
m=1 rm,k

. (18)

Algorithm 1 states the pseudocode of the training phase
where Ne indicates the number of epochs.
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Algorithm 1 Training Phase for the Subcarrier Clustering
Input: γ 1, . . . , γ Nu
Output: µ̄1, . . . , µ̄K
1: Select T = {t1, .., tT} randomly among Nu users
2: Vectorize

[
γ̄ t1 , . . . , γ̄ tT

]
3: Initialize K cluster centers µ̄1, . . . , µ̄K
4: for e = 1, . . . ,Ne do
5: for m = 1, . . . ,TNs do
6: Compute the binary indicator variable rm,k
7: Compute the optimal K cluster centers µ̄⋆

1, . . . , µ̄
⋆
K

8: end for
9: Compute the distortion Jt
10: Update the K cluster centers [µ̄1, . . . , µ̄K ] =

[µ̄⋆
1, . . . , µ̄

⋆
K ]

11: end for

FIGURE 3. Block diagram of the test phase for the subcarrier clustering.

2) TEST PHASE FOR SUBCARRIER CLUSTERING
Fig. 3 shows the block diagram of the test phase for the
subcarrier clustering. At first, we normalize the SNR of the u-
th user to set the range of the input for the test phase from 0 to 1.
The normalized SNR vector of the u-th user is expressed as

γ̄ u =
γ u

γ̂u
, (19)

where γ̂u = maxs γu,s denotes the maximum SNR among
Ns subcarriers at the u-th user. We then compute the binary
indicator variables ru,s,k for s = 1, 2, . . . ,Ns as

ru,s,k =

 1 if k = arg min
q=1,...,K

∣∣γ̄u,s − µ̄q
∣∣2 ,

0 otherwise,
(20)

where γ̄u,s is the normalized SNR on the s-th subcarrier of the
u-th user, and µ̄q for q = 1, 2, . . . ,K is the q-th cluster center
obtained in the training phase. Finally, the SNR on the s-th
subcarrier of the u-th user is mapped to

µu,k = γ̂u

K∑
q=1

ru,s,qµ̄q. (21)

As a result, we can represent the SNRs on Ns subcarriers of
the u-th user γu,s for s = 1, 2, . . . ,Ns to K values as

µu = γ̂uµ̄ = γ̂u [µ̄1, µ̄2, . . . , µ̄K ]T . (22)

Algorithm 2 Test Phase for the Subcarrier Clustering
Input: γ 1, . . . , γ Nu
Output: [µ1, . . . ,µNu ], [r1,1,1, . . . , rNu,Ns,K ]
1: for u = 1, . . . ,Nu do
2: Normalize γ u
3: for s = 1, . . . ,Ns do
4: for k = 1, . . . ,K do
5: Compute the binary indicator variable ru,s,k
6: Compute the assigned SNR µu,k
7: end for
8: end for
9: Compute the distortion of the u-th user Ju
10: end for
11: Compute the total distortion Je
12: if Je ≥ 3 then
13: Return to the training phase to update K cluster centers
14: end if

The distortion of the u-th user is defined as

Ju =
1

2Ns

Ns∑
s=1

K∑
k=1

ru,s,k
∣∣γ̄u,s − µ̄k

∣∣2 . (23)

To evaluate the performance of the subcarrier clustering, we
consider the total distortion of Nu users in the network as

Je =
1
Nu

Nu∑
u=1

Ju. (24)

If the total distortion is greater than the pre-defined threshold
3, the subcarrier clustering returns back to the training phase
to update K cluster centers. Algorithm 2 states the pseudocode
of the test phase in detail.

B. POWER ALLOCATION FOR CLUSTERED SUBCARRIERS
The data rate of the u-th user after the subcarrier clustering is
reformulated as

R̃u =

K∑
k=1

cu,k log2
(
1 + pu,kµu,k

)
, (25)

where

cu,k =

Ns∑
s=1

ru,s,k (26)

denotes the number of subcarriers of the u-th user in the k-th
cluster. The optimal transmit power of the UAV on the k-th
cluster for the u-th user is obtained by solving the following
optimization problem:

max
pu,k

Nu∑
u=1

R̃u

s.t.
Nu∑
u=1

K∑
k=1

cu,kpu,k ≤ Pt,

R̃u ≥ Rt, u = 1, · · · ,Nu, (27)
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The Lagrangian of the optimization problem (27) is repre-
sented as

Lo
(
{pu,k}, λ, {ρu}

)
=

Nu∑
u=1

R̃u − λ

( Nu∑
u=1

K∑
k=1

cu,kpu,k − Pt

)
− ρu

(
Rt − R̃u

)
, (28)

where λ and ρu are Lagrange multipliers. The Lagrange dual
function of the optimization problem (27) is given by

Do (λ, {ρu}) = max
pu,k

Lo
(
{pu,k}, λ, {ρu}

)
. (29)

The power allocation for the clustered subcarriers (27)
requires O (Ns + NuK ) computational complexity where the
O (Ns) term denotes the computational complexity for the
subcarrier clustering. It is clear that the subcarrier clustering
reduces the computational complexity of the conventional
optimization problem (9) since K is much less than Ns.
To further reduce the computational complexity of the

power allocation for clustered subcarriers, we employ the
power splitting to decompose the multi-user power allocation
problem into multiple single-user power allocation problems.
The power splitting vector is given by

α =
[
α1, α2, · · · , αNu

]
, (30)

where 0 ≤ αu ≤ 1 denotes the power splitting factor for the
u-th user with a constraint

∑Nu
u=1 αu = 1. The transmit power

constraint for the u-th user is then expressed as

Pu,t = αuPt (31)

where αu indicates the portion of the transmit power constraint
for the u-th user among the total transmit power constraint.

Applying the subcarrier clustering and the power splitting,
the transmit power optimization problem for the sum-rate
maximization is reformulated as

max
pu,k ,αu

Nu∑
u=1

R̃u

s.t.
Nu∑
u=1

K∑
k=1

cu,kpu,k ≤

Nu∑
u=1

Pu,t,

Nu∑
u=1

αu = 1,

R̃u ≥ Rt, u = 1, · · · ,Nu, (32)

The Lagrangian of the optimization problem (32) is repre-
sented as

Lp({pu,k}, {αu}, λ, η, {ρu})

=

Nu∑
u=1

R̃u

− λ

( Nu∑
u=1

K∑
k=1

cu,kpu,k −

Nu∑
u=1

αuPt

)

− η

( Nu∑
u=1

αu − 1

)
− ρu

(
Rt − R̃u

)
, (33)

where λ, ρu, and η are Lagrange multipliers. The Lagrange
dual function of the optimization problem (32) is given by

Dp (λ, {ρu}, η) = max
pu,k ,αu

Lp
(
{pu,k}, {αu}, λ, η, {ρu}

)
. (34)

Finally, we solve the Lagrange dual function (34) to obtain
the optimal transmit power on the k-th cluster for the u-th user
p⋆
u,k and convert to near-optimal transmit power on the s-th

subcarrier for the u-th user p̃⋆
u,s as

p̃⋆
u,s =

K∑
k=1

ru,s,kp⋆
u,k . (35)

Note that (33) is equivalent to (28) with the power splitting
factor constraint

∑Nu
u=1 αu = 1. Therefore, we obtain near-

optimal transmit power allocation of the UAV by solving (34)
with two sub-Lagrange dual functions such as

Dp (λ, η, {ρu})

= max
αu

[ Nu∑
u=1

Du (αu, λ) − η

( Nu∑
u=1

αu − 1

)
− ρu

(
Rt − R̃u

)]
(36)

and

Du (αu, λ) = max
pu,k

[
R̃u − λ

(
K∑
k=1

cu,kpu,k − αuPt

)]
. (37)

The objective of (37) is to optimize the transmit power of
the UAV which maximizes the data rate of u-th user with the
transmit power constraint αuPt. The goal of (36) is to optimize
the power splitting factor for users to maximize the sum-rate
of the network with the constraints

∑Nu
u=1 αu = 1 and R̃u ≥ Rt.

The computational complexity of the transmit power and the
power splitting factor optimizations is O (K + Nu). The two
sub-Lagrange dual functions in (36) and (37) show that the
transmit power optimization and the power splitting factor
optimization must be performed sequentially.
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1) TRANSMIT POWER OPTIMIZATION
When the power splitting factor for each user is given, the
optimal transmit power for the u-th user is obtained by solving
the following optimization problem:

max
pu,k

K∑
k=1

cu,k log2
(
1 + pu,kµu,k

)
s.t.

K∑
k=1

cu,kpu,k ≤ Pu,t. (38)

To obtain the optimal transmit power of the UAV on the k-th
cluster for the u-th user, we represent the Lagrangian of the
optimization problem (38) as

Lu
({
pu,k

}
, λ
)

=

K∑
k=1

cu,k log2
(
1 + pu,kµu,k

)
− λ

(
K∑
k=1

cu,kpu,k − αuPt

)
, (39)

where λ is a Lagrange multiplier. The partial differential of
the Lagrangian (39) with respect to pu,k is represented as

∂Lu
({
pu,k

}
, λ
)

∂pu,k
=

cu,kµu,k

ln 2
(
1 + pu,kµu,k

) − λcu,k . (40)

It is known that the optimal transmit power p⋆
u,k satisfies

cu,kµu,k

ln 2
(
1 + p⋆

u,kµu,k

) − λcu,k = 0. (41)

Therefore, the optimal transmit power of the UAV on the k-th
cluster for the u-th user is given by

p⋆
u,k =

(
1

λ ln 2
−

1
µu,k

)+

, (42)

where (x)+ = max(x, 0). The partial differential of the
Lagrangian (39) with respect to λ is represented as

∂Lu
({
pu,k

}
, λ
)

∂λ
=

K∑
k=1

cu,kpu,k − αuPt. (43)

Inserting the optimal transmit power p⋆
u,k to (43), the

Lagrange multiplier for the optimal transmit power satisfies

K∑
k=1

cu,k

(
1

λ ln 2
−

1
µu,k

)
− αuPt = 0. (44)

The Lagrange multiplier for the optimal transmit power for
the u-th user is represented as

λ =

∑K
k=1 cu,k

ln 2
(
αuPt +

∑K
k=1

cu,k
µu,k

) . (45)

We finally obtain the optimal transmit power p⋆
u,k by plugging

in (45) into (42).

2) POWER SPLITTING FACTOR OPTIMIZATION
When the transmit power of the users is given, the optimal
power splitting factor for the u-th user is obtained by solving
the following optimization problem:

max
αu

Nu∑
u=1

K∑
k=1

cu,k log2
(
1 + p⋆

u,kµu,k
)

s.t.
Nu∑
u=1

αu = 1,

K∑
k=1

cu,k log2
(
1 + p⋆

u,kµu,k
)

≥ Rt, u = 1, · · · ,Nu.

(46)

To obtain the optimal power splitting factor, we express the
Lagrangian of the optimization problem (46) as

Lp({αu} , η, {ρu})

=

Nu∑
u=1

K∑
k=1

cu,k log2


(
αuPt +

∑K
k=1

cu,k
µu,k

)
µu,k∑K

k=1 cu,k


− η

( Nu∑
u=1

αu − 1

)

− ρu

Rt − K∑
k=1

cu,k log2


(
αuPt +

∑K
k=1

cu,k
µu,k

)
µu,k∑K

k=1 cu,k

 ,

(47)

where η is a Lagrange multiplier for the power splitting factor,
and ρu is a Lagrangemultiplier for theminimum rate constraint
for the u-th user. The partial differential of the Lagrangian (47)
with respect to αu is represented as

∂Lp ({αu} , η, {ρu})

∂αu
=

∑K
k=1 cu,k (1 + ρu)Pt

ln 2
(
αuPt +

∑K
k=1

cu,k
µu,k

) − η. (48)

It is known that the optimal power splitting factor satisfies∑K
k=1 cu,k (1 + ρu)Pt

ln 2
(
α⋆
uPt +

∑K
k=1

cu,k
µu,k

) − η = 0. (49)

Therefore, the optimal power splitting factor for the u-th user
is given by

α⋆
u =

(
K∑
k=1

cu,k (1 + ρu)
η ln 2

−
1
Pt

K∑
k=1

cu,k
µu,k

)+

. (50)

The partial differential of the Lagrangian (47) with respect to
η is represented as

∂Lp ({αu} , η, {ρu})

∂η
=

Nu∑
u=1

αu − 1. (51)
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Algorithm 3 Power Allocation for Clustered Subcarriers
Input: [µ1,1, . . . , µNu,K ], [r1,1,1, . . . , rNu,Ns,K ],Pt
Output: p⋆

1,1, . . . , p
⋆
Nu,Ns

1: while pu,k converges do
2: Compute the Lagrange multiplier λ

3: for u = 1, . . . ,Nu do
4: for k = 1, . . . ,K do
5: Compute the optimal transmit power p⋆

u,k
6: end for
7: end for
8: for u = 1, . . . ,Nu do
9: Compute the normalized Lagrange multiplier ρ̄u
10: Compute the optimal power splitting factor α⋆

u
11: end for
12: end while

Inserting the optimal power splitting factor α⋆
u (50) to (51),

the Lagrange multiplier for the power splitting factor satisfies

Nu∑
u=1

(
K∑
k=1

cu,k (1 + ρu)
η ln 2

−
1
Pt

K∑
k=1

cu,k
µu,k

)
− 1 = 0. (52)

The Lagrange multiplier for the power splitting factor is
represented as

η =

Nu∑
u=1

K∑
k=1

cu,k (1 + ρu)
ln 2

(
1 +

1
Pt

Nu∑
u=1

K∑
k=1

cu,k
µu,k

)−1

. (53)

The optimal power splitting factor α⋆
u can be rewritten as

α⋆
u =

(
ρ̄u

(
1 +

1
Pt

Nu∑
u=1

K∑
k=1

cu,k
µu,k

)
−

1
Pt

K∑
k=1

cu,k
µu,k

)+

. (54)

where

ρ̄u =

∑K
k=1 cu,k (1 + ρu)∑Nu

u=1
∑K

k=1 cu,k (1 + ρu)
(55)

denotes the normalized Lagrange multiplier for the minimum
rate constraint of the u-th user. The partial differential of the
Lagrangian (47) with respect to ρu is represented as

∂Lp ({αu} , η, {ρu})

∂ρu

= Rt −
K∑
k=1

cu,k log2


(
αuPt +

∑K
k=1

cu,k
µu,k

)
µu,k∑K

k=1 cu,k

 . (56)

Inserting the optimal power splitting factor α⋆
u (54) to (56),

the normalized Lagrange multiplier ρ̄u satisfies

Rt −
K∑
k=1

cu,k log2

ρ̄u

(
Pt +

∑Nu
u=1

∑K
k=1

cu,k
µu,k

)
µu,k∑K

k=1 cu,k

 = 0.

(57)

TABLE 1. Simulation Parameters.

The normalized Lagrange multiplier ρ̄u can be rewritten as

ρ̄u = 2

Rt−
∑K
k=1 cu,k log2

((
Pt+

∑Nu
u=1

∑K
k=1

cu,k
µu,k

)
µu,k∑K
k=1 cu,k

)
∑K
k=1 cu,k . (58)

We finally obtain the optimal power splitting factor α⋆
u by

plugging in (58) into (54). Algorithm 3 states the pseudocode
of the power allocation for clustered subcarriers in detail.

The sum-rate of the UAV-enabled OFDM network with the
proposed algorithm is given by

R̃⋆
=

Nu∑
u=1

R̃⋆
u =

Nu∑
u=1

Ns∑
s=1

log2

(
1 +

K∑
k=1

ru,s,kp⋆
u,kγu,s

)
, (59)

where R̃⋆
u is the data rate of the u-th user with the optimal

transmit power and the power splitting factor.

3) CONVERGENCE AND COMPLEXITY
Since (33) is equivalent to (28) with the power splitting factor
constraint

∑Nu
u=1 αu = 1, the convergence of the proposed

algorithm depends on the optimal power splitting factor α⋆
u

obtained from (54), (55), and (58). According to the definition
of ρ̄u in (55), the range of ρ̄u should be from 0 to 1. When the
u-th user cannot achieve the minimum rate constraint Rt under
the total transmit power constraint Pt, ρ̄u in (58) will be greater
than 1, and the convergence of the proposed algorithm is not
guaranteed. Thus, we conclude that the convergence of the
proposed algorithm is ensured when the feasible constraints
satisfying 0 ≤ ρ̄n ≤ 1 are given.
The computational complexity of the proposed algorithm,

which consists of the subcarrier clustering and the power
allocation for the clustered subcarriers with the power
splitting, is given by O (Ns + K + Nu). It is clear that the
proposed algorithm requires low-complexity compared to
the conventional water-filling algorithm O (NsNu) since the
number of clusters is far less than the number of subcarriers.

IV. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed
algorithm. Table 1 shows the simulation parameters in detail.
The users are randomly distributed within dm = 300 m and
the UAV is located at the center of the users. We consider
the urban environment for the performance evaluation2 by

2Although we only present the simulation results for the urban environment,
we confirm that different A2G path-loss environments also give similar results
to the urban environment.
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FIGURE 4. Distortion in the training phase for the subcarrier clustering.

FIGURE 5. SNRs of (a) Ns subcarriers and (b) clustered subcarriers with
K = 2, (c) K = 4, and (d) K = 6.

using the parameters ηLoS = 1 dB, ηNLoS = 20 dB, a = 9.61,
and b = 0.16 [38]. We compare three schemes, ‘Optimal,’
‘Proposed,’ and ‘Adjacent.’ Since the most basic approach
of equal power allocation does not guaranteed the minimum
rate constraint for each user, the equal power allocation is
excluded from the performance comparison. The ‘Optimal’
and ‘Proposed’ schemes obtain the transmit power of the UAV
from the optimization problems (9) and (32), respectively.
The ‘Adjacent’ scheme divides Ns subcarriers into K clusters
of contiguous subcarriers [28], [29] and applies the power
allocation for clustered subcarriers.
Fig. 4 shows the distortion as a function of epochs in the

training phase for the subcarrier clustering. The distortion
decreases as the number of epochs increases, indicating that
the K cluster centers in (18) are well defined. It is also shown
that the distortion depends on the number of clusters for the
subcarrier clustering. Having more clusters minimizes the
distortion but requires high computational complexity for the
subcarrier clustering.
Fig. 5 shows the SNRs of Ns subcarriers and clustered

subcarriers for the various number of clusters. As can be seen,
the SNRs of Ns subcarriers are well represented with the K

FIGURE 6. Distortion in the test phase for the subcarrier clustering as a
function of (a) the altitude of the UAV and (b) the number of paths.

FIGURE 7. CDF of the data rate of the u-th user with the optimal transmit
power and the power splitting factor.

values and the SNRs of the clustered subcarriers are similar
to the SNRs of the Ns subcarriers when the number of cluster
is greater than K = 4.

Fig. 6 shows the distortion in the test phase for the subcarrier
clustering for various altitude of the UAV and the number of
paths. It is shown that the distortions in the test phase are
similar to the distortions in the training phase even though
the altitude of the UAV and the number of paths vary. We can
conclude that the proposed subcarrier clustering is robust due
to the normalization of the SNR. The proposed subcarrier
clustering employed in the UAV-enabled OFDM network can
therefore be used without any re-training for different UAV
altitudes and the number of paths.
Fig. 7 plots the cumulative density function (CDF) of the

data rate of the u-th user with the optimal transmit power and
the power splitting factor. The figure shows that all users in the
network achieve the minimum rate constraint Rt. In addition,
the data rate of the u-th user increases as the number of clusters
increases. We can expect that the proposed algorithm cannot
guarantee the minimum rate constraint for each user with fixed
transmit power when the network requires a higher data rate
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FIGURE 8. Average sum-rate of the network as a function of the total
transmit power constraint of the UAV.

FIGURE 9. Average sum-rate of the network as a function of the UAV
altitude.

constraint. Therefore, the network operator should consider
the minimum rate constraint and the total transmit power
simultaneously.
Fig. 8 shows the average sum-rate of the network as a

function of the total transmit power constraint. The figure
shows that the proposed algorithm provides a higher average
sum-rate compared to the ‘Adjacent’ scheme with an equal
number of clusters. The figure also shows that the proposed
algorithm achieves near-optimal performance when the
number of clusters is K = 4 with much less complexity. Note
that the sum-rate of the network is determined by subcarriers
in the high-SNR region. As shown in Fig. 5 and Fig. 6,
the subcarrier clustering with K = 4 clusters selects the
proper portion of subcarriers in the high-SNR region and maps
the SNRs of Ns subcarriers to K values with less distortion.
Therefore, the subcarrier clustering plays a crucial role in the
proposed algorithm.
Fig. 9 shows the average sum-rate of the network as a

function of the UAV altitude. We can see that the average
sum-rate decreases as the altitude of the UAV increases due to
the A2G path-loss. As shown in Fig. 8, the proposed algorithm
provides near-optimal performance when the number of

FIGURE 10. Average sum-rate of the network as a function of the number
of paths.

clusters is K = 4. The proposed algorithm also achieves
near-optimal performance without re-training, despite varying
altitudes of the UAV.
Fig. 10 shows the average sum-rate of the network as a

function of the number of paths. The figure shows that the
average sum-rate of the network increases as the number
of paths increases when the proposed algorithm is applied.
This means that the proposed algorithm obtains multi-path
diversity by properly allocating the transmit power. However,
the ‘Adjacent’ scheme cannot achieve the multi-path diversity
since the cluster with contiguous subcarriers leads to a higher
distortion in the frequency selective channels. As expected,
the proposed algorithm provides near-optimal performance
when the number of clusters is K = 4.

Figs. 8 to 10 show the trade-off relation between the
computational complexity and the performance loss. There-
fore, we can determine the number of clusters K based on the
acceptable performance loss in the network.

V. CONCLUSION
In this paper, we proposed a K -means clustering-aided
power control algorithm to maximize the sum-rate of a
UAV-enabled OFDM network under the total transmit power
and the minimum rate constraints. The proposed algorithm
is composed of the subcarrier clustering and the power
splitting. The subcarrier clustering reduced the computation
complexity of the power control algorithm from O (NsNu)

to O (Ns + KNu) by mapping the SNR of Ns subcarriers to
K values. The power splitting transformed the joint Nu users
power allocation problem with O (Ns + KNu) complexity to
Nu single-user power allocation problems withO(Ns+K+Nu)
complexity by dividing the total transmit power constraint into
the transmit power constraint for each user. Simulation results
showed that the proposed algorithm with K = 4 clusters
provides near-optimal performance, even with a large number
of subcarriers Ns = 1024.
There are many possible extensions of our work. For

example, it would be interesting to investigate trajectory
planning, user clustering, and resource allocation for multi-
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UAV-enabled OFDM networks taking our proposed K -means
clustering-aided power control algorithm into account.
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