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ABSTRACT Vehicle comfort, handling, and stability can be improved by a semi-active suspension with
advanced control algorithms using the vertical velocities of the sprung mass (SM) and the unsprung
masses (UMs) as inputs. Displacement and acceleration sensors are often used to estimate vertical velocities
of UMs. However, these sensors are expensive and are susceptible to degradation. Virtual sensors (VS) have
been proposed as a solution, and previous research using simulation data has shown that artificial neural
networks (ANNs) can provide usable UM vertical velocity estimates. This study aims at finding ANNs
structure and input sample window size to achieve best performance on real-world data. Novel dataset
was created and used to test VSs based on eight structures of ANNs combining multilayer perceptron,
convolutional neural network, long-term short-term memory (LSTM), and bidirectional LSTM layers. This
article presents the results of 104 combinations of ANN structure and sample window size, which required
6240 training sessions. A Bayesian search was used to tune the hyperparameters of ANNs’ layers minimizing
the root-mean-square error (RMSE) of estimations on the validation data, while a grid search was used
to select the sample window size that minimizes RMSE of estimation on test data, ensuring that selected
combinations are well generalized. The VS based on ANN with convolutional layers, achieved the lowest
RMSE of 0.0210 m/s, and processing time of 0.421 ms for a window size of 23 samples while estimating
vertical velocities of vehicle UMs from real-world data.

INDEX TERMS Artificial neural networks, data-drivenmodeling, virtual sensor, velocity estimation, vehicle
suspension.

I. INTRODUCTION
Nowadays, the automotive industry is strongly focusing on
automated driving technologies [1], so the ride comfort is
becoming increasingly important. In particular, fatigue and
motion sickness may be more critical in automated vehicles
as the driver is less involved in vehicle control [2]. Occupants
may also engage in various activities while driving, such as
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working on a laptop or reading, leading to higher demands
on ride comfort [3]. Some studies show that it would be
beneficial to achieve a comfort level in a car similar to that
of trains [3], [4]. Nevertheless, various control algorithms are
developed for driver assistance systems that can be used in
conventional vehicles to improve comfort. These algorithms
involve adaptive, semi-active [5], [6], [7], and proactive sus-
pension with road surface preview [8].
The ongoing challenge to improve comfort, stability,

and handling without increasing hardware costs requires
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continuous enhancement of chassis control performance [9].
For example, semi-active and active actuators must replace
passive vehicle suspension components to provide satisfac-
tory comfort and contribute to better vehicle handling [10].
Implementation of active components requires advanced sus-
pension control and state measurement algorithms. Active
and semi-active actuators can change the system character-
istics by changing the damping force. Commonly, industrial
control solutions such as Skyhook or hybrid and other state
of the art algorithms use vertical velocities of the unsprung
masses (UMs) and the sprung mass (SM) as inputs, and
they are estimated instead of direct measurement [11], [12].
No robust sensor is available at a reasonable price for vertical
velocity measurements of SM and UM. Vertical velocities of
SM are estimated using IMU’s measurements and Kalman
filters. IMU sensor placed on SM is used by other systems
such as dynamic stability control (DSC). Displacement [13]
and acceleration sensors [14] are commonly used and veloc-
ity of UM is estimated by fusing measurements of these
sensors. This requires installation of additional sensors at
UMs, leading to higher overall costs, packaging issues, and
robustness problems. UM displacement sensors are sensitive
to environmental influences and wear with use. Acceler-
ation sensors measurements are prone to integration bias,
and installation of such sensors onto each wheel hub is
complex. A possible solution to this problem is the use
of UM virtual sensors (VSs) [15]. Such sensor could esti-
mate UM vertical velocity using only data from sensors
installed on SM.

AVS is a software algorithm that generates signals by com-
bining and processing data received from physical sensors
and estimators [16]. The generated data is fed into complex
functions or applications [17]. The VS can be model-based
and data-driven [18]. In model-based approaches, mathe-
matical models are used to define the relationship between
input and output variables. Automotive applications often use
variations of the Kalman filter (KF) for this type of VS [19].
For example, the KF in [20] was used to estimate the vehicle
sideslip angle, and the tire forces were estimated in [21].
The study [22] used the KF for suspension state estimation.
However, due to the nonlinearity of vehicle components,
it can be challenging to use mathematical equations to create
an accurate VSmodel [23]. On the other hand, the data-driven
VS relies solely on recorded data obtained from observa-
tion of system operation [24]. Practical implementations of
data-driven VS include multivariate statistical methods and
artificial intelligence methods.

Data-driven VS developed for vehicle suspensions has
been investigated in previous studies [15], [23], [24], [25].
In [24], the authors presented a data-driven approach based on
deep learning (DL) for estimating the road profile height and
state variables of vertical displacement and velocity of vehicle
UMs using onboard sensors. The proposed VS was compared
with the extended KF and the static nonlinear autoregressive
exogenous model. The performance results were in favor of
the proposed VS model. However, the algorithm was only

tested in a simulation environment with a narrow range of
driving conditions. Therefore, it is unclear how such sensor
would perform with real-world data.

Previous studies [23], [25] provided promising results
using data-driven VS based on artificial neural net-
works (ANNs) and specifically deep neural networks (DNNs)
for estimation of UMs’ vertical velocities.

The motivation behind this research rises from the
observed deficiency in the development and testing of
the data-driven VS for UM vertical velocity using real-
world datasets. Furthermore, we aim to compare and select
ANN structure and determine the most suitable input
sample window size to achieve the highest estimation
accuracy.

Thus, the objective of this study is to develop and compare
data-driven ANN-based VSs (described in Section II) on a
real-world dataset. This algorithm is part of vehicle state
estimation, which is required as input for feedback control
algorithms, that are not part of this article. The research
presented in this article includes determining the optimal
sampling window length and hyperparameter combinations
for each of the selected ANN structures. In order to deal
with the lack of datasets, a new dataset was created using
raw data collected at the proving ground and under urban
driving conditions from a vehicle demonstrator equipped
with a semi-active suspension. The ANN training process
was repeated 60 times for each combination of structure
and sample window size, to select the best hyperparameters
using a Bayesian search. Overfitting of the ANN is prevented
by selecting the model iteration with the best root mean
squared error (RMSE) on validation data from 60 training
iterations.

The contributions of this study include:

• Preparation of a real-world dataset for the development
of a VS for the vertical velocity of UMs: A major con-
tribution lies in the careful compilation of a real-world
dataset tailored for the development and rigorous testing
of estimators for the vertical velocity of UM.

• Systematization of tasks and methodologies for the cre-
ation of data-driven VSs: This provides a clarification of
tasks and outlines a comprehensive methodology for the
creation of data-driven VSs for vehicle suspension and
sheds light on new approaches in this domain.

• Development and selection of best type and optimal
structure of ANN for VS of UMs vertical velocity:
Through extensive experimentation, this research iden-
tifies the most appropriate type and structures of ANNs
that are best suited for the prediction of UM vertical
velocity.

• Determination of the optimal input window size for
real-time VS performance: The critical dimension of
input sampling window size for the tested ANN struc-
tures is introduced, which significantly affects the
estimation accuracy.

• Analysis of the influence of the input signals on the
RMSE of output: In this study, the influence of input
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signals on the resulting RMSE of the estimations is
rigorously investigated and quantified.

• Testing the impact of input signals’ means compensation
on output RMSE: The significance of input signal means
compensation is evaluated, providing valuable insight
into the impact of such compensation on the perfor-
mance and estimation accuracy of VS.

These contributions collectively advance the state of knowl-
edge in the field of UMs’ vertical velocities estimation,
offering novel perspectives and methodologies that signifi-
cantly enhance task understanding and solving capabilities.

The rest of this paper consists of four sections, exclud-
ing the introduction. Section II describes experimental setup
and experiments for the real-world data collection, col-
lected signals and dataset preparation, and development
of VS, including testing the importance of inputs, the
eight ANN structures, and hyperparameter search methods.
In Section III, the experimental results are presented and
analyzed, and the best solution is found. In Section IV, the
main results of the research are discussed and the conclusions
are drawn.

II. DATA COLLECTION AND NEURAL NETWORK
STRUCTURES
A. EXPERIMENTAL SETUP FOR DATA COLLECTION
This research aims to create VS that would replace UM dis-
placement and acceleration sensors (see Figure 1) currently
used for estimation of UMs’ vertical velocities that are used in
suspension control algorithms. There is a lack of a real-world
dataset suitable for supervised learning of ANN and perfor-
mance evaluation. Therefore, the original data needs to be
collected using vehicle demonstrator and dataset prepared.

Audi A6 (2019 model year) with a semi-active suspension
prototype developed by Tenneco was used in this research.
This demonstrator vehicle was equipped with a dSPACE
real-time target machine (RTTM) that runs a suspension

controller that uses UM vertical velocity as input. RTTM is
also capable of recording sensor, estimated, and algorithms’
output data. Therefore, it is used for experimental data acqui-
sition. The data is fed to the connected computer that records
it into files. The data is logged at a fixed sample rate of 100Hz
into the recording file.

In order to enable the collecting of required data, addi-
tional sensors were installed on the vehicle; they included
an IMU placed in the center of gravity of the vehicle,
optical flow sensor (OFSs) mounted on the rear left side
door for sideslip angle measurement, and UM vertical dis-
placement sensors were mounted between lower suspension
links and vehicle body in parallel to dampers. Further-
more, access to the vehicle’s controller area network (CAN)
channels was granted, this provided access to all standard in-
vehicle sensors, which were in their standard locations in the
vehicle.

An overview of the system is given in Figure 1. There
the sensors are connected to the RTTM which implements
suspension controller, signal recording, and proposed UMs’
vertical velocities VS. It shows how front-left (FL), front-
right (FR), rear-left (RL), rear-right (RR) UM acceleration
and displacement sensors can be replaced or duplicated by
VS for FL, RF, RL, RR.

Proposed UM vertical velocity VS is meant to use in
RTTM instead of the currently used algorithm for estimation
from measured UM vertical displacement. This would allow
to remove displacement sensors if estimation using VS on
real-world data proves to be good enough compared to current
estimation.

B. EXPERIMENTS FOR DATA COLLECTION
The dataset was created based on test data collected on
the Lommel proving ground using vehicle demonstrator.
The procedures below describe the tests performed to col-
lect the data. These tests are commonly used for vehicle

FIGURE 1. System overview.
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handling, comfort, and stability studies, therefore recorded
in-vehicle sensor signal data should provide enough informa-
tion for training, validation and testing datasets. The data was
recorded for different types of tests: acceleration and braking;
skid pad, step steer, double-step steer, obstacle avoidance,
sine with dwell, sinusoidal steer, and comfort tests. Also, data
was collected under urban driving conditions.

In the acceleration and braking test, maximum acceleration
is applied from a standstill in a straight line, and at 100 km/h,
the vehicle is brought to a standstill with maximum braking
force.

In the skid test (ISO 7975:2019), the driver controls the
vehicle at a constant radius of turn. The tests started from
velocity of 10 km/h. The vehicle velocity gradually increased.
This test was performed up to the velocity level at which
the driver could no longer keep the vehicle on the target
trajectory.

In the step steering test (ISO 7401:2011), the driver accel-
erated the vehicle in a straight line until a velocity of 100 km/h
was reached. After that, the accelerator pedal was held con-
stant, and the driver performed a stepped steering wheel input
(counterclockwise or clockwise) of 100◦ with a rate of 400◦/s.
The steering wheel angle was held at 100◦ for at least 2 s after
the first actuation.

In the double-step steering test (ISO 17288-1:2011), the
driver accelerated the vehicle in a straight line until a velocity
of 100 km/h was reached. Afterwards, the accelerator pedal
was held constant, and the driver performed a stepped steering
wheel input (counterclockwise) of 100◦ at a rate of 400◦/s.
The steering wheel angle was held at 100◦ for 2 s after the
initial actuation. After 2 s, the steering wheel was rotated to
-100◦ and maintained for 2 s. After that, the driver set the
steering wheel back to 0◦.

The obstacle avoidance test (ISO 3888-2:2011) is a
dynamic maneuver in which a vehicle moves rapidly from
its original lane to adjacent road lane and returns to the
original lane without exceeding lane limits. The goal was
to ensure that the vehicle achieves a specific sequence of
alternating high lateral acceleration values. During the test,
the driver holds the accelerator pedal constantly. The initial
longitudinal velocity of the vehicle was measured to ensure
the repeatability of the test procedure.

In the sine-with-dwell test (ISO 19365:2016), the vehicle
was accelerated to a velocity of just over 80 km/h. Afterwards,
a constant accelerator pedal position was held. The steering
wheel input has a waveform of a sine wave with a frequency
of 0.7 Hz that pauses for 0.5 seconds after reaching the
second peak.

The sinusoidal steering test procedure includes driving
conditions where the vehicle reaches a lateral acceleration
of about 6 m/s2, which is achieved with a steering wheel
amplitude of about 50◦ at a vehicle velocity of about 80 km/h.
Stronger inputs can also be made up to and beyond the
handling limit, e.g., steering wheel angle of 100◦ for a more
aggressive maneuver, but not at the handling limit, steer-
ing wheel angle of 150◦ for a maneuver at handling limit.

The driver accelerates the vehicle in a straight line until
a constant velocity of 80 km/h is reached. The accel-
erator pedal is held at a constant value. After that, the
driver gives a sinusoidal, wave-like steering wheel input
with a predefined magnitude. The frequency of the sine
wave is approximately 1 Hz. The steering input lasts for
two cycles.

The comfort tests included driving on a road with Belgian
pavement, driving on a road with bumps at different veloc-
ities, and driving on a road with high-class (D-F) pavement
irregularities. Driving is performed at a constant velocity in
range of 25-70 km/h. These tests represent good and bad
driving conditions.

The collected data serves as a comprehensive basis for
building DL dataset due to the wide range of real-world driv-
ing scenarios. The diversity of these tests, provide valuable
data, that is suitable for development of data-driven VS not
only for UM vertical velocity but also for other signals that
are recorded.

C. SIGNALS AND DATASET PREPARATION
In this paper, estimation of UM vertical velocity using VS
is determined as a time series regression task with multiple
inputs and multiple outputs (for each wheel simultaneously)
when a current and a certain number of previous samples are
available.

The main characteristics of each input signal must be
described to understand the relationship between input and
output and their usability. The values of the signals have
different characteristics in terms of continuity, scale, and
mean value. Discontinuous signals can be useful as switching
signals for changing the behavior of the ANN; however, most
ANNs that produce continuous output signals will benefit
more from continuous input signals that can be used directly
to form the output signal. The mean values of the signals are
used to offset that signal towards 0, because it is the point of
nonlinear part of selected activation functions. The standard
deviation shows the extent to which the signal varies and is a
good metric of the signal scale. The scales of the signals must
be similar to speed up the DL process; therefore, the signals
are normalized by dividing them by the standard deviation.
Next, the signals are described and main characteristics are
provided in Table 1.

Driver torque demand is a signal available from the drive-
by-wire gas pedal. The value of this signal is important to
engine and DSC systems. Although not directly, it does affect
the longitudinal acceleration that is measured by IMU. The
acceleration induces change of pitch angle, thus unloads and
loads the suspension and affects the vertical displacement and
velocity of the UM.

The DSC regulation signal indicates the system’s engage-
ment in braking or engine torque reduction. Active DSC may
change the load on opposite sides and ends of suspension,
thus influencing the UM vertical velocity and displacement.

The master cylinder pressure signal indicates the applied
braking pressure that directly correlates with deceleration.
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This deceleration modulates the vertical load distribu-
tion, thereby affecting the UM’s vertical displacement and
velocity.

TABLE 1. Input signals, sources, and statistical characteristics.

The steering angle and direction provide information about
the steering input of the driver. This information is also used
for the lateral acceleration and the distribution of the load on
the left and right sides of the vehicle suspension.

The optimized steering angle is the target steering angle
calculated by the vehicle taking into account user input and
the requirements of other onboard systems.

Vehicle velocity information is important for ride control
when the vehicle overcomes surface irregularities, bends,
potholes, and turns. It provides information on the extent to
which lateral and vertical acceleration can be expected and
how quickly the road impact on the front suspension reaches
the rear suspension.

The wheels’ velocities are provided by the anti-lock brak-
ing system over CAN. These signals partly duplicate vehicle
velocity, but also adds information about friction.

The X, Y, and Z axes accelerations, roll, and yaw rates
obtained from IMU provide information about the state of the
vehicle: orientation, acceleration, and rotation due to driver
input and external factors.

The body sideslip angle provides information about the dif-
ference between the vehicle’s heading and its actual direction
of travel, usually is used in DSC.

These parameters, along with the vertical velocities of
SM and UM, are used in advanced control algorithms for
semi-active suspensions. However, not all inputs are equally
important in estimating the desired output values. Therefore,
it is necessary to evaluate their significance when processed
by ANN-based VS. This was done using value replacement
methods and evaluation of the RMSE change on the test
dataset (see Section III (b)).

The output signals are the UM’s vertical velocities for
each wheel. The ground truth UM’s vertical velocities were

estimated from the vertical wheel displacement in refer-
ence to full suspension extension point on the experimental
vehicle. At first, the signals from the vertical wheel displace-
ment sensors were filtered at 50 Hz using a MATLAB But-
terworth low-pass filter. Afterwards, the difference between
the current and the last sample was calculated. Finally, the
resulting difference between the samples is divided by the
sampling time to obtain the vertical velocity of the wheel.
This is the same filter used in the real-time processing of vehi-
cle suspension control units. As it does use current and last
samples, a delay of about half of sample period is introduced
into the filtered signal.

Multiple pasts values of the input signals are needed to
estimate the UM velocity at a given time as they provide
information about the change in the signal. Therefore, the
window length of the input samples is an important parameter
as it affects the amount of signal memory available to the
ANNs. The presence of past samples allows the learning of
signal features at lower frequencies. At a fixed sampling rate
of 100 Hz, the tested sample window sizes of 3 to 51 samples
provide a signal buffer of 30-510 ms. This allows real-time
signal processing using first-in-first-out buffers, with the
newest data point added and the oldest removed at each
sampling period. The results in the Section III show that
the processing time is considerably shorter than sampling
period. Compared to low-pass filters, the proposed ANNs
avoid problems related to delays that directly depend on the
sample window size, as ANNs predict current state from last
and current input signals based on learned model.

The total number of samples included in the dataset is
about 393 thousand. The samples are randomly divided into
272 thousand (70%) in the training set, 61 thousand (15%) in
the validation set, and 60 thousand (15%) in the test set at the
experimental record level. Therefore, all samples belonging
to one recording were assigned to one of the parts and not
seen in the other part, which prevented very similar samples
occurring in all parts in due to slow signal changes compared
to the sampling frequency. Also, this is only possible way to
split data, as most driving action happens in the middle of
the recording. The validation samples were used for RMSE
minimization during training and Bayesian search, and the
testing samples were used to compare ANN structures and
sample window size combinations.

A grid search was applied to select the sample window
size for each ANN structure to systematically explore the
different combinations and determine the best configuration.
Grid search is a widely used method for implementing struc-
ture and parameter tuning in machine learning. The grid
values for the sample window size were selected based on
performance variation to ensure that a larger window length
was near the minimum RMSE point. Window sizes of 3,
5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 35 and 51 sam-
ples were selected because 3 samples are the least number
of samples that can be used to predict the change of UM
movement direction and 51 samples provide information of
the lowest frequency that is important for suspension control.
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FIGURE 2. Structures of used ANNs: a) 1-3 hidden layers MLP; b) 2-3 layers CNN; c) LSTM; d) BiLSTM; e) MLP-LSTM.

More than 51 sample window size was not tested as it would
require even computational time while providing a diminish-
ing increase in accuracy.

D. STRUCTURES OF ARTIFICIAL NEURAL NETWORKS
The selection of an appropriate network type, application
domain, and hardware imposes several requirements. First,
an algorithm of ANN-based VS should be implemented
using MATLAB and Simulink. Second, it should be com-
piled for a specific RTTM. Third, the compiled algorithm
should run one cycle in less than 10 ms, because input
signals are sampled at 100 Hz. The requirements limit the
types of neural layers and scale of the ANN (including
number of layers and number of neurons in them). There-
fore, small task-specific ANNs were developed instead of
using well-known backbone networks such as ResNet [26].
For the development of VS, ANNs with multilayer per-
ceptron (MLP), convolutional neural network (CNN), long
short-term memory (LSTM), bidirectional LSTM (BiLSTM)
layers, and MLP-LSTM combination were implemented and
compared.

Structures of the networks are shown in Figure 2. There
hatched blocks are part of a variant of the same type of net-
work with different number of layers. In Figure 2, only fixed
properties of the layers are shown, other important parameters
(neurons/units, convolutional kernel’s size and stride) are
provided in Tables 2-9 and 11. The window size and net-
work hyperparameters were selected using Bayesian and grid
searches. This process is described further in Section II (e).
Next, each ANN type is explained.

The MLP structure is the simplest and most flexible
(see Figure 2. a). It includes one or more hidden layers
of neurons. Each neuron has a weighted connection to all
neurons in the previous layer. The connection weights were
changed during the learning process. The disadvantage of

this flexibility is the high computational complexity since
each connection requires an additional multiplication. Many
multiplications and additions are performed in the planned
task; therefore, using a matrix form of the equations is more
efficient, which can be accelerated by a multiple data instruc-
tion operation in modern processors, especially in graphical
processing units (GPUs). In this context, an MLP layer with
an arbitrary number of neurons can be expressed by the
following equation:

y = σ (W × x+ b), (1)

where y is the output vector; W is the learnable input con-
nection weight matrix of shape (k , n), where k is the number
of neurons, n is the length of the input vector; x is the input
vector of shape (n, 1), where n is the length of the input
vector; b is the bias vector; and σ is the nonlinear activation
function. The hyperbolic tangent (tanh) function was used as
an activation function for all the MLP layers, excluding the
last function that did not use activation. This equation can be
simplified by concatenating the bias vector with the weight
matrix and adding one to the input vector x.This simplifies
Equation (1) into a single matrix multiplication as follows:

y = σ (W × x), (2)

where,W is the learnable input connections and bias weights’
matrix of shape (k , n), where k is the number of neurons, n is
the length of the input vector + 1; x is the input vector of
shape (n+ 1, 1) because of the added value of 1 instead of a
bias variable, where n is the length of the input vector. This
equation can be processed faster because only dot product
and activation operations are required. Most machine learn-
ing frameworks abstract related mathematical operations into
high-level functions or ANN building blocks and use opti-
mized code for processing. The described combination of
weighting matrix and bias vector is done within functions,
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and an input vector is a single input of such functions.
An MLP layer in a complex ANN is often referred to as
a fully connected layer (FC) because neurons in the layer
haveweighted connectionswith neurons in the previous layer.
MLPs with up to 3 FC layers and different numbers of neuron
units were tested, and the best combinations were selected for
comparison with other architectures.

CNNs have emerged as a powerful class of DL models,
particularly due to their exceptional performance in image
analysis and recognition [28]. In recent years, their applica-
bility has been extended to various domains, including signal
processing and VS, due to their ability to extract relevant fea-
tures from input data [29]. They are particularly effective in
capturing local patterns and hierarchical representations from
such data [30]. Therefore, it was decided to test a CNN in VS.

In a CNN, each convolutional layer consists of a set of
adaptive filters that are convolved with the input data to
extract relevant features. These filters capture local patterns
in the data by performing element-wise multiplication and
aggregating the results [31]. Pooling layers can be then used
to shrink the feature maps and reduce their spatial extent
while preserving the most relevant information [32]. The
extracted features are then passed to one or more fully linked
layers, which perform classification or regression tasks based
on the learned representations [33].

A CNN layer with any number of units can be described
by the following equation [34]:

Xn,i,j =

∑N

n=1

(∑H

h=1

∑W

w=1

∑C

c=1

× Wn,w,h · Asi+w,sj+h,c

)
+ Bn, (3)

where Xn,i,j is the value of the output feature map matrix of
the convolutional layer (before activation function) at index
n, i, j (n – index of the convolutional kernel; i – index of
the row in feature map matrix; j – index of the column in
feature map matrix); Wn,h,w – value of kernel filter at index
n, h,w (n – index of the convolutional kernel; h – index of
the row in the convolutional kernel; w – index of the column
in the convolutional kernel; Asi+w,sj+h,c value of input array
with index si + w, sj + h, c (s stride of kernel; c channel of
input array); Bn – bias of convolutional neuron with index n;
N – number of convolutional neurons in the layer; H number
of kernel rows;W number of kernel columns; C – number of
channels in the filter that is the same as channels count of the
input array. Each signal has own channels.

In this study, a CNN-based DNN architecture tailored
for this application is proposed to meet the real-time
data processing requirements of a VS. The DNN consists
of 2 or 3 convolutional layers, each followed by a nonlinear
activation function of a leaky rectified linear unit (LReLU)
to extract the essential features of signals in the time domain
and the relationships between signals as images in 2D space
(see Figure 2. b)). The LReLU can be described by the
following equation:

f t = max(aX t ,X t ), (4)

where a is the settable coefficient of steepness of the activa-
tion function in the negative region of the input values (a was
set to 0.1).

LReLU avoids the problem of ANNs not learning when
using rectified linear unit [35]. Zero input values cause the
zero-gradient problem for negative X t values. The output
of the CNN layers is converted to a vector and given to
FC layers, allowing the network to learn andmake predictions
at a higher level, similar to an MLP.

In the case of VS, the inputs toMLP and CNN are provided
as W×M arrays, where W is the sample window size and
M is the number of sensor inputs. These inputs are passed
to the ANN in each sampling step and provide the output
corresponding to the last sample. In this way, the output delay
is minimized to the ANN processing time.

Unlike MLP or CNN, the LSTM stores its last state and
output and uses them as inputs for decision making when
processing the next sample in the sequence (see Figure 2. c)).
The LSTM inputs were supplied as a W-length sequence
of vectors, the length of which corresponds to the number
of M-sensor inputs. The LSTM consists of a forget, input,
output, and cell input gate (see Figure 3). The following
equations can describe an LSTM layer with any number of
units

f t = σg(W f × xt + U f × ht−1 + bf), (5)

it = σg(W i × xt + U i × ht−1 + bi), (6)

ot = σg (Wo × xt + Uo × ht−1 + bo) , (7)

ĉt = σc(W c × xt + Uc × ht−1 + bc), (8)

ct = f t ◦ ct−1 + it ◦ ĉt , (9)

ht = ot ◦ σc(ct ), (10)

where f t – the forget gate’s result; it – the input/update
gate’s result; ot – the output gate’s result; ĉt – the cell input
result; ct – the memory cell state; W f, W i, Wo, W c – the
learnable input connectionweights’matrices for forget, input,
output, and memory cell gates;U f,U i,Uo,Uc – the learnable
recurrent connection weight matrices for each gate; xt – the
input data matrix; ht−1 – the recurrent data matrix; t – the
sample’s number in input sequence; ◦ - the element-wise
multiplication of matrixes (Hadamard product);σg – sigmoid
activation function; σc – tanh activation function.

The LSTM can be unrolled in time to observe the inter-
faces between successive input samples. Each time, the same
LSTM unit processes the next data item in a sequence of
length W and an input vector of length N. In such cases,
t varies from 0 to W-1.

BiLSTM is similar to LSTM in that it uses the same
structure (see Figure 2. d)). Unlike the LSTM unit, a BiLSTM
unit uses two connected LSTM structures to obtain the last
sample and outputs the current sample, while the other unit
obtains the next sample and outputs the current sample. The
outputs of the two LSTM structures for the same sample are
linked. The output at each step depends not only on the past
samples in the sequence, but also on the next data sample.
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Such processing is possible only if all samples of the input
sequence are available.

FIGURE 3. The internal structure of one LSTM unit.

The last structure type tested was MLP-LSTM, a combi-
nation of MLP and LSTM (see Figure 2. e)). In this model,
the sequence data is first convolved and preprocessed with
MLP before being deconvolved and processed with LSTM.
This structure was tested to determine if an additional feature
extraction layer could be better combined with the memory
capability of LSTM.

E. ANN TYPE AND STRUCTURE SELECTION
Eight described above ANN structures with various types and
numbers of layers were selected for investigation.

After determining all possible combinations of the selected
sample window sizes and structures, a Bayesian search is
applied to fine-tune the hyperparameters of the convolutional
and fully connected layers. Bayesian search is a probabilistic
optimization method that iteratively updates a probability
distribution over hyperparameters based on the observed per-
formance of the model. By leveraging prior knowledge and
iteratively refining the distribution, a Bayesian search aims
to efficiently explore the hyperparameter space and identify
the most promising hyperparameter values.

The advantage of the Bayesian search for hyperparameters
lies in its ability to handle a limited amount of data and
efficiently use computational resources. It adapts to the infor-
mation gained during the search process and dynamically
focuses on promising regions of the hyperparameter space.
This adaptive nature allows the Bayesian search to converge
to optimal hyperparameters with fewer evaluations compared
to other methods, such as grid search.

However, it is important to note that Bayesian search typ-
ically requires more computational resources and time than
grid search because of its iterative nature and the need to
update the probability distributions [27]. Additionally, the
performance of the Bayesian search depends heavily on the
choice of the prior distribution and acquisition function used
to guide the search process.

The training process was repeated at least 60 times for
each ANN and window-size combination structure using
ADAM optimization algorithm to select connection weights
in neural networks and settings of LSTM and BiLSTMmem-
ories, while performing the Bayesian search for selection of
hyperparameters. Each training session lasted for 30 epochs.

One epoch is a training cycle for all the training dataset
samples. The selected initial learning rate was 0.001 with one
learning rate drop by a factor of 0.2 after 20 epochs. The
learning rate reduction enables more accurate minimization
in the selected minimum point of the cost function. Also,
the gradient rate threshold of 1 was set, to reduce the effect
of high error during the start of the learning process. The
data samples were shuffled before each epoch to improve
the stability of the learning process. This article presents
the results of 104 ANN structure and sample window size
combinations, which required 6240 training sessions. The
testing of RMSE and processing duration were carried out for
each pair of ANN type and sample window size after training.
The test set is being processed using a central processing
unit (CPU) only and a batch size of 1, which includes sensor
data that fills the selected sample window size. One Nvidia
Geforce RTX 2080 Ti GPU was used for training using
mini-batch sizes up to 10922 samples, and was limited by
the amount of GPU memory, therefore mini-batch size was
calculated dividing 32 768 by the selected sample window
size. One computing core of the Intel i7-8700K central pro-
cessor was used for processing duration testing using single
sample mini-baches as in real-time processing. One core of
the central processor was used as it reassembles well the
processing on RTTM if no multi-threading is supported. The
processor of RTTM provides lower core clocks, different
CPU architecture and instruction sets, therefore the results
are comparable between the test only. Simulink implementa-
tion on the same CPU would further reduce the computing
duration, while implementation on RTTM would increase
the processing duration. The average processing duration is
calculated by dividing the test set processing time by the
number of samples in it.

Overfitting is possible when training ANNs. Overfitting
the training data usually results in the RMSE increase
for the validation data, whereas the RMSE of the training
data decreases. Several measures were adopted to prevent
overfitting. First, the checkpoint with the best RMSE for
the validation data is recorded for each Bayesian iteration.
Second, dropout layers were introduced before the output FC
layer in each ANN, and earlier in the MLP-LSTM structure.
Thus, the risk of overfitting is reduced to the maximum
possible extent for the current dataset.

TheMATLAB code for VS training and testing is available
at: https://github.com/eldux/UMvelocityVSresearch.

III. RESULTS
A. ANN TYPE AND SAMPLE WINDOW SIZE TESTING
RESULTS
The performance metrics achieved by the simplest MLP with
one hidden FC layer after hyperparameter search and learning
with window sizes ranging from 3 to 51 samples are shown
in Table 2. For these networks The RMSE ranged from
0.0235 to 0.0261 m/s, and the processing time ranged from
0.339 to 0.411 ms/sample. The processing duration is not
strongly correlated with the number of neuron units in FC or
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the window size. This is due to hardware limitations caused
by the latency in data transfer between the memory and
the computational units. The best performance for an MLP
with one hidden layer was achieved using window size of
51 samples - RMSE of 0.0235 m/s and processing duration of
0.391 ms/sample. This model contained 752 hidden neurons.
Next, 2 hidden layer MLP was tested.

TABLE 2. Metrics of 1 hidden layer MLP with various sample window
sizes.

The performance metrics of the MLP with two hid-
den layers are listed in Table 3. The RMSE ranges
from 0.0218 to 0.0256 m/s and processing duration
from 0.404 to 0.507 ms/sample. The highest accuracy of
0.0218 m/s RMSE was achieved using a window size of
51 input samples with a processing time of 0.404 ms/sample.
The model contained 1118 hidden neurons. Next, 3 hidden
FC layer MLP was tested.

TABLE 3. Metrics of 2 hidden layers MLP with various sample window
sizes.

The performance of the MLP with three hidden
FC layers is shown in Table 4. The RMSE ranges
from 0.0218 to 0.0246 m/s, while the duration from
0.350 to 0.6 ms/sample. The best model achieved an RMSE
of 0.0218 m/s and a processing duration of 0.350 ms/sample
with a window size of 51 samples. This model has 1222 hid-
den neurons and is faster thanMLPwith 2 hidden layers while
providing same RMSE. The number of neurons on the second
layer (FC2) is 50, which is noticeably lower compared to the
first (FC1) and third (FC3) layers. This hourglass-like shape
leads to a reduction of connections between layers and faster
performance. Next, a DNN with 2 CNN layers was tested.

It should be pointed out that for all tested structures RMSE
difference with input window sizes from 3 to 51 samples was
in a range 18% from minimum RMSE.

TABLE 4. Metrics of 3 hidden layers MLP with various sample window
sizes.

The performance of DNN with 2 CNN layers was
tested and is shown in Table 5. The RMSE ranges from
0.0210 to 0.0234 m/s and the processing duration from
0.365 to 0.620 ms/sample. The best RMSE of 0.0210 m/s
was achieved for window sizes of 21, 23, and 35 samples.
Among them, one with input sample window size of 23 has
shortest processing duration among them - 0.421 ms/sample.
This model achieved a 3.67% reduction in RMSE but was
20.3% slower compared to MLP with 3 hidden FC layers.
This model has 195 convolutional units and 94 FC neuron
units. Processing time was within acceptable limits, while
performance was improved. Next, the 3-layer CNN was
tested.

TABLE 5. Metrics of 2-layer CNN with various sample window sizes.

The performance of the DNN with 3 CNN layers is shown
in Table 6. The RMSE ranges from 0.0215 to 0.0231 m/s,
and the duration from 0.429 to 0.604 ms/sample. The best
accuracy of 0.0215 m/s was achieved for 19, 21, 27, and
35 samples windows sizes with a best processing dura-
tion of 0.525 ms/sample for window size of 19 samples.
That model has 324 convolutional neurons and 200 FC neu-
ron units. The overall performance was worse compared
to DNN with 2 CNN layers. Therefore, DNNs with more
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than 3 CNN layers were not tested. Next, DNN with LSTM
was tested.

TABLE 6. Metrics of 3-layer CNN with various sample window sizes.

The performance of the DNN with LSTM is shown in
Table 7. The RMSE ranges from 0.0226 to 0.0244 m/s
and the processing duration from 0.512 to 1.079 ms/sample.
The best accuracy of 0.0226 was achieved for 35 samples
window with a processing duration of 1.079 ms/sample. The
RMSE is 0.0005 m/s higher compared to the best CNN based
DNN. This model has 189 LSTM and 222 FC neuron units.
The overall performance is worse than the best DNNs with
2 or 3 convolutional layers, and 2 or 3 hidden FC layers but
better than ANN with one hidden FC layer. Next, BiLSTM
was tested.

TABLE 7. Metrics of LSTM with various sample window sizes.

The performance of the BiLSTM is shown in Table 8.
The RMSE ranged from 0.0225 to 0.0244 m/s and the
duration from 0.564 to 1.019 ms/sample. The best accu-

racy of 0.0225 was achieved for sample window size
of 35 with a processing duration of 0.986 ms/sample. This
model has 98 BiLSTM and 238 FC neuron units. The
RMSE is 0.0001 m/s lower than the best LSTM but lower
by 0.0015 m/s than the best DNNwith 2 convolutional layers.
It estimatesmore accurately than anANNwith one hidden FC
layer. It appears that bidirectional signal propagation provides
a small RMSE advantage of 0.0001 m/s in the case of VS.
BiLSTM was not investigated further.

TABLE 8. Metrics of BiLSTM with various sample window sizes.

The performance achieved by DNN based on MLP-LSTM
combination is shown in Table 8. The RMSE ranges from
0.0229 to 0.0240 m/s and the duration from 0.478 to
1.151 ms/sample. The best accuracy of 0.0229 was obtained
for 21 and 23 sample windows sizes with the shortest process-
ing duration of 0.568 ms/sample for 21 sample window size.
This model has 511 FC neuron units and 68 LSTM units. The
processing time of MLP-LSTM seems to be slower than that
of the DNN with 2 hidden FC layers and the same RMSE.
Bayesian search resulted in lower LSTM unit counts for all
investigated window sizes compared to LSTM and BiLSTM,
and on average shorter processing times. The accuracy was
worse than the best ANNs with LSTM/BiLSTM, CNN, and
2 or 3 hidden FC layers, but better than an ANN with one
hidden FC layer.

TABLE 9. Metrics of MLP-LSTM with various sample window sizes.

Figure 4 compares all ANNs for all window sizes in a
graph. There the most promising window sizes are 19 to 35.
MLP, LSTM, and BiLSTM show decreasing RMSE up to
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35 samples window. The RMSE difference between LSTM
and BiLSTM was small, and the dependence on window size
was very similar.

FIGURE 4. UM vertical velocity estimation RMSE using various sample
window sizes with all tested ANNs.

Estimated FL UM vertical velocity and the ground
truth signals are shown in Figure 5. Estimation was made
using VS based on DNN with 2 convolutional layers. The
estimate of the lower-frequency high-amplitude UM ver-
tical velocity is shown in Figure 5 (a), and the estimate
of the higher-frequency UM vertical velocity is shown
in Figure 5 (b). It can be seen that the VS estimation tracks
more closely the changes at lower frequencies and higher
amplitudes, while rejecting high frequency oscillations.

FIGURE 5. Virtual Sensor and Ground truth comparison: a) lower
frequency signal example; b) higher frequency signal example.

Developed VS for UM is using data from SM, the high
frequency oscillations are not reconstructed, as they are not
transmitted to SM (due tire and suspension damping). Lower
frequency signals are more important in suspension control,
thereby the performance of developed VS is sufficient.

In summary, the best-performing VS was based on DNN
with 2 convolutional layers using input window size of
23 samples, and the second-best was based on DNN with
3 convolutional layers using input window size of 19 samples.

B. RESULTS OF INPUT IMPORTANCE TESTING
The importance of the inputs was tested by setting each input
one by one to 0 or 1 and recording the difference of the RMSE
on the test set. 0 is used as it would mean no input, and 1 is
used as it is the standard deviation after normalization. The
results are shown in Table 10.

TABLE 10. Input signal importance by change of test RMSE.

These results show that the IMU roll rate is the most
important input signal for estimating theUMvertical velocity.
Other important signals include the IMU yaw rate, accelera-
tions on X, Y, Z axes, steering angle optimized, and front left
wheel velocity. Slip angle, longitudinal and transversal veloc-
ity, FR, RL, RR wheels velocities, driver torque requirement,
and master cylinder pressure signals are less important. DSC
regulation signal could be omitted, as it is not having impact.
However, there is no signal that, when set to zero or one,
improves performance. Redundant velocity readings from the
wheel velocity sensors and transversal velocity readings from
the OFS sensor reduce the effects of signal and measurement
noise, as removing these signals increases RMSE. Yet if it is
not possible to use OFS, it can be discarded as the impact on
performance would be manageable, and the model could rely
more on the IMU and CAN data instead.

C. RESULTS OF NO INPUT MEAN COMPENSATION
To better understand how mean value compensation of the
input signals affects the performance, additional tests were
performed where only the standard deviation was normalized
each signal. This is important because the mean and standard
deviation were calculated using only the training data. The
mean was subtracted from the validation and test set data, and
the results were divided by the standard deviation to bring all
signals to approximately the same level.

Table 11 shows the performance results obtained with
various sample window sizes, which are compared with those
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in Table 5. The lowest RMSEwas obtainedwithwindow sizes
of 21 and 27. The processing duration for window size of
27 samples was lower – 0.425 ms/sample. The RMSE range
of 0.0210-0.0233 m/s was similar to the one achieved by
DNN model with 2 convolutional layers trained on data with
mean subtraction. The computation time was not affected by
not using the mean compensation. These results show that
there is no significant difference between using or not using
mean compensation.

TABLE 11. Metrics of 2-layer CNN with various sample window sizes and
no input mean subtraction.

IV. DISCUSSION AND CONCLUSION
The real-world dataset developed for this study provides a
valuable resource for future research and industrial imple-
mentation of ANN-based VSs. It addresses the previous
limitation of the lack of such datasets for supervised DL.
The study of the optimal sampling window length for input
signals and ANN hyperparameters contributes to understand-
ing how ANN models can be tuned to achieve maximum
VS efficiency and accuracy in estimation of UM vertical
velocity. The results of the study suggest that DNNs with
convolutional layers have the greatest potential to achieve
this goal and outperform other types of DNNs by providing
the lowest RMSE of 0.0210 m/s and a sufficiently short
processing time of 0.421 ms/sample with a window size of
23 samples. A closer examination of the ground truth and
estimated signals showed that CNN-based VS rejects higher
frequency oscillations together with process and measure-
ment noise while preserving average values. This is because
SM parameters are used as inputs, which are already damped
by the suspensions system. In addition, it was found that
VS relies primarily on the roll rate provided by the IMU.
However, none of the signals can be removed to achieve better
performance, and DSC regulation signal can be removed
without loss of accuracy. Other tests showed that the input
signal mean subtraction has little impact on performance.

In summary, our results represent a significant advance in
data-driven VS for vehicle suspensions control, especially for
UMvertical velocity estimation. As one of themost important
inputs for suspension control, accurate estimation of vertical

velocities of UM and SM can significantly improve vehicle
comfort, handling, and stability without the need for costly
physical sensors. The findings of this research can speed up
research of VS for UM vertical velocity development.

Future research should further optimize the ANN with
convolutional layers to achieve even better accuracy and
implementation on in-vehicle RTTM, such as the dSPACE
MicroAutoBox, while maintaining a processing time of less
than 10 ms. Such integration would allow real-time testing of
the created algorithms and analysis of the impact on comfort
when using VS instead of physical sensors. For this purpose,
also a quarter-car test setup or demonstrator vehicle can be
used.
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